|
1
|
Lambert AW, Pattabiraman DR and Weinberg
RA: Emerging biological principles of metastasis. Cell.
168:670–691. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tayoun T, Faugeroux V, Oulhen M, Aberlenc
A, Pawlikowska P and Farace F: CTC-derived models: A Window into
the seeding capacity of circulating tumor cells (CTCs). Cells.
8(pii): E11452019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Obenauf AC and Massague J: Surviving at a
distance: Organ-specific metastasis. Trends Cancer. 1:76–91. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kang Y and Pantel K: Tumor cell
dissemination: Emerging biological insights from animal models and
cancer patients. Cancer Cell. 23:573–581. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rossi E and Fabbri F: CTCs 2020: Great
expectations or unreasonable dreams. Cells. 8(pii): E9892019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chaffer CL and Weinberg RA: A perspective
on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Giuliano AE, Connolly JL, Edge SB,
Mittendorf EA, Rugo HS, Solin LJ, Weaver DL, Winchester DJ and
Hortobagyi GN: Breast Cancer-Major changes in the American Joint
Committee on Cancer eighth edition cancer staging manual. CA Cancer
J Clin. 67:290–303. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Keller L and Pantel K: Unravelling tumour
heterogeneity by single-cell profiling of circulating tumour cells.
Nat Rev Cancer. 19:553–567. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Quail DF and Joyce JA: Microenvironmental
regulation of tumor progression and metastasis. Nat Med.
19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nieto MA: The ins and outs of the
epithelial to mesenchymal transition in health and disease. Annu
Rev Cell Dev Biol. 27:347–376. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kishi S, Bayliss PE and Hanai J: A
prospective epigenetic paradigm between cellular senescence and
epithelial-mesenchymal transition in organismal development and
aging. Transl Res. 165:241–249. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dongre A and Weinberg RA: New insights
into the mechanisms of epithelial-mesenchymal transition and
implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tam WL and Weinberg RA: The epigenetics of
epithelial-mesenchymal plasticity in cancer. Nat Med. 19:1438–1449.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lee CC, Lin JC, Hwang WL, Kuo YJ, Chen HK,
Tai SK, Lin CC and Yang MH: Macrophage-secreted interleukin-35
regulates cancer cell plasticity to facilitate metastatic
colonization. Nat Commun. 9:37632018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Linde N, Casanova-Acebes M, Sosa MS,
Mortha A, Rahman A, Farias E, Harper K, Tardio E, Reyes Torres I,
Jones J, et al: Macrophages orchestrate breast cancer early
dissemination and metastasis. Nat Commun. 9:212018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rhim AD, Mirek ET, Aiello NM, Maitr A,
Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK,
Vonderheide RH, et al: EMT and dissemination precede pancreatic
tumor formation. Cell. 148:349–361. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Eckert MA, Lwin TM, Chang AT, Kim J, Danis
E, Ohno-Machado L and Yang J: Twist1-induced invadopodia formation
promotes tumor metastasis. Cancer Cell. 19:372–386. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guo W, Keckesova Z, Donaher JL, Shibue T,
Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zürrer-Härdi U, Bell
G, et al: Slug and Sox9 cooperatively determine the mammary stem
cell state. Cell. 148:1015–1028. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wellner U, Schubert J, Burk UC,
Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D,
zur Hausen A, et al: The EMT-activator ZEB1 promotes tumorigenicity
by repressing stemness-inhibiting microRNAs. Nat Cell Biol.
11:1487–1495. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Polyak K and Weinberg RA: Transitions
between epithelial and mesenchymal states: Acquisition of malignant
and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Joosse SA, Hannemann J, Spötter J, Bauche
A, Andreas A, Müller V and Pantel K: Changes in keratin expression
during metastatic progression of breast cancer: Impact on the
detection of circulating tumor cells. Clin Cancer Res. 18:993–1003.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Godinho SA, Picone R, Burute M, Dagher R,
Su Y, Leung CT, Polyak K, Brugge JS, Théry M and Pellman D:
Oncogene-like induction of cellular invasion from centrosome
amplification. Nature. 510:167–171. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Aceto N, Bardia A, Miyamoto DT, Donaldson
MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, et al:
Circulating tumor cell clusters are oligoclonal precursors of
breast cancer metastasis. Cell. 158:1110–1122. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Joosse SA, Gorges TM and Pantel K:
Biology, detection, and clinical implications of circulating tumor
cells. EMBO Mol Med. 7:1–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bonnans C, Chou J and Werb Z: Remodelling
the extracellular matrix in development and disease. Nat Rev Mol
Cell Biol. 15:786–801. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Northey JJ, Przybyla L and Weaver VM:
Tissue force programs cell fate and tumor aggression. Cancer
Discov. 7:1224–1237. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sangaletti S, Di Carlo E, Gariboldi S,
Miotti S, Cappetti B, Parenza M, Rumio C, Brekken RA, Chiodoni C
and Colombo MP: Macrophage-derived SPARC bridges tumor
cell-extracellular matrix interactions toward metastasis. Cancer
Res. 68:9050–9059. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Porrello A, Leslie PL, Harrison EB,
Gorentla BK, Kattula S, Ghosh SK, Azam SH, Holtzhausen A, Chao YL,
Hayward MC, et al: Factor XIIIA-expressing inflammatory monocytes
promote lung squamous cancer through fibrin cross-linking. Nat
Commun. 9:19882018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Glasner A, Ghadially H, Gur C, Stanietsky
N, Tsukerman P, Enk J and Mandelboim O: Recognition and prevention
of tumor metastasis by the NK receptor NKp46/NCR1. J Immunol.
188:2509–2515. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rivera LB and Bergers G: Intertwined
regulation of angiogenesis and immunity by myeloid cells. Trends
Immunol. 36:240–249. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Harney AS, Arwert EN, Entenberg D, Wang Y,
Guo P, Qian BZ, Oktay MH, Pollard JW, Jones JG and Condeelis JS:
Real-time imaging reveals local, transient vascular permeability,
and tumor cell intravasation stimulated by TIE2hi
macrophage-derived VEGFA. Cancer Discov. 5:932–943. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
El-Kenawi A, Hanggi K and Ruffell B: The
immune microenvironment and cancer metastasis. Cold Spring Harb
Perspect Med. (pii): a0374242019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Arwert EN, Harney AS, Entenberg D, Wang Y,
Sahai E, Pollard JW and Condeelis JS: A Unidirectional transition
from migratory to perivascular macrophage is required for tumor
cell intravasation. Cell Rep. 23:1239–1248. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ishihara D, Dovas A, Hernandez L, Pozzuto
M, Wyckoff J, Segall JE, Condeelis JS, Bresnick AR and Cox D:
Wiskott-Aldrich syndrome protein regulates leukocyte-dependent
breast cancer metastasis. Cell Rep. 4:429–436. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
DeNardo DG, Barreto JB, Andreu P, Vasquez
L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate
pulmonary metastasis of mammary carcinomas by enhancing protumor
properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mohme M, Riethdorf S and Pantel K:
Circulating and disseminated tumour cells-mechanisms of immune
surveillance and escape. Nat Rev Clin Oncol. 14:155–167. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tsukamoto K and Niikawa N: Gene
responsible for Waardenburg syndrome type I. Tanpakushitsu Kakusan
Koso. 38:361–365. 1993.(In Japanese). PubMed/NCBI
|
|
40
|
Labelle M and Hynes RO: The initial hours
of metastasis: The importance of cooperative host-tumor cell
interactions during hematogenous dissemination. Cancer Discov.
2:1091–1099. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fan R, Emery T, Zhang Y, Xia Y, Sun J and
Wan J: Circulatory shear flow alters the viability and
proliferation of circulating colon cancer cells. Sci Rep.
6:270732016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Mitchell MJ and King MR: Computational and
experimental models of cancer cell response to fluid shear stress.
Front Oncol. 3:442013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Douma S, Van Laar T, Zevenhoven J,
Meuwissen R, Van Garderen E and Peeper DS: Suppression of anoikis
and induction of metastasis by the neurotrophic receptor TrkB.
Nature. 430:1034–1039. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen Q, Zhang XH and Massague J:
Macrophage binding to receptor VCAM-1 transmits survival signals in
breast cancer cells that invade the lungs. Cancer Cell. 20:538–549.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Leblanc R and Peyruchaud O: Metastasis:
New functional implications of platelets and megakaryocytes. Blood.
128:24–31. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Seth R, Tai LH, Falls T, de Souza CT, Bell
JC, Carrier M, Atkins H, Boushey R and Auer RA: Surgical stress
promotes the development of cancer metastases by a
coagulation-dependent mechanism involving natural killer cells in a
murine model. Ann Surg. 258:158–168. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Palumbo JS, Talmage KE, Massari JV, La
Jeunesse CM, Flick MJ, Kombrinck KW, Jirousková M and Degen JL:
Platelets and fibrin(ogen) increase metastatic potential by
impeding natural killer cell-mediated elimination of tumor cells.
Blood. 105:178–185. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Labelle M, Begum S and Hynes RO: Direct
signaling between platelets and cancer cells induces an
epithelial-mesenchymal-like transition and promotes metastasis.
Cancer Cell. 20:576–590. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Placke T, Orgel M, Schaller M, Jung G,
Rammensee HG, Kopp HG and Salih HR: Platelet-derived MHC class I
confers a pseudonormal phenotype to cancer cells that subverts the
antitumor reactivity of natural killer immune cells. Cancer Res.
72:440–448. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kopp HG, Placke T and Salih HR:
Platelet-derived transforming growth factor-beta down-regulates
NKG2D thereby inhibiting natural killer cell antitumor reactivity.
Cancer Res. 69:7775–7783. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gil-Bernabe AM, Ferjancic S, Tlalka M,
Zhao L, Allen PD, Im JH, Watson K, Hill SA, Amirkhosravi A, Francis
JL, et al: Recruitment of monocytes/macrophages by tissue
factor-mediated coagulation is essential for metastatic cell
survival and premetastatic niche establishment in mice. Blood.
119:3164–3175. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yue C, Jiang Y, Li P, Wang Y, Xue J, Li N,
Li D, Wang R, Dang Y, Hu Z, et al: Dynamic change of PD-L1
expression on circulating tumor cells in advanced solid tumor
patients undergoing PD-1 blockade therapy. Oncoimmunology.
7:e14381112018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kallergi G, Vetsika EK, Aggouraki D,
Lagoudaki E, Koutsopoulos A, Koinis F, Katsarlinos P, Trypaki M,
Messaritakis I, Stournaras C, et al: Evaluation of PD-L1/PD-1 on
circulating tumor cells in patients with advanced non-small cell
lung cancer. Ther Adv Med Oncol. 10:17588340177501212018.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Baccelli I, Schneeweiss A, Riethdorf S,
Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bäuerle T,
Wallwiener M, et al: Identification of a population of blood
circulating tumor cells from breast cancer patients that initiates
metastasis in a xenograft assay. Nat Biotechnol. 31:539–544. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hallermalm K, De Geer A, Kiessling R,
Levitsky V and Levitskaya J: Autocrine secretion of Fas ligand
shields tumor cells from Fas-mediated killing by cytotoxic
lymphocytes. Cancer Res. 64:6775–6782. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Follain G, Osmani N, Azevedo AS, Allio G,
Mercier L, Karreman MA, Solecki G, Garcia Leòn MJ, Lefebvre O,
Fekonja N, et al: Hemodynamic forces tune the arrest, adhesion, and
extravasation of circulating tumor cells. Dev Cell. 45:33–52 e12.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yano K, Gale D, Massberg S, Cheruvu PK,
Monahan-Earley R, Morgan ES, Haig D, von Andrian UH, Dvorak AM and
Aird WC: Phenotypic heterogeneity is an evolutionarily conserved
feature of the endothelium. Blood. 109:613–615. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yasmin-Karim S, King MR, Messing EM and
Lee YF: E-selectin ligand-1 controls circulating prostate cancer
cell rolling/adhesion and metastasis. Oncotarget. 5:12097–12110.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tichet M, Prod'Homme V, Fenouille N,
Ambrosetti D, Mallavialle A, Cerezo M, Ohanna M, Audebert S, Rocchi
S, Giacchero D, et al: Tumour-derived SPARC drives vascular
permeability and extravasation through endothelial VCAM1 signalling
to promote metastasis. Nat Commun. 6:69932015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gay LJ and Felding-Habermann B:
Contribution of platelets to tumour metastasis. Nat Rev Cancer.
11:123–134. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Spicer JD, McDonald B, Cools-Lartigue JJ,
Chow SC, Giannias B, Kubes P and Ferri LE: Neutrophils promote
liver metastasis via Mac-1-mediated interactions with circulating
tumor cells. Cancer Res. 72:3919–3927. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Qian BZ, Li J, Zhang H, Kitamura T, Zhang
J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits
inflammatory monocytes to facilitate breast-tumour metastasis.
Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Reymond N, d'Agua BB and Ridley AJ:
Crossing the endothelial barrier during metastasis. Nat Rev Cancer.
13:858–870. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Endo H and Inoue M: Dormancy in cancer.
Cancer Sci. 110:474–480. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu Y and Cao X: Characteristics and
Significance of the Pre-metastatic Niche. Cancer Cell. 30:668–681.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kaplan RN, Riba RD, Zacharoulis S, Bramley
AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et
al: VEGFR1-positive haematopoietic bone marrow progenitors initiate
the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang XH, Wang Q, Gerald W, Hudis CA,
Norton L, Smid M, Foekens JA and Massagué J: Latent bone metastasis
in breast cancer tied to Src-dependent survival signals. Cancer
Cell. 16:67–78. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Indraccolo S, Stievano L, Minuzzo S,
Tosello V, Esposito G, Piovan E, Zamarchi R, Chieco-Bianchi L and
Amadori A: Interruption of tumor dormancy by a transient angiogenic
burst within the tumor microenvironment. Proc Natl Acad Sci USA.
103:4216–4221. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Eyles J, Puaux AL, Wang X, Toh B, Prakash
C, Hong M, Tan TG, Zheng L, Ong LC, Jin Y, et al: Tumor cells
disseminate early, but immunosurveillance limits metastatic
outgrowth, in a mouse model of melanoma. J Clin Invest.
120:2030–2039. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Romero I, Garrido C, Algarra I, Collado A,
Garrido F and Garcia-Lora AM: T lymphocytes restrain spontaneous
metastases in permanent dormancy. Cancer Res. 74:1958–1968. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sosa MS, Avivar-Valderas A, Bragado P, Wen
HC and Aguirre-Ghiso JA: ERK1/2 and p38α/β signaling in tumor cell
quiescence: Opportunities to control dormant residual disease. Clin
Cancer Res. 17:5850–5857. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Aguirre-Ghiso JA: Models, mechanisms and
clinical evidence for cancer dormancy. Nat Rev Cancer. 7:834–846.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yumoto K, Eber MR, Wang J, Cackowski FC,
Decker AM, Lee E, Nobre AR, Aguirre-Ghiso JA, Jung Y and Taichman
RS: Axl is required for TGF-β2-induced dormancy of prostate cancer
cells in the bone marrow. Sci Rep. 6:365202016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chen Z, Zhang P, Xu Y, Yan J, Liu Z, Lau
WB, Lau B, Li Y, Zhao X, Wei Y and Zhou S: Surgical stress and
cancer progression: The twisted tango. Mol Cancer. 18:1322019.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ruffell B and Coussens LM: Macrophages and
therapeutic resistance in cancer. Cancer Cell. 27:462–472. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Albrengues J, Shields MA, Ng D, Park CG,
Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A,
Küttner V, et al: Neutrophil extracellular traps produced during
inflammation awaken dormant cancer cells in mice. Science.
361(pii): eaao42272018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sosnoski DM, Norgard RJ, Grove CD, Foster
SJ and Mastro AM: Dormancy and growth of metastatic breast cancer
cells in a bone-like microenvironment. Clin Exp Metastasis.
32:335–344. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gao H, Chakraborty G, Lee-Lim AP, Mo Q,
Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH and Giancotti FG:
The BMP inhibitor Coco reactivates breast cancer cells at lung
metastatic sites. Cell. 150:764–779. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ting DT, Wittner BS, Ligorio M, Vincent
Jordan N, Shah AM, Miyamoto DT, Aceto N, Bersani F, Brannigan BW,
Xega K, et al: Single-cell RNA sequencing identifies extracellular
matrix gene expression by pancreatic circulating tumor cells. Cell
Rep. 8:1905–1918. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lee MW, Kim GH, Jeon HK and Park SJ:
Clinical application of circulating tumor cells in gastric cancer.
Gut Liver. 13:394–401. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gorges TM, Tinhofer I, Drosch M, Röse L,
Zollner TM, Krahn T and von Ahsen O: Circulating tumour cells
escape from EpCAM-based detection due to epithelial-to-mesenchymal
transition. BMC Cancer. 12:1782012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sen M, Wang L, Yu L and Carpenter EL: Rare
event phenotyping and molecular characterization: Circulating tumor
cells. Methods Mol Biol. 2032:213–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kim TH, Lim M, Park J, Oh JM, Kim H, Jeong
H, Lee SJ, Park HC, Jung S, Kim BC, et al: FAST: Size-selective,
Clog-free isolation of rare cancer cells from whole blood at a
liquid-liquid interface. Anal Chem. 89:1155–1162. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ozkumur E, Shah AM, Ciciliano JC, Emmink
BL, Miyamoto DT, Brachtel E, Yu M, Chen PI, Morgan B, Trautwein J,
et al: Inertial focusing for tumor antigen-dependent and
-independent sorting of rare circulating tumor cells. Sci Transl
Med. 5:179ra1472013. View Article : Google Scholar
|
|
87
|
Danila DC, Samoila A, Patel C, Schreiber
N, Herkal A, Anand A, Bastos D, Heller G, Fleisher M and Scher HI:
Clinical validity of detecting circulating tumor cells by AdnaTest
assay compared with direct detection of tumor mRNA in Stabilized
whole blood, as a biomarker predicting overall survival for
metastatic castration-resistant prostate cancer patients. Cancer J.
22:315–320. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cattrini C, Rubagotti A, Zinoli L, Cerbone
L, Zanardi E, Capaia M, Barboro P and Boccardo F: Role of
Circulating Tumor Cells (CTC), Androgen Receptor Full Length
(AR-FL) and Androgen Receptor Splice Variant 7 (AR-V7) in a
prospective cohort of castration-resistant metastatic prostate
cancer patients. Cancers (Basel). 11(pii): E13652019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Vilhav C, Engstrom C, Naredi P, Novotny A,
Bourghardt-Fagman J, Iresjö BM, Asting AG and Lundholm K:
Fractional uptake of circulating tumor cells into liver-lung
compartments during curative resection of periampullary cancer.
Oncol Lett. 16:6331–6338. 2018.PubMed/NCBI
|
|
90
|
Stott SL, Lee RJ, Nagrath S, Yu M,
Miyamoto DT, Ulkus L, Inserra EJ, Ulman M, Springer S, Nakamura Z,
et al: Isolation and characterization of circulating tumor cells
from patients with localized and metastatic prostate cancer. Sci
Transl Med. 2:25ra232010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Stott SL, Hsu CH, Tsukrov DI, Yu M,
Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK,
et al: Isolation of circulating tumor cells using a
microvortex-generating herringbone-chip. Proc Natl Acad Sci USA.
107:18392–18397. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang S, Thomas A, Lee E, Yang S, Cheng X
and Liu Y: Highly efficient and selective isolation of rare tumor
cells using a microfluidic chip with wavy-herringbone
micro-patterned surfaces. Analyst. 141:2228–2237. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
He Y, Shi J, Shi G, Xu X, Liu Q, Liu C,
Gao Z, Bai J and Shan B: Using the new CellCollector to capture
circulating tumor cells from blood in different groups of pulmonary
disease: A Cohort Study. Sci Rep. 7:95422017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tao L, Su L, Yuan C, Ma Z, Zhang L, Bo S,
Niu Y, Lu S and Xiu D: Postoperative metastasis prediction based on
portal vein circulating tumor cells detected by flow cytometry in
periampullary or pancreatic cancer. Cancer Manag Res. 11:7405–7425.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Paoletti C and Hayes DF: Circulating tumor
cells. Adv Exp Med Biol. 882:235–258. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang Z, Sun N, Liu H, Chen C, Ding P, Yue
X, Zou H, Xing C and Pei R: High efficiency isolation and rapid
identification of heterogeneous circulating tumor cells (CTCs)
Using Dual-antibody-modified Fluorescent-magnetic-nanoparticles.
ACS Appl Mater Interfaces. 11:39586–39593. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wei T, Zhang X, Zhang Q, Yang J, Chen Q,
Wang J, Li X, Chen J, Ma T, Li G, et al: Vimentin-positive
circulating tumor cells as a biomarker for diagnosis and treatment
monitoring in patients with pancreatic cancer. Cancer Lett.
452:237–243. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Watanabe T, Okumura T, Hirano K, Yamaguchi
T, Sekine S, Nagata T and Tsukada K: Circulating tumor cells
expressing cancer stem cell marker CD44 as a diagnostic biomarker
in patients with gastric cancer. Oncol Lett. 13:281–288. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Andree KC, Mentink A, Zeune LL, Terstappen
LWMM, Stoecklein NH, Neves RP, Driemel C, Lampignano R, Yang L,
Neubauer H, et al: Toward a real liquid biopsy in metastatic breast
and prostate cancer: Diagnostic LeukApheresis increases CTC yields
in a European prospective multicenter study (CTCTrap). Int J
Cancer. 143:2584–2591. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Soler A, Cayrefourcq L, Mazel M and
Alix-Panabieres C: EpCAM-independent enrichment and detection of
viable circulating tumor cells using the EPISPOT Assay. Methods Mol
Biol. 1634:263–276. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Chen F, Wang S, Fang Y, Zheng L, Zhi X,
Cheng B, Chen Y, Zhang C, Shi D, Song H, et al: Feasibility of a
novel one-stop ISET device to capture CTCs and its clinical
application. Oncotarget. 8:3029–3041. 2017.PubMed/NCBI
|
|
102
|
Li M, Lu Y, Long Z, Li M, Kong J, Chen G
and Wang Z: Prognostic and clinicopathological significance of
circulating tumor cells in osteosarcoma. J Bone Oncol.
16:1002362019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chudasama D, Barr J, Beeson J, Beddow E,
McGonigle N, Rice A, Nicholson A and Anikin V: Detection of
circulating tumour cells and survival of patients with Non-small
cell lung cancer. Anticancer Res. 37:169–173. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Vetter M, Landin J, Szczerba BM,
Castro-Giner F, Gkountela S, Donato C, Krol I, Scherrer R, Balmelli
C, Malinovska A, et al: Denosumab treatment is associated with the
absence of circulating tumor cells in patients with breast cancer.
Breast Cancer Res. 20:1412018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Naoe M, Kusaka C, Ohta M, Hasebe Y, Unoki
T, Shimoyama H, Nakasato T, Oshinomi K, Morita J, Fuji K, et al:
Development of a highly sensitive technique for capturing renal
cell cancer circulating tumor cells. Diagnostics (Basel). 9(pii):
E962019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Koh Y, Yagi S, Akamatsu H, Kanai K, Hayata
A, Tokudome N, Akamatsu K, Higuchi M, Kanbara H, Nakanishi M, et
al: Heterogeneous expression of programmed death Receptor-ligand 1
on circulating tumor cells in patients with lung cancer. Clin Lung
Cancer. 20:270–277.e1. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kallergi G, Politaki E, Alkahtani S,
Stournaras C and Georgoulias V: Evaluation of isolation methods for
circulating tumor cells (CTCs). Cell Physiol Biochem. 40:411–419.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Rosenberg R, Gertler R, Friederichs J,
Fuehrer K, Dahm M, Phelps R, Thorban S, Nekarda H and Siewert JR:
Comparison of two density gradient centrifugation systems for the
enrichment of disseminated tumor cells in blood. Cytometry.
49:150–158. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Gascoyne PR, Noshari J, Anderson TJ and
Becker FF: Isolation of rare cells from cell mixtures by
dielectrophoresis. Electrophoresis. 30:1388–1398. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Di Trapani M, Manaresi N and Medoro G:
DEPArray™ system: An automatic image-based sorter for isolation of
pure circulating tumor cells. Cytometry A. 93:1260–1266. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
He G, Feng J, Zhang A, Zhou L, Wen R, Wu
J, Yang C, Yang J, Li C, Chen D, et al: Multifunctional branched
nanostraw-electroporation platform for intracellular regulation and
monitoring of circulating tumor cells. Nano Lett. 19:7201–7209.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Li Q, Cui S, Xu Y, Wang Y, Jin F, Si H, Li
L and Tang B: Consecutive sorting and phenotypic counting of CTCs
by an optofluidic flow cytometer. Anal Chem. 91:14133–14140. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Galanzha EI, Menyaev YA, Yadem AC,
Sarimollaoglu M, Juratli MA, Nedosekin DA, Foster SR,
Jamshidi-Parsian A, Siegel ER, Makhoul I, et al: In vivo liquid
biopsy using Cytophone platform for photoacoustic detection of
circulating tumor cells in patients with melanoma. Sci Transl Med.
11(pii): eaat58572019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chu CH, Liu R, Ozkaya-Ahmadov T, Boya M,
Swain BE, Owens JM, Burentugs E, Bilen MA, McDonald JF and Sarioglu
AF: Hybrid negative enrichment of circulating tumor cells from
whole blood in a 3D-printed monolithic device. Lab Chip.
19:3427–3437. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Riethdorf S, O'Flaherty L, Hille C and
Pantel K: Clinical applications of the CellSearch platform in
cancer patients. Adv Drug Deliv Rev. 125:102–121. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang ZL, Zhang P, Li HC, Yang XJ, Zhang
YP, Li ZL, Xue L, Xue YQ, Li HL, Chen Q and Chong T: Dynamic
changes of different phenotypic and genetic circulating tumor cells
as a biomarker for evaluating the prognosis of RCC. Cancer Biol
Ther. 20:505–512. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Alix-Panabieres C: EPISPOT assay:
Detection of viable DTCs/CTCs in solid tumor patients. Recent
Results Cancer Res. 195:69–76. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Krawczyk N, Meier-Stiegen F, Banys M,
Neubauer H, Ruckhaeberle E and Fehm T: Expression of stem cell and
epithelial-mesenchymal transition markers in circulating tumor
cells of breast cancer patients. Biomed Res Int. 2014:4157212014.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Babayan A, Alawi M, Gormley M, Müller V,
Wikman H, McMullin RP, Smirnov DA, Li W, Geffken M, Pantel K and
Joosse SA: Comparative study of whole genome amplification and next
generation sequencing performance of single cancer cells.
Oncotarget. 8:56066–56080. 2016.PubMed/NCBI
|
|
120
|
Gkountela S, Castro-Giner F, Szczerba BM,
Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C,
Stirnimann CU, et al: Circulating tumor cell clustering shapes DNA
methylation to enable metastasis seeding. Cell. 176:98–112.e14.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wang Y, Waters J, Leung ML, Unruh A, Roh
W, Shi X, Chen K, Scheet P, Vattathil S, Liang H, et al: Clonal
evolution in breast cancer revealed by single nucleus genome
sequencing. Nature. 512:155–160. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Fehm T, Sagalowsky A, Clifford E, Beitsch
P, Saboorian H, Euhus D, Meng S, Morrison L, Tucker T, Lane N, et
al: Cytogenetic evidence that circulating epithelial cells in
patients with carcinoma are malignant. Clin Cancer Res.
8:2073–2084. 2002.PubMed/NCBI
|
|
123
|
Amantini C, Morelli MB, Nabissi M, Piva F,
Marinelli O, Maggi F, Bianchi F, Bittoni A, Berardi R, Giampieri R
and Santoni G: Expression profiling of circulating tumor cells in
pancreatic ductal adenocarcinoma patients: Biomarkers predicting
overall survival. Front Oncol. 9:8742019. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Sinkala E, Sollier-Christen E, Renier C,
Rosàs-Canyelles E, Che J, Heirich K, Duncombe TA, Vlassakis J,
Yamauchi KA, Huang H, et al: Profiling protein expression in
circulating tumour cells using microfluidic western blotting. Nat
Commun. 8:146222017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Spitzer MH and Nolan GP: Mass cytometry:
Single cells, many features. Cell. 165:780–791. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Del Ben F, Turetta M, Celetti G, Piruska
A, Bulfoni M, Cesselli D, Huck WT and Scoles G: A method for
detecting circulating tumor cells based on the measurement of
single-cell metabolism in droplet-based microfluidics. Angew Chem
Int Ed Engl. 55:8581–8584. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Cayrefourcq L, Mazard T, Joosse S,
Solassol J, Ramos J, Assenat E, Schumacher U, Costes V, Maudelonde
T, Pantel K and Alix-Panabières C: Establishment and
characterization of a cell line from human circulating colon cancer
cells. Cancer Res. 75:892–901. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Yu M, Bardia A, Aceto N, Bersani F, Madden
MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, et al:
Cancer therapy. Ex vivo culture of circulating breast tumor cells
for individualized testing of drug susceptibility. Science.
345:216–220. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin
W, Kumar D, Goodman JC, Groves MD and Marchetti D: The
identification and characterization of breast cancer CTCs competent
for brain metastasis. Sci Transl Med. 5:180ra1482013. View Article : Google Scholar
|
|
130
|
Chen Y, Li S, Li W, Yang R, Zhang X, Ye Y,
Yu J, Ye L and Tang W: Circulating tumor cells undergoing EMT are
poorly correlated with clinical stages or predictive of recurrence
in hepatocellular carcinoma. Sci Rep. 9:70842019. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Shishido SN, Carlsson A, Nieva J, Bethel
K, Hicks JB, Bazhenova L and Kuhn P: Circulating tumor cells as a
response monitor in stage IV non-small cell lung cancer. J Transl
Med. 17:2942019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Boral D, Vishnoi M, Liu HN, Yin W, Sprouse
ML, Scamardo A, Hong DS, Tan TZ, Thiery JP, Chang JC and Marchetti
D: Molecular characterization of breast cancer CTCs associated with
brain metastasis. Nat Commun. 8:1962017. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Scher HI, Graf RP, Schreiber NA, Jayaram
A, Winquist E, McLaughlin B, Lu D, Fleisher M, Orr S, Lowes L, et
al: Assessment of the validity of Nuclear-localized androgen
receptor splice Variant 7 in circulating tumor cells as a
predictive biomarker for Castration-resistant prostate cancer. JAMA
Oncol. 4:1179–1186. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Heller G, McCormack R, Kheoh T, Molina A,
Smith MR, Dreicer R, Saad F, de Wit R, Aftab DT, Hirmand M, et al:
Circulating tumor cell number as a response measure of prolonged
survival for metastatic castration-resistant prostate cancer: A
comparison with prostate-specific antigen across five randomized
phase III clinical trials. J Clin Oncol. 36:572–580. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Gao D, Vela I, Sboner A, Iaquinta PJ,
Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora
VK, et al: Organoid cultures derived from patients with advanced
prostate cancer. Cell. 159:176–187. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhang Z, Shiratsuchi H, Lin J, Chen G,
Reddy RM, Azizi E, Fouladdel S, Chang AC, Lin L and Jiang H:
Expansion of CTCs from early stage lung cancer patients using a
microfluidic co-culture model. Oncotarget. 5:12383–12397.
2014.PubMed/NCBI
|
|
137
|
Hochmair M, Rath B, Klameth L, Ulsperger
E, Weinlinger C, Fazekas A, Plangger A, Zeillinger R and Hamilton
G: Effects of salinomycin and niclosamide on small cell lung cancer
and small cell lung cancer circulating tumor cell lines. Invest New
Drugs. Aug 24–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Hodgkinson CL, Morrow CJ, Li Y, Metcalf
RL, Rothwell DG, Trapani F, Polanski R, Burt DJ, Simpson KL, Morris
K, et al: Tumorigenicity and genetic profiling of circulating tumor
cells in small-cell lung cancer. Nat Med. 20:897–903. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Vishnoi M, Boral D, Liu H, Sprouse ML, Yin
W, Goswami-Sewell D, Tetzlaff MT, Davies MA, Oliva ICG and
Marchetti D: Targeting USP7 identifies a metastasis-competent state
within bone marrow-resident melanoma CTCs. Cancer Res.
78:5349–5362. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Vishnoi M, Liu NH, Yin W, Boral D,
Scamardo A, Hong D and Marchetti D: The identification of a TNBC
liver metastasis gene signature by sequential CTC-xenograft
modeling. Mol Oncol. 13:1913–1926. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Wang D, Yang Y, Jin L, Wang J, Zhao X, Wu
G, Zhang J, Kou T, Yao H and Zhang Z: Prognostic models based on
postoperative circulating tumor cells can predict poor tumor
recurrence-free survival in patients with stage II–III colorectal
cancer. J Cancer. 10:4552–4563. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Takeda K, Yamada T, Takahashi G, Iwai T,
Ueda K, Kuriyama S, Koizumi M, Matsuda A, Shinji S, Ohta R, et al:
Analysis of colorectal cancer-related mutations by liquid biopsy:
Utility of circulating cell-free DNA and circulating tumor cells.
Cancer Sci. 110:3497–3509. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Sharp A, Welti JC, Lambros MBK, Dolling D,
Rodrigues DN, Pope L, Aversa C, Figueiredo I, Fraser J, Ahmad Z, et
al: Clinical utility of circulating tumour cell androgen receptor
splice Variant-7 status in metastatic Castration-resistant prostate
cancer. Eur Urol. 76:676–685. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Ito M, Horimoto Y, Tokuda E, Murakami F,
Uomori T, Himuro T, Nakai K, Orihata G, Iijima K and Saito M:
Impact of circulating tumour cells on survival of eribulin-treated
patients with metastatic breast cancer. Med Oncol. 36:892019.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Rossi G, Mu Z, Rademaker AW, Austin LK,
Strickland KS, Costa RLB, Nagy RJ, Zagonel V, Taxter TJ, Behdad A,
et al: Cell-free DNA and circulating tumor cells: Comprehensive
liquid biopsy analysis in advanced breast cancer. Clin Cancer Res.
24:560–568. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Del Re M, Marconcini R, Pasquini G, Rofi
E, Vivaldi C, Bloise F, Restante G, Arrigoni E, Caparello C, Bianco
MG, et al: PD-L1 mRNA expression in plasma-derived exosomes is
associated with response to anti-PD-1 antibodies in melanoma and
NSCLC. Br J Cancer. 118:820–824. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
De Giorgi U, Mego M, Scarpi E, Giordano A,
Giuliano M, Valero V, Alvarez RH, Ueno NT, Cristofanilli M and
Reuben JM: Association between circulating tumor cells and
peripheral blood monocytes in metastatic breast cancer. Ther Adv
Med Oncol. 11:17588359198660652019. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Kirwan CC, Descamps T and Castle J:
Circulating tumour cells and hypercoagulability: A lethal
relationship in metastatic breast cancer. Clin Transl Oncol. Aug
31–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|