|
1
|
Perlis N, Krahn MD, Boehme KE, Alibhai
SMH, Jamal M, Finelli A, Sridhar SS, Chung P, Gandhi R, Jones J, et
al: The bladder utility symptom scale: A novel patient reported
outcome instrument for bladder cancer. J Urol. 200:283–291. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Steurer S, Singer JM, Rink M, Chun F,
Dahlem R, Simon R, Burandt E, Stahl P, Terracciano L, Schlomm T, et
al: MALDI imaging-based identification of prognostically relevant
signals in bladder cancer using large-scale tissue microarrays.
Urol Oncol. 32:1225–1233. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Johnson DC, Greene PS and Nielsen ME:
Surgical advances in bladder cancer: At what cost? Urol Clin North
Am. 42:235–252. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen C, Hu L, Chen Y and Hou J: The
prognostic value of histological subtype in patients with
metastatic bladder cancer. Oncotarget. 8:28408–28417.
2017.PubMed/NCBI
|
|
6
|
Chandrasekar T and Evans CP: Autophagy and
urothelial carcinoma of the bladder: A review. Investig Clin Urol.
57 (Suppl 1):S89–S97. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kelly JD, Tan WS, Porta N, Mostafid H,
Huddart R, Protheroe A, Bogle R, Blazeby J, Palmer A, Cresswell J,
et al: BOXIT-A randomised phase III placebo-controlled trial
evaluating the addition of celecoxib to standard treatment of
transitional cell carcinoma of the bladder (CRUK/07/004). Eur Urol.
75:593–601. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tan WS, Tan WP, Tan MY, Khetrapal P, Dong
L, deWinter P, Feber A and Kelly JD: Novel urinary biomarkers for
the detection of bladder cancer: A systematic review. Cancer Treat
Rev. 69:39–52. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cambier S, Sylvester RJ, Collette L,
Gontero P, Brausi MA, van Andel G, Kirkels WJ, Silva FC,
Oosterlinck W, Prescott S, et al: EORTC nomograms and risk groups
for predicting recurrence, progression, and disease-specific and
overall survival in non-muscle-invasive stage Ta-T1 urothelial
bladder cancer patients treated with 1–3 years of maintenance
bacillus calmette-guérin. Eur Urol. 69:60–69. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Anderson B: Bladder cancer: Overview and
management. Part 2: Muscle-invasive and metastatic bladder cancer.
Br J Nurs. 27:S8–S20. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Anderson B: Bladder cancer: Overview and
disease management. Part 1: Non-muscle-invasive bladder cancer. Br
J Nurs. 27:S27–S37. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Galluzzi L and Green DR:
Autophagy-independent functions of the autophagy machinery. Cell.
177:1682–1699. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dower CM, Wills CA, Frisch SM and Wang HG:
Mechanisms and context underlying the role of autophagy in cancer
metastasis. Autophagy. 14:1110–1128. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Long M and McWilliams TG: Monitoring
autophagy in cancer: From bench to bedside. Semin Cancer Biol. Jul
15–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zachari M, Gudmundsson SR, Li Z, Manifava
M, Shah R, Smith M, Stronge J, Karanasios E, Piunti C,
Kishi-Itakura C, et al: Selective autophagy of mitochondria on a
ubiquitin-endoplasmic-reticulum platform. Dev Cell. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Apel A, Herr I, Schwarz H, Rodemann HP and
Mayer A: Blocked autophagy sensitizes resistant carcinoma cells to
radiation therapy. Cancer Res. 68:1485–1494. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cheng Y, Ren X, Hait WN and Yang JM:
Therapeutic targeting of autophagy in disease: Biology and
pharmacology. Pharmacol Rev. 65:1162–1197. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bishop E and Bradshaw TD: Autophagy
modulation: A prudent approach in cancer treatment? Cancer
Chemother Pharmacol. 82:913–922. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye
WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in
cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mizumura K, Cloonan S, Choi ME, Hashimoto
S, Nakahira K, Ryter SW and Choi AM: Autophagy: Friend or foe in
lung disease? Ann Am Thorac Soc. 13 (Suppl 1):S40–S47.
2016.PubMed/NCBI
|
|
21
|
Jang M, Park R, Kim H, Namkoong S, Jo D,
Huh YH, Jang IS, Lee JI and Park J: AMPK contributes to
autophagosome maturation and lysosomal fusion. Sci Rep.
8:126372018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mukherjee A, Patel B, Koga H, Cuervo AM
and Jenny A: Selective endosomal microautophagy is
starvation-inducible in Drosophila. Autophagy. 12:1984–1999. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Marinković M, Šprung M, Buljubašić M and
Novak I: Autophagy modulation in cancer: Current knowledge on
action and therapy. Oxid Med Cell Longev. 2018:80238212018.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Galluzzi L, Baehrecke EH, Ballabio A, Boya
P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P,
Colombo MI, et al: Molecular definitions of autophagy and related
processes. EMBO J. 36:1811–1836. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Taylor MA, Das BC and Ray SK: Targeting
autophagy for combating chemoresistance and radioresistance in
glioblastoma. Apoptosis. 23:563–575. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kang S, Shin KD, Kim JH and Chung T:
Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol
3-kinase control ATG2-mediated formation of autophagosomes in
Arabidopsis. Plant Cell Rep. 37:653–664. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vicencio JM, Ortiz C, Criollo A, Jones AW,
Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, et al:
The inositol 1,4,5-trisphosphate receptor regulates autophagy
through its interaction with Beclin 1. Cell Death Differ.
16:1006–1017. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Feng Y, He D, Yao Z and Klionsky DJ: The
machinery of macroautophagy. Cell Res. 24:24–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Döring T, Zeyen L, Bartusch C and Prange
R: Hepatitis B virus subverts the autophagy elongation complex
Atg5-12/16L1 and does not require Atg8/LC3 lipidation for viral
maturation. J Virol. 92:2018. View Article : Google Scholar
|
|
30
|
Zaffagnini G, Savova A, Danieli A, Romanov
J, Tremel S, Ebner M, Peterbauer T, Sztacho M, Trapannone R,
Tarafder AK, et al: Phasing out the bad-How SQSTM1/p62 sequesters
ubiquitinated proteins for degradation by autophagy. Autophagy.
14:1280–1282. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cha-Molstad H, Yu JE, Feng Z, Lee SH, Kim
JG, Yang P, Han B, Sung KW, Yoo YD, Hwang J, et al:
p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule
pathway which modulates autophagosome biogenesis. Nat Commun.
8:1022017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kwon DH, Park OH, Kim L, Jung YO, Park Y,
Jeong H, Hyun J, Kim YK and Song HK: Insights into degradation
mechanism of N-end rule substrates by p62/SQSTM1 autophagy adapter.
Nat Commun. 9:32912018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Menon MB and Dhamija S: Beclin 1
phosphorylation-at the center of autophagy regulation. Front Cell
Dev Biol. 6:1372018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jung CH, Ro SH, Cao J, Otto NM and Kim DH:
mTOR regulation of autophagy. FEBS Lett. 584:1287–1295. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Grunwald DS, Otto NM, Park JM, Song D and
Kim DH: GABARAPs and LC3s have opposite roles in regulating ULK1
for autophagy induction. Autophagy. 1–15. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ersahin T, Tuncbag N and Cetin-Atalay R:
The PI3K/AKT/mTOR interactive pathway. Mol Biosyst. 11:1946–1954.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Menon S, Dibble CC, Talbott G, Hoxhaj G,
Valvezan AJ, Takahashi H, Cantley LC and Manning BD: Spatial
control of the TSC complex integrates insulin and nutrient
regulation of mTORC1 at the lysosome. Cell. 156:771–785. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Dite TA, Ling NXY, Scott JW, Hoque A,
Galic S, Parker BL, Ngoei KRW, Langendorf CG, O'Brien MT, Kundu M,
et al: The autophagy initiator ULK1 sensitizes AMPK to allosteric
drugs. Nat Commun. 8:5712017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen W, Pan Y, Wang S, Liu Y, Chen G, Zhou
L, Ni W, Wang A and Lu Y: Cryptotanshinone activates AMPK-TSC2 axis
leading to inhibition of mTORC1 signaling in cancer cells. BMC
Cancer. 17:342017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Findlay GM, Yan L, Procter J, Mieulet V
and Lamb RF: A MAP4 kinase related to Ste20 is a nutrient-sensitive
regulator of mTOR signalling. Biochem J. 403:13–20. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pattingre S, Bauvy C and Codogno P: Amino
acids interfere with the ERK1/2-dependent control of macroautophagy
by controlling the activation of Raf-1 in human colon cancer HT-29
cells. J Biol Chem. 278:16667–16674. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Prick T, Thumm M, Köhrer K, Häussinger D
and Vom Dahl S: In yeast, loss of Hog1 leads to osmosensitivity of
autophagy. Biochem J. 394:153–161. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kawauchi K, Araki K, Tobiume K and Tanaka
N: p53 regulates glucose metabolism through an IKK-NF-kappaB
pathway and inhibits cell transformation. Nat Cell Biol.
10:611–618. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Goldstein I, Yizhak K, Madar S, Goldfinger
N, Ruppin E and Rotter V: p53 promotes the expression of
gluconeogenesis-related genes and enhances hepatic glucose
production. Cancer Metab. 1:92013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Itahana Y and Itahana K: Emerging roles of
p53 family members in glucose metabolism. Int J Mol Sci.
19:2018.PubMed/NCBI
|
|
46
|
Feng Z, Zhang H, Levine AJ and Jin S: The
coordinate regulation of the p53 and mTOR pathways in cells. Proc
Natl Acad Sci USA. 102:8204–8209. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dando I, Cordani M and Donadelli M: Mutant
p53 and mTOR/PKM2 regulation in cancer cells. IUBMB Life.
68:722–726. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Budanov AV and Karin M: p53 target genes
sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling.
Cell. 134:451–460. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Crighton D, Wilkinson S, O'Prey J, Syed N,
Smith P, Harrison PR, Gasco M, Garrone O, Crook T and Ryan KM:
DRAM, a p53-induced modulator of autophagy, is critical for
apoptosis. Cell. 126:121–134. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Qian X, Li X, Cai Q, Zhang C, Yu Q, Jiang
Y, Lee JH, Hawke D, Wang Y, Xia Y, et al: Phosphoglycerate kinase 1
phosphorylates Beclin1 to induce autophagy. Mol Cell.
65:917.e6–931.e6. 2017. View Article : Google Scholar
|
|
51
|
Pattingre S, Tassa A, Qu X, Garuti R,
Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2
antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell.
122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhu J, Tian Z, Li Y, Hua X, Zhang D, Li J,
Jin H, Xu J, Chen W, Niu B, et al: ATG7 promotes bladder cancer
invasion via autophagy-mediated increased ARHGDIB mRNA stability.
Adv Sci (Weinh). 6:18019272019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang F, Tang J, Li P, Si S, Yu H, Yang X,
Tao J, Lv Q, Gu M, Yang H and Wang Z: Chloroquine enhances the
radiosensitivity of bladder cancer cells by inhibiting autophagy
and activating apoptosis. Cell Physiol Biochem. 45:54–66. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Piya S, Andreeff M and Borthakur G:
Targeting autophagy to overcome chemoresistance in acute
myleogenous leukemia. Autophagy. 13:214–215. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Schlütermann D, Skowron MA, Berleth N,
Böhler P, Deitersen J, Stuhldreier F, Wallot-Hieke N, Wu W, Peter
C, Hoffmann MJ, et al: Targeting urothelial carcinoma cells by
combining cisplatin with a specific inhibitor of the
autophagy-inducing class III PtdIns3K complex. Urol Oncol.
36:160.e1–160.e13. 2018. View Article : Google Scholar
|
|
56
|
Chiao MT, Cheng WY, Yang YC, Shen CC and
Ko JL: Suberoylanilide hydroxamic acid (SAHA) causes tumor growth
slowdown and triggers autophagy in glioblastoma stem cells.
Autophagy. 9:1509–1526. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Santoni M, Amantini C, Morelli MB,
Liberati S, Farfariello V, Nabissi M, Bonfili L, Eleuteri AM,
Mozzicafreddo M, Burattini L, et al: Pazopanib and sunitinib
trigger autophagic and non-autophagic death of bladder tumour
cells. Br J Cancer. 109:1040–1050. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hua X, Xu J, Deng X, Xu J, Li J, Zhu DQ,
Zhu J, Jin H, Tian Z, Huang H, et al: New compound ChlA-F induces
autophagy-dependent anti-cancer effect via upregulating Sestrin-2
in human bladder cancer. Cancer Lett. 436:38–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li T, Xu K and Liu Y: Anticancer effect of
salidroside reduces viability through autophagy/PI3K/Akt and MMP-9
signaling pathways in human bladder cancer cells. Oncol Lett.
16:3162–3168. 2018.PubMed/NCBI
|
|
60
|
Kou B, Liu W, Xu X, Yang Y, Yi Q, Guo F,
Li J, Zhou J and Kou Q: Autophagy induction enhances
tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human
bladder cancer cells. Oncol Rep. 38:3137–3143. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Alfred Witjes J, Lebret T, Compérat EM,
Cowan NC, De Santis M, Bruins HM, Hernández V, Espinós EL, Dunn J,
Rouanne M, et al: Updated 2016 EAU guidelines on muscle-invasive
and metastatic bladder cancer. Eur Urol. 71:462–475. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jamal-Hanjani M, Quezada SA, Larkin J and
Swanton C: Translational implications of tumor heterogeneity. Clin
Cancer Res. 21:1258–1266. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sun Y: Tumor microenvironment and cancer
therapy resistance. Cancer Lett. 380:205–215. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Carnero A, Garcia-Mayea Y, Mir C, Lorente
J, Rubio IT and LLeonart ME: The cancer stem-cell signaling network
and resistance to therapy. Cancer Treat Rev. 49:25–36. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sharif T, Martell E, Dai C, Kennedy BE,
Murphy P, Clements DR, Kim Y, Lee PW and Gujar SA: Autophagic
homeostasis is required for the pluripotency of cancer stem cells.
Autophagy. 13:264–284. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lin JF, Lin YC, Tsai TF, Chen HE, Chou KY
and Hwang TI: Cisplatin induces protective autophagy through
activation of BECN1 in human bladder cancer cells. Drug Des Devel
Ther. 11:1517–1533. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fan B, Zhang X, Ma Y and Zhang A:
Fangchinoline induces apoptosis, autophagy and energetic impairment
in bladder cancer. Cell Physiol Biochem. 43:1003–1011. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kang M, Lee KH, Lee HS, Jeong CW, Kwak C,
Kim HH and Ku JH: Concurrent autophagy inhibition overcomes the
resistance of epidermal growth factor receptor tyrosine kinase
inhibitors in human bladder cancer cells. Int J Mol Sci. 18:2017.
View Article : Google Scholar
|
|
69
|
Pan XW, Li L, Huang Y, Huang H, Xu DF, Gao
Y, Chen L, Ren JZ, Cao JW, Hong Y and Cui XG: Icaritin acts
synergistically with epirubicin to suppress bladder cancer growth
through inhibition of autophagy. Oncol Rep. 35:334–342. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Dyshlovoy SA, Madanchi R, Hauschild J,
Otte K, Alsdorf WH, Schumacher U, Kalinin VI, Silchenko AS, Avilov
SA, Honecker F, et al: The marine triterpene glycoside frondoside A
induces p53-independent apoptosis and inhibits autophagy in
urothelial carcinoma cells. BMC Cancer. 17:932017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr
M, Hijlkema KJ, Coppes RP, Engedal N, Mari M and Reggiori F:
Chloroquine inhibits autophagic flux by decreasing
autophagosome-lysosome fusion. Autophagy. 14:1435–1455. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Thorpe LM, Yuzugullu H and Zhao JJ: PI3K
in cancer: Divergent roles of isoforms, modes of activation and
therapeutic targeting. Nat Rev Cancer. 15:7–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yu X, Long YC and Shen HM: Differential
regulatory functions of three classes of phosphatidylinositol and
phosphoinositide 3-kinases in autophagy. Autophagy. 11:1711–1728.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gewirtz DA: The four faces of autophagy:
Implications for cancer therapy. Cancer Res. 74:647–651. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang X, Liu Y, Liu W, Zhang Y, Guo F,
Zhang L, Cui M, Liu S and Wu R: Ubenimex, an APN inhibitor, could
serve as an anti-tumor drug in RT112 and 5637 cells by operating in
an Akt-associated manner. Mol Med Rep. 17:4531–4539.
2018.PubMed/NCBI
|
|
76
|
Amin SA, Adhikari N and Jha T: Design of
aminopeptidase N inhibitors as anti-cancer agents. J Med Chem.
61:6468–6490. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Torrens-Spence MP, Pluskal T, Li FS,
Carballo V and Weng JK: Complete pathway elucidation and
heterologous reconstitution of rhodiola salidroside biosynthesis.
Mol Plant. 11:205–217. 2018. View Article : Google Scholar : PubMed/NCBI
|