|
1
|
Parkin DM, Pisani P and Ferlay J: Global
cancer statistics. CA Cancer J Clin. 49:33–64, 1. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gradishar WJ, Anderson BO, Balassanian R,
Blair SL, Burstein HJ, Cyr A, Elias AD, Farrar WB, Forero A,
Giordano SH, et al: Invasive breast cancer version 1.2016, NCCN
clinical practice guidelines in oncology. J Natl Compr Canc Netw.
14:324–354. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kwa M, Li X, Novik Y, Oratz R, Jhaveri K,
Wu J, Gu P, Meyers M, Muggia F, Speyer J, et al: Serial
immunological parameters in a phase II trial of exemestane and
low-dose oral cyclophosphamide in advanced hormone
receptor-positive breast canc. Breast Cancer Res Treat. 168:57–67.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Baselga J, Campone M, Piccart M, Burris HA
III, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun
F, et al: Everolimus in postmenopausal hormone-receptor-positive
advanced breast cancer. N Engl J Med. 366:520–529. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jiang Z, Li W, Hu X, Zhang Q, Sun T, Cui
S, Wang S, Ouyang Q, Yin Y, Geng C, et al: Tucidinostat plus
exemestane for postmenopausal patients with advanced, hormone
receptor-positive breast cancer (ACE): A randomised, double-blind,
placebo-controlled, phase 3 trial. Lancet Oncol. 20:806–815. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Esteva FJ, Hubbard-Lucey VM, Tang J and
Pusztai L: Immunotherapy and targeted therapy combinations in
metastatic breast cancer. Lancet Oncol. 20:e175–e186. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bianchini G, Qi Y, Alvarez RH, Iwamoto T,
Coutant C, Ibrahim NK, Valero V, Cristofanilli M, Green MC,
Radvanyi L, et al: Molecular anatomy of breast cancer stroma and
its prognostic value in estrogen receptor-positive and -negative
cancers. J Clin Oncol. 28:4316–4323. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Rugo HS, Delord JP, Im SA, Ott PA,
Piha-Paul SA, Bedard PL, Sachdev J, Le Tourneau C, van Brummelen
EMJ, Varga A, et al: Safety and antitumor activity of pembrolizumab
in patients with estrogen receptor-positive/human epidermal growth
factor receptor 2-negative advanced breast cancer. Clin Cancer Res.
24:2804–2811. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Dirix LY, Takacs I, Jerusalem G,
Nikolinakos P, Arkenau HT, Forero-Torres A, Boccia R, Lippman ME,
Somer R, Smakal M, et al: Avelumab, an anti-PD-L1 antibody, in
patients with locally advanced or metastatic breast cancer: A phase
1b JAVELIN Solid Tumor study. Breast Cancer Res Treat. 167:671–686.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Santa-Maria CA, Kato T, Park JH, Kiyotani
K, Rademaker A, Shah AN, Gross L, Blanco LZ, Jain S, Flaum L, et
al: A pilot study of durvalumab and tremelimumab and immunogenomic
dynamics in metastatic breast cancer. Oncotarget. 9:18985–18996.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Vonderheide RH, LoRusso PM, Khalil M,
Gartner EM, Khaira D, Soulieres D, Dorazio P, Trosko JA, Rüter J,
Mariani GL, et al: Tremelimumab in combination with exemestane in
patients with advanced breast cancer and treatment-associated
modulation of inducible costimulator expression on patient T cells.
Clin Cancer Res. 16:3485–3494. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lindsley CW: The Akt/PKB family of protein
kinases: A review of small molecule inhibitors and progress towards
target validation: A 2009 update. Curr Top Med Chem. 10:458–477.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Stemke-Hale K, Gonzalez-Angulo AM, Lluch
A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, et
al: An integrative genomic and proteomic analysis of PIK3CA, PTEN,
and AKT mutations in breast cancer. Cancer Res. 68:6084–6091. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Huang GS, Brouwer-Visser J, Ramirez MJ,
Kim CH, Hebert TM, Lin J, Arias-Pulido H, Qualls CR, Prossnitz ER,
Goldberg GL, et al: Insulin-like growth factor 2 expression
modulates Taxol resistance and is a candidate biomarker for reduced
disease-free survival in ovarian cancer. Clin Cancer Res.
16:2999–3010. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pérez-Tenorio G and Stål O; Southeast
Sweden Breast Cancer Group, : Activation of AKT/PKB in breast
cancer predicts a worse outcome among endocrine treated patients.
Br J Cancer. 86:540–545. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen X, Zhao M, Hao M, Sun X, Wang J, Mao
Y, Zu L, Liu J, Shen Y, Wang J and Shen K: Dual inhibition of PI3K
and mTOR mitigates compensatory AKT activation and improves
tamoxifen response in breast cancer. Mol Cancer Res. 11:1269–1278.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mabuchi S, Ohmichi M, Kimura A, Hisamoto
K, Hayakawa J, Nishio Y, Adachi K, Takahashi K, Arimoto-Ishida E,
Nakatsuji Y, et al: Inhibition of phosphorylation of BAD and Raf-1
by Akt sensitizes human ovarian cancer cells to paclitaxel. J Biol
Chem. 277:33490–33500. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Boulay A, Rudloff J, Ye J, Zumstein-Mecker
S, O'Reilly T, Evans DB, Chen S and Lane HA: Dual inhibition of
mTOR and estrogen receptor signaling in vitro induces cell death in
models of breast cancer. Clin Cancer Res. 11:5319–5328. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lui A, New J, Ogony J, Thomas S and
Lewis-Wambi J: Everolimus downregulates estrogen receptor and
induces autophagy in aromatase inhibitor-resistant breast cancer
cells. BMC Cancer. 16:4872016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mayer IA, Abramson VG, Isakoff SJ, Forero
A, Balko JM, Kuba MG, Sanders ME, Yap JT, Van den Abbeele AD, Li Y,
et al: Stand up to cancer phase Ib study of
pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole
in estrogen receptor-positive/human epidermal growth factor
receptor 2-negative metastatic breast cancer. J Clin Oncol.
32:1202–1209. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ma CX, Luo J, Naughton M, Ademuyiwa F,
Suresh R, Griffith M, Griffith OL, Skidmore ZL, Spies NC, Ramu A,
et al: A Phase I trial of BKM120 (Buparlisib) in combination with
fulvestrant in postmenopausal women with estrogen receptor-positive
metastatic breast cancer. Clin Cancer Res. 22:1583–1591. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Baselga J, Im SA, Iwata H, Cortés J, De
Laurentiis M, Jiang Z, Arteaga CL, Jonat W, Clemons M, Ito Y, et
al: Buparlisib plus fulvestrant versus placebo plus fulvestrant in
postmenopausal, hormone receptor-positive, HER2-negative, advanced
breast cancer (BELLE-2): A randomised, double-blind,
placebo-controlled, phase 3 trial. Lancet Oncol. 18:904–916. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Di Leo A, Johnston S, Lee KS, Ciruelos E,
Lønning PE, Janni W, O'Regan R, Mouret-Reynier MA, Kalev D, Egle D,
et al: Buparlisib plus fulvestrant in postmenopausal women with
hormone-receptor-positive, HER2-negative, advanced breast cancer
progressing on or after mTOR inhibition (BELLE-3): A randomised,
double-blind, placebo-controlled, phase 3 trial. Lancet Oncol.
19:87–100. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mayer IA, Abramson VG, Formisano L, Balko
JM, Estrada MV, Sanders ME, Juric D, Solit D, Berger MF, Won HH, et
al: A phase Ib study of alpelisib (BYL719), a PI3Kα-specific
inhibitor, with letrozole in ER+/HER2-metastatic breast cancer.
Clin Cancer Res. 23:26–34. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Juric D, Janku F, Rodón J, Burris HA,
Mayer IA, Schuler M, Seggewiss-Bernhardt R, Gil-Martin M, Middleton
MR, Baselga J, et al: Alpelisib plus fulvestrant in PIK3CA-Altered
and PIK3CA-wild-type estrogen receptor-positive advanced breast
cancer: A phase 1b clinical trial. JAMA Oncol. 5:e1844752019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mayer IA, Prat A, Egle D, Blau S, Fidalgo
JAP, Gnant M, Fasching PA, Colleoni M, Wolff AC, Winer EP, et al: A
phase II randomized study of neoadjuvant letrozole plus alpelisib
for hormone receptor-positive, human epidermal growth factor
receptor 2-negative breast cancer (NEO-ORB). Clin Cancer Res.
25:2975–2987. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
André F, Ciruelos E, Rubovszky G, Campone
M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer IA, Kaufman B, et al:
Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced
breast cancer. N Engl J Med. 380:1929–1940. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li Y: MK-2206: A potent oral allosteric
AKT inhibitor. Cancer Res. 69:DDT01–1. 2009.
|
|
29
|
Ma CX, Sanchez C, Gao F, Crowder R,
Naughton M, Pluard T, Creekmore A, Guo Z, Hoog J, Lockhart AC, et
al: A phase I study of the AKT inhibitor MK-2206 in combination
with hormonal therapy in postmenopausal women with estrogen
receptor-positive metastatic breast cancer. Clin Cancer Res.
22:2650–2658. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Xing Y, Lin NU, Maurer MA, Chen H, Mahvash
A, Sahin A, Akcakanat A, Li Y, Abramson V, Litton J, et al: Phase
II trial of AKT inhibitor MK-2206 in patients with advanced breast
cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN
loss/PTEN mutation. Breast Cancer Res. 21:782019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ma CX, Suman V, Goetz MP, Northfelt D,
Burkard ME, Ademuyiwa F, Naughton M, Margenthaler J, Aft R, Gray R,
et al: A phase II trial of neoadjuvant MK-2206, an AKT inhibitor,
with anastrozole in clinical stage II or III PIK3CA-mutant
ER-positive and HER2-negative breast cancer. Clin Cancer Res.
23:6823–6832. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Banerji U, Dean EJ, Pérez-Fidalgo JA,
Batist G, Bedard PL, You B, Westin SN, Kabos P, Garrett MD, Tall M,
et al: A Phase I open-label study to identify a dosing regimen of
the Pan-AKT inhibitor AZD5363 for evaluation in solid tumors and in
PIK3CA-mutated breast and gynecologic cancers. Clin Cancer Res.
24:2050–2059. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Turner NC, Alarcón E, Armstrong AC, Philco
M, López Chuken YA, Sablin MP, Tamura K, Gómez Villanueva A,
Pérez-Fidalgo JA, Cheung SYA, et al: BEECH: A dose-finding run-in
followed by a randomised phase II study assessing the efficacy of
AKT inhibitor capivasertib (AZD5363) combined with paclitaxel in
patients with estrogen receptor-positive advanced or metastatic
breast cancer, and in a PIK3CA mutant sub-population. Ann Oncol.
30:774–780. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ribas R, Pancholi S, Guest SK, Marangoni
E, Gao Q, Thuleau A, Simigdala N, Polanska UM, Campbell H, Rani A,
et al: AKT antagonist AZD5363 influences estrogen receptor function
in endocrine-resistant breast cancer and synergizes with
fulvestrant (ICI182780) in vivo. Mol Cancer Ther. 14:2035–2048.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Efeyan A and Sabatini DM: mTOR and cancer:
Many loops in one pathway. Curr Opin Cell Biol. 22:169–176. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Baselga J, Semiglazov V, van Dam P,
Manikhas A, Bellet M, Mayordomo J, Campone M, Kubista E, Greil R,
Bianchi G, et al: Phase II randomized study of neoadjuvant
everolimus plus letrozole compared with placebo plus letrozole in
patients with estrogen receptor-positive breast cancer. J Clin
Oncol. 27:2630–2637. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tesch H, Stoetzer O, Decker T, Kurbacher
CM, Marmé F, Schneeweiss A, Mundhenke C, Distelrath A, Fasching PA,
Lux MP, et al: Efficacy and safety of everolimus plus exemestane in
postmenopausal women with hormone receptor-positive, human
epidermal growth factor receptor 2-negative locally advanced or
metastatic breast cancer: Results of the single-arm, phase IIIB
4EVER trial. Int J Cancer. 144:877–885. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bachelot T, Bourgier C, Cropet C,
Ray-Coquard I, Ferrero JM, Freyer G, Abadie-Lacourtoisie S, Eymard
JC, Debled M, Spaëth D, et al: Randomized phase II trial of
everolimus in combination with tamoxifen in patients with hormone
receptor-positive, human epidermal growth factor receptor
2-negative metastatic breast cancer with prior exposure to
aromatase inhibitors: A GINECO study. J Clin Oncol. 30:2718–2724.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Royce M, Bachelot T, Villanueva C,
Özgüroglu M, Azevedo SJ, Cruz FM, Debled M, Hegg R, Toyama T,
Falkson C, et al: Everolimus plus endocrine therapy for
postmenopausal women with estrogen receptor-positive, human
epidermal growth factor receptor 2-negative advanced breast cancer:
A clinical trial. JAMA Oncol. 4:977–984. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jerusalem G, de Boer RH, Hurvitz S,
Yardley DA, Kovalenko E, Ejlertsen B, Blau S, Özgüroglu M, Landherr
L, Ewertz M, et al: Everolimus plus exemestane vs everolimus or
capecitabine monotherapy for estrogen receptor-positive,
HER2-negative advanced breast cancer: The BOLERO-6 randomized
clinical trial. JAMA Oncol. 4:1367–1374. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Generali D, Venturini S, Rognoni C, Ciani
O, Pusztai L, Loi S, Jerusalem G, Bottini A and Tarricone R: A
network meta-analysis of everolimus plus exemestane versus
chemotherapy in the first- and second-line treatment of estrogen
receptor-positive metastatic breast cancer. Breast Cancer Res
Treat. 152:95–117. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Weinberg RA: The retinoblastoma protein
and cell cycle control. Cell. 81:323–330. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sherr CJ and Roberts JM: CDK inhibitors:
Positive and negative regulators of G1-phase progression. Genes
Dev. 13:1501–1512. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Carnero A and Hannon GJ: The INK4 family
of CDK inhibitors. Curr Top Microbiol Immunol. 227:43–55.
1998.PubMed/NCBI
|
|
45
|
Hall M and Peters G: Genetic alterations
of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human
cancer. Adv Cancer Res. 68:67–108. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sherr CJ: Cancer cell cycles. Science.
274:1672–1677. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shapiro GI: Cyclin-dependent kinase
pathways as targets for cancer treatment. J Clin Oncol.
24:1770–1783. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bates GJ, Fox SB, Han C, Leek RD, Garcia
JF, Harris AL and Banham AH: Quantification of regulatory T cells
enables the identification of high-risk breast cancer patients and
those at risk of late relapse. J Clin Oncol. 24:5373–5380. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Fry DW, Harvey PJ, Keller PR, Elliott WL,
Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK and
Toogood PL: Specific inhibition of cyclin-dependent kinase 4/6 by
PD 0332991 and associated antitumor activity in human tumor
xenografts. Mol Cancer Ther. 3:1427–1438. 2004.PubMed/NCBI
|
|
50
|
Finn RS, Dering J, Conklin D, Kalous O,
Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, et al: PD
0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially
inhibits proliferation of luminal estrogen receptor-positive human
breast cancer cell lines in vitro. Breast Cancer Res. 11:R772009.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Finn RS, Crown JP, Lang I, Boer K,
Bondarenko IM, Kulyk SO, Ettl J, Patel R, Pinter T, Schmidt M, et
al: The cyclin-dependent kinase 4/6 inhibitor palbociclib in
combination with letrozole versus letrozole alone as first-line
treatment of oestrogen receptor-positive, HER2-negative, advanced
breast cancer (PALOMA-1/TRIO-18): A randomised phase 2 study.
Lancet Oncol. 16:25–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Finn RS, Martin M, Rugo HS, Jones S, Im
SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, et al:
Palbociclib and letrozole in advanced breast cancer. N Engl J Med.
375:1925–1936. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cristofanilli M, Turner NC, Bondarenko I,
Ro J, Im SA, Masuda N, Colleoni M, DeMichele A, Loi S, Verma S, et
al: Fulvestrant plus palbociclib versus fulvestrant plus placebo
for treatment of hormone-receptor-positive, HER2-negative
metastatic breast cancer that progressed on previous endocrine
therapy (PALOMA-3): Final analysis of the multicentre,
double-blind, phase 3 randomised controlled trial. Lancet Oncol.
17:425–439. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kim S, Loo A, Chopra R, Caponigro G, Huang
A, Vora S, Parasuraman S, Howard S, Keen N, Sellers W and Brain C.
LEE011: An orally bioavailable, selective small molecule inhibitor
of CDK4/6-Reactivating Rb in cancer. Mol Cancer Ther. 12 (11
Suppl):PR022013.
|
|
55
|
O'Brien NA, Tomaso ED, Ayala R, Tong L,
Issakhanian S, Linnartz R, Finn RS, Hirawat S and Slamon DJ: In
vivo efficacy of combined targeting of CDK4/6, ER and PI3K
signaling in ER+breast cancer. Cancer Res. 74 (19
Suppl):S47562014.
|
|
56
|
Juric D, Munster PN, Campone M,
Ismail-Khan R, García-Estevez L, Hamilton EP, Becerra C, De Boer
RH, Hui R and Goncalves A: Ribociclib (LEE011) and letrozole in
estrogen receptor-positive (ER+), HER2-negative (HER2-) advanced
breast cancer (aBC): Phase Ib safety, preliminary efficacy and
molecular analysis. J Clin Oncol. 34 (15 Suppl):S5682016.
View Article : Google Scholar
|
|
57
|
Tripathy D Sohn J, Im SA, Colleoni M,
Franke F, Bardia A, Harbeck N, Hurvitz S, Chow L, Lee KS, et al:
First-line ribociclib vs. placebo with goserelin and tamoxifen or a
non-steroidal aromatase inhibitor in premenopausal women with
hormone receptor-positive, HER2- negative advanced breast cancer:
Results from the randomized phase III MONALEESA-7 trial. Cancer
Res. 78 (4 Suppl):GS2–05. 2018.
|
|
58
|
Hortobagyi GN, Stemmer SM, Burris HA, Yap
YS, Sonke GS, Paluch-Shimon S, Campone M, Blackwell KL, André F,
Winer EP, et al: Ribociclib as first-line therapy for HR-positive,
advanced breast cancer. N Engl J Med. 375:1738–1748. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Slamon DJ, Neven P, Chia S, Fasching PA,
De Laurentiis M, Im SA, Petrakova K, Bianchi GV, Esteva FJ, Martín
M, et al: Phase III randomized study of ribociclib and fulvestrant
in hormone receptor-positive, human epidermal growth factor
receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin
Oncol. 36:2465–2472. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hortobagyi GN, Stemmer SM, Burris HA, Yap
YS, Sonke GS, Paluch-Shimon S, Campone M, Petrakova K, Blackwell
KL, Winer EP, et al: Updated results from MONALEESA-2, a phase III
trial of first-line ribociclib plus letrozole versus placebo plus
letrozole in hormone receptor-positive, HER2-negative advanced
breast cancer. Ann Oncol. 29:1541–1547. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gelbert LM, Cai S, Lin X, Sanchez-Martinez
C, Del Prado M, Lallena MJ, Torres R, Ajamie RT, Wishart GN, Flack
RS, et al: Preclinical characterization of the CDK4/6 inhibitor
LY2835219: In-vivo cell cycle-dependent/independent anti-tumor
activities alone/in combination with gemcitabine. Invest New Drugs.
32:825–837. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Patnaik A, Rosen LS, Tolaney SM, Tolcher
AW, Goldman JW, Gandhi L, Papadopoulos KP, Beeram M, Rasco DW,
Hilton JF, et al: Efficacy and safety of abemaciclib, an inhibitor
of CDK4 and CDK6, for patients with breast cancer, non-small cell
lung cancer, and other solid tumors. Cancer Discov. 6:740–753.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dickler MN, Tolaney SM, Rugo HS, Cortés J,
Diéras V, Patt D, Wildiers H, Hudis CA, O'Shaughnessy J, Zamora E,
et al: MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6
inhibitor, as a single agent, in patients with refractory
HR+/HER2−metastatic breast cancer. Clin
Cancer Res. 23:5218–5224. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sledge GW Jr, Toi M, Neven P, Sohn J,
Inoue K, Pivot X, Burdaeva O, Okera M, Masuda N, Kaufman PA, et al:
MONARCH 2: Abemaciclib in combination with fulvestrant in women
with HR+/HER2-advanced breast cancer who had progressed while
receiving endocrine therapy. J Clin Oncol. 35:2875–2884. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Iwai Y, Okazaki T, Nishimura H, Kawasaki
A, Yagita H and Honjo T: Microanatomical localization of PD-1 in
human tonsils. Immunol Lett. 83:215–220. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Okazaki T, Maeda A, Nishimura H, Kurosaki
T and Honjo T: PD-1 immunoreceptor inhibits B cell
receptor-mediated signaling by recruiting src homology
2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc
Natl Acad Sci USA. 98:13866–13871. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yokosuka T, Takamatsu M,
Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M and Saito T:
Programmed cell death 1 forms negative costimulatory microclusters
that directly inhibit T cell receptor signaling by recruiting
phosphatase SHP2. J Exp Med. 209:1201–1217. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sheppard KA, Fitz LJ, Lee JM, Benander C,
George JA, Wooters J, Qiu Y, Jussif JM, Carter LL, Wood CR and
Chaudhary D: PD-1 inhibits T-cell receptor induced phosphorylation
of the ZAP70/CD3zeta signalosome and downstream signaling to
PKCtheta. Febs Lett. 574:37–41. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Iwai Y, Ishida M, Tanaka Y, Okazaki T,
Honjo T and Minato N: Involvement of PD-L1 on tumor cells in the
escape from host immune system and tumor immunotherapy by PD-L1
blockade. Proc Natl Acad Sci USA. 99:12293–12297. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ali HR, Glont SE, Blows FM, Provenzano E,
Dawson SJ, Liu B, Hiller L, Dunn J, Poole CJ, Bowden S, et al:
PD-L1 protein expression in breast cancer is rare, enriched in
basal-like tumours and associated with infiltrating lymphocytes.
Ann Oncol y. 26:1488–1493. 2015. View Article : Google Scholar
|
|
71
|
Nanda R, Chow LQ, Dees EC, Berger R, Gupta
S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, et al:
Pembrolizumab in patients with advanced triple-negative breast
cancer: Phase Ib KEYNOTE-012 study. J Clin Oncol. 34:2460–2467.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Adams S, Schmid P, Rugo HS, Winer EP,
Loirat D, Awada A, Cescon DW, Iwata H, Campone M, Nanda R, et al:
Pembrolizumab monotherapy for previously treated metastatic
triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086
study. Ann Oncol. 30:397–404. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Adams S, Loi S, Toppmeyer D, Cescon DW, De
Laurentiis M, Nanda R, Winer EP, Mukai H, Tamura K, Armstrong A, et
al: Pembrolizumab monotherapy for previously untreated,
PD-L1-positive, metastatic triple-negative breast cancer: Cohort B
of the phase II KEYNOTE-086 study. Ann Oncol. 30:405–411. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Greenwald RJ, Freeman GJ and Sharpe AH:
The B7 family revisited. Annu Rev Immunol. 23:515–548. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Peggs KS, Quezada SA, Korman AJ and
Allison JP: Principles and use of anti-CTLA4 antibody in human
cancer immunotherapy. Curr Opin Immunol. 18:206–213. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Egen JG, Kuhns MS and Allison JP: CTLA-4:
New insights into its biological function and use in tumor
immunotherapy. Nat Immunol. 3:611–618. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Demaria S, Kawashima N, Yang AM, Devitt
ML, Babb JS, Allison JP and Formenti SC: Immune-mediated inhibition
of metastases after treatment with local radiation and CTLA-4
blockade in a mouse model of breast cancer. Clin Cancer Res.
11:728–734. 2005.PubMed/NCBI
|
|
78
|
Mokyr MB, Kalinichenko T, Gorelik L and
Bluestone JA: Realization of the therapeutic potential of CTLA-4
blockade in low-dose chemotherapy-treated tumor-bearing mice.
Cancer Res. 58:5301–5304. 1998.PubMed/NCBI
|
|
79
|
Attia P, Phan GQ, Maker AV, Robinson MR,
Quezado MM, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE,
et al: Autoimmunity correlates with tumor regression in patients
with metastatic melanoma treated with anti-cytotoxic T-lymphocyte
antigen-4. J Clin Oncol. 23:6043–6053. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tarhini AA and Kirkwood JM: Tremelimumab
(CP-675,206): a fully human anticytotoxic T lymphocyte-associated
antigen 4 monoclonal antibody for treatment of patients with
advanced cancers. Expert Opin Biol Ther. 8:1583–1593. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ribas A: Overcoming immunologic tolerance
to melanoma: Targeting CTLA-4 with tremelimumab (CP-675,206).
Oncologist. 13 (Suppl 4):S10–S15. 2008. View Article : Google Scholar
|
|
82
|
Ribas A, Camacho LH, Lopez-Berestein G,
Pavlov D, Bulanhagui CA, Millham R, Comin-Anduix B, Reuben JM, Seja
E, Parker CA, et al: Antitumor activity in melanoma and anti-self
responses in a phase I trial with the anti-cytotoxic T
lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J
Clin Oncol. 23:8968–8977. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ribas A, Comin-Anduix B, Economou JS,
Donahue TR, de la Rocha P, Morris LF, Jalil J, Dissette VB,
Shintaku IP, Glaspy JA, et al: Intratumoral immune cell
infiltrates, FoxP3, and indoleamine 2,3-dioxygenase in patients
with melanoma undergoing CTLA4 blockade. Clin Cancer Res.
15:390–399. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Camacho LH, Antonia S, Sosman J, Kirkwood
JM, Gajewski TF, Redman B, Pavlov D, Bulanhagui C, Bozon VA,
Gomez-Navarro J and bRibas A: Phase I/II trial of tremelimumab in
patients with metastatic melanoma. J Clin Oncol. 27:1075–1081.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ribas A, Hauschild A, Kefford R, Punt CJ,
Haanen JB, Marmol M, Garbe C, Gomez-Navarro J, Pavlov D and
Marshall M: Phase III, open-label, randomized, comparative study of
tremelimumab (CP-675,206) and chemotherapy [temozolomide (TMZ) or
dacarbazine (DTIC)] in patients with advanced melanoma. J Clin
Oncol. 26 (15 Suppl):LBA90112008. View Article : Google Scholar
|