|
1
|
Annertz K, Anderson H, Palmér K and
Wennerberg J: The increase in incidence of cancer of the tongue in
the Nordic countries continues into the twenty-first century. Acta
Otolaryngol. 132:552–557. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Patel SC, Carpenter WR, Tyree S, Couch ME,
Weissler M, Hackman T, Hayes DN, Shores C and Chera BS: Increasing
incidence of oral tongue squamous cell carcinoma in young white
women, age 18 to 44 years. J Clin Oncol. 29:1488–1494. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ng JH, Iyer NG, Tan MH and Edgren G:
Changing epidemiology of oral squamous cell carcinoma of the
tongue: A global study. Head Neck. 39:297–304. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mroueh R, Haapaniemi A, Grénman R, Laranne
J, Pukkila M, Almangush A, Salo T and Mäkitie A: Improved outcomes
with oral tongue squamous cell carcinoma in Finland. Head Neck.
39:1306–1312. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wu WK, Wang G, Coffelt SB, Betancourt AM,
Lee CW, Fan D, Wu K, Yu J, Sung JJ and Cho CH: Emerging roles of
the host defense peptide LL-37 in human cancer and its potential
therapeutic applications. Int J Cancer. 127:1741–1747. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Piktel E, Niemirowicz K, Wnorowska U,
Wątek M, Wollny T, Głuszek K, Góźdź S, Levental I and Bucki R: The
role of cathelicidin LL-37 in cancer development. Arch Immunol Ther
Exp (Warsz). 64:33–46. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Xhindoli D, Pacor S, Benincasa M, Scocchi
M, Gennaro R and Tossi A: The human cathelicidin LL-37-A
pore-forming antibacterial peptide and host-cell modulator. Biochim
Biophys Acta. 1858:546–566. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kuroda K, Okumura K, Isogai H and Isogai
E: The human cathelicidin antimicrobial peptide LL-37 and mimics
are potential anticancer drugs. Front Oncol. 5:1442015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Verjans ET, Zels S, Luyten W, Landuyt B
and Schoofs L: Molecular mechanisms of LL-37-induced receptor
activation: An overview. Peptides. 85:16–26. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sørensen OE, Follin P, Johnsen AH, Calafat
J, Tjabringa GS, Hiemstra PS and Borregaard N: Human cathelicidin,
hCAP-18, is processed to the antimicrobial peptide LL-37 by
extracellular cleavage with proteinase 3. Blood. 97:3951–3959.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yamasaki K, Schauber J, Coda A, Lin H,
Dorschner RA, Schechter NM, Bonnart C, Descargues P, Hovnanian A
and Gallo RL: Kallikrein-mediated proteolysis regulates the
antimicrobial effects of cathelicidins in skin. FASEB J.
20:2068–2080. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Heilborn JD, Nilsson MF, Jimenez CIC,
Sandstedt B, Borregaard N, Tham E, Sørensen OE, Weber G and Ståhle
M: Antimicrobial protein hCAP18/LL-37 is highly expressed in breast
cancer and is a putative growth factor for epithelial cells. Int J
Cancer. 114:713–719. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Coffelt SB, Waterman RS, Florez L, Höner
zu Bentrup K, Zwezdaryk KJ, Tomchuck SL, LaMarca HL, Danka ES,
Morris CA and Scandurro AB: Ovarian cancers overexpress the
antimicrobial protein hCAP-18 and its derivative LL-37 increases
ovarian cancer cell proliferation and invasion. Int J Cancer.
122:1030–1039. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
von Haussen J, Koczulla R, Shaykhiev R,
Herr C, Pinkenburg O, Reimer D, Wiewrodt R, Biesterfeld S, Aigner
A, Czubayko F and Bals R: The host defence peptide LL-37/hCAP-18 is
a growth factor for lung cancer cells. Lung Cancer. 59:12–23. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kim JE, Kim HJ, Choi JM, Lee KH, Kim TY,
Cho BK, Jung JY, Chung KY, Cho D and Park HJ: The antimicrobial
peptide human cationic antimicrobial protein-18/cathelicidin LL-37
as a putative growth factor for malignant melanoma. Br J Dermatol.
163:959–967. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hensel JA, Chanda D, Kumar S, Sawant A,
Grizzle WE, Siegal GP and Ponnazhagan S: LL-37 as a therapeutic
target for late stage prostate cancer. Prostate. 71:659–670. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sainz B Jr, Alcala S, Garcia E,
Sanchez-Ripoll Y, Azevedo MM, Cioffi M, Tatari M, Miranda-Lorenzo
I, Hidalgo M, Gomez-Lopez G, et al: Microenvironmental
hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by
activating its cancer stem cell compartment. Gut. 64:1921–1935.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hase K, Murakami M, Iimura M, Cole SP,
Horibe Y, Ohtake T, Obonyo M, Gallo RL, Eckmann L and Kagnoff MF:
Expression of LL-37 by human gastric epithelial cells as a
potential host defense mechanism against Helicobacter
pylori. Gastroenterology. 125:1613–1625. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
An LL, Ma XT, Yang YH, Lin YM, Song YH and
Wu KF: Marked reduction of LL-37/hCAP-18, an antimicrobial peptide,
in patients with acute myeloid leukemia. Int J Hematol. 81:45–47.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen X, Qi G, Qin M, Zou Y, Zhong K, Tang
Y, Guo Y, Jiang X, Liang L and Zou X: DNA methylation directly
downregulates human cathelicidin antimicrobial peptide gene (CAMP)
promoter activity. Oncotarget. 8:27943–27952. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Coffelt SB, Tomchuck SL, Zwezdaryk KJ,
Danka ES and Scandurro AB: Leucine leucine-37 uses formyl peptide
receptor-like 1 to activate signal transduction pathways, stimulate
oncogenic gene expression, and enhance the invasiveness of ovarian
cancer cells. Mol Cancer Res. 7:907–915. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li Y, Cai L, Wang H, Wu P, Gu W, Chen Y,
Hao H, Tang K, Yi P, Liu M, et al: Pleiotropic regulation of
macrophage polarization and tumorigenesis by formyl peptide
receptor-2. Oncogene. 30:3887–3899. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
De Yang D, Chen Q, Schmidt AP, Anderson
GM, Wang JM, Wooters J, Oppenheim JJ and Chertov O: LL-37, the
neutrophil granule- and epithelial cell-derived cathelicidin,
utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to
chemoattract human peripheral blood neutrophils, monocytes, and T
cells. J Exp Med. 192:1069–1074. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Weber G, Chamorro CI, Granath F, Liljegren
A, Zreika S, Saidak Z, Sandstedt B, Rotstein S, Mentaverri R,
Sánchez F, et al: Human antimicrobial protein hCAP18/LL-37 promotes
a metastatic phenotype in breast cancer. Breast Cancer Res.
11:R62009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tjabringa GS, Aarbiou J, Ninaber DK,
Drijfhout JW, Sørensen OE, Borregaard N, Rabe KF and Hiemstra PS:
The antimicrobial peptide LL-37 activates innate immunity at the
airway epithelial surface by transactivation of the epidermal
growth factor receptor. J Immunol. 171:6690–6696. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tokumaru S, Sayama K, Shirakata Y,
Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M,
Nagai H, et al: Induction of keratinocyte migration via
transactivation of the epidermal growth factor receptor by the
antimicrobial peptide LL-37. J Immunol. 175:4662–4668. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Frohm Nilsson M, Sandstedt B, Sørensen O,
Weber G, Borregaard N and Ståhle-Bäckdahl M: The human cationic
antimicrobial protein (hCAP18), a peptide antibiotic, is widely
expressed in human squamous epithelia and colocalizes with
interleukin-6. Infect Immun. 67:2561–2566. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Khurshid Z, Naseem M, Yahya I Asiri F,
Mali M, Sannam Khan R, Sahibzada HA, Zafar MS, Faraz Moin S and
Khan E: Significance and diagnostic role of antimicrobial
cathelicidins (LL-37) peptides in oral health. Biomolecules.
7(pii): E802017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Oda D, Bigler L, Mao EJ and Disteche CM:
Chromosomal abnormalities in HPV-16-immortalized oral epithelial
cells. Carcinogenesis. 17:2003–2008. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Salo T, Sutinen M, Hoque Apu E, Sundquist
E, Cervigne NK, de Oliveira CE, Akram SU, Ohlmeier S, Suomi F,
Eklund L, et al: A novel human leiomyoma tissue derived matrix for
cell culture studies. BMC Cancer. 15:9812015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Salo T, Dourado MR, Sundquist E, Apu EH,
Alahuhta I, Tuomainen K, Vasara J and Al-Samadi A: Organotypic
three-dimensional assays based on human leiomyoma-derived matrices.
Philos Trans R Soc Lond B Biol Sci. 373(pii): 201604822018.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Schindelin J, Arganda-Carreras I, Frise E,
Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, et al: Fiji: An open-source platform for biological-image
analysis. Nat Methods. 9:676–682. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Nyberg P, Heikkilä P, Sorsa T, Luostarinen
J, Heljasvaara R, Stenman UH, Pihlajaniemi T and Salo T: Endostatin
inhibits human tongue carcinoma cell invasion and intravasation and
blocks the activation of matrix metalloprotease-2, −9, and −13. J
Biol Chem. 278:22404–22411. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sundquist E, Kauppila JH, Veijola J,
Mroueh R, Lehenkari P, Laitinen S, Risteli J, Soini Y, Kosma VM,
Sawazaki-Calone I, et al: Tenascin-C and fibronectin expression
divide early stage tongue cancer into low- and high-risk groups. Br
J Cancer. 116:640–648. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang W, Zheng Y, Jia J, Li C, Duan Q, Li
R, Wang X, Shao Y, Chen C and Yan H: Antimicrobial peptide LL-37
promotes the viability and invasion of skin squamous cell carcinoma
by upregulating YB-1. Exp Ther Med. 14:499–506. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang W, Jia J, Li C, Duan Q, Yang J, Wang
X, Li R, Chen C, Yan H and Zheng Y: Antimicrobial peptide LL-37
promotes the proliferation and invasion of skin squamous cell
carcinoma by upregulating DNA-binding protein A. Oncol Lett.
12:1745–1752. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jia J, Zheng Y, Wang W, Shao Y, Li Z, Wang
Q, Wang Y and Yan H: Antimicrobial peptide LL-37 promotes YB-1
expression, and the viability, migration and invasion of malignant
melanoma cells. Mol Med Rep. 15:240–248. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu WK, Sung JJ, To KF, Yu L, Li HT, Li ZJ,
Chu KM, Yu J and Cho CH: The host defense peptide LL-37 activates
the tumor-suppressing bone morphogenetic protein signaling via
inhibition of proteasome in gastric cancer cells. J Cell Physiol.
223:178–186. 2010.PubMed/NCBI
|
|
40
|
Ren SX, Cheng AS, To KF, Tong JH, Li MS,
Shen J, Wong CC, Zhang L, Chan RL, Wang XJ, et al: Host immune
defense peptide LL-37 activates caspase-independent apoptosis and
suppresses colon cancer. Cancer Res. 72:6512–6523. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li D, Liu W, Wang X, Wu J, Quan W, Yao Y,
Bals R, Ji S, Wu K, Guo J and Wan H: Cathelicidin, an antimicrobial
peptide produced by macrophages, promotes colon cancer by
activating the Wnt/β-catenin pathway. Oncotarget. 6:2939–2950.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Okumura K, Itoh A, Isogai E, Hirose K,
Hosokawa Y, Abiko Y, Shibata T, Hirata M and Isogai H: C-terminal
domain of human CAP18 antimicrobial peptide induces apoptosis in
oral squamous cell carcinoma SAS-H1 cells. Cancer Lett.
212:185–194. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Shaykhiev R, Beisswenger C, Kändler K,
Senske J, Püchner A, Damm T, Behr J and Bals R: Human endogenous
antibiotic LL-37 stimulates airway epithelial cell proliferation
and wound closure. Am J Physiol Lung Cell Mol Physiol.
289:L842–L848. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kamata N, Chida K, Rikimaru K, Horikoshi
M, Enomoto S and Kuroki T: Growth-inhibitory effects of epidermal
growth factor and overexpression of its receptors on human squamous
cell carcinomas in culture. Cancer Res. 46:1648–1653.
1986.PubMed/NCBI
|
|
45
|
Momose F, Araida T, Negishi A, Ichijo H,
Shioda S and Sasaki S: Variant sublines with different metastatic
potentials selected in nude mice from human oral squamous cell
carcinomas. J Oral Pathol Med. 18:391–395. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Matsumoto K, Matsumoto K, Nakamura T and
Kramer RH: Hepatocyte growth factor/scatter factor induces tyrosine
phosphorylation of focal adhesion kinase (p125FAK) and promotes
migration and invasion by oral squamous cell carcinoma cells. J
Biol Chem. 269:31807–31813. 1994.PubMed/NCBI
|
|
47
|
Ramos DM, Chen BL, Boylen K, Stern M,
Kramer RH, Sheppard D, Nishimura SL, Greenspan D, Zardi L and
Pytela R: Stromal fibroblasts influence oral squamous-cell
carcinoma cell interactions with tenascin-C. Int J Cancer.
72:369–376. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Okumura K, Konishi A, Tanaka M, Kanazawa
M, Kogawa K and Niitsu Y: Establishment of high- and low-invasion
clones derived for a human tongue squamous-cell carcinoma cell line
SAS. J Cancer Res Clin Oncol. 122:243–248. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Takahashi K, Kanazawa H, Akiyama Y, Tazaki
S, Takahara M, Muto T, Tanzawa H, Sato KI, Akiyama T, MUTO T, et
al: Establishment and characterization of a cell line (SAS) from
poorly differentiated human squamous cell carcinoma of the tongue.
J Jpn Stomatol Soc. 38:20–28. 1989.
|
|
50
|
Yin J and Yu FS: LL-37 via EGFR
transactivation to promote high glucose-attenuated epithelial wound
healing in organ-cultured corneas. Invest Ophthalmol Vis Sci.
51:1891–1897. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ribeiro FA, Noguti J, Oshima CT and
Ribeiro DA: Effective targeting of the epidermal growth factor
receptor (EGFR) for treating oral cancer: A promising approach.
Anticancer Res. 34:1547–1552. 2014.PubMed/NCBI
|
|
52
|
Cheng M, Ho S, Yoo JH, Tran DH, Bakirtzi
K, Su B, Tran DH, Kubota Y, Ichikawa R and Koon HW: Cathelicidin
suppresses colon cancer development by inhibition of cancer
associated fibroblasts. Clin Exp Gastroenterol. 8:13–29.
2014.PubMed/NCBI
|
|
53
|
Carretero M, Escámez MJ, García M, Duarte
B, Holguín A, Retamosa L, Jorcano JL, Río MD and Larcher F: In
vitro and in vivo wound healing-promoting activities of human
cathelicidin LL-37. J Invest Dermatol. 128:223–236. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Smith A, Teknos TN and Pan Q: Epithelial
to mesenchymal transition in head and neck squamous cell carcinoma.
Oral Oncol. 49:287–292. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Braff MH, Di Nardo A and Gallo RL:
Keratinocytes store the antimicrobial peptide cathelicidin in
lamellar bodies. J Invest Dermatol. 124:394–400. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mader JS, Mookherjee N, Hancock REW and
Bleackley RC: The human host defense peptide LL-37 induces
apoptosis in a calpain- and apoptosis-inducing factor-dependent
manner involving Bax activity. Mol Cancer Res. 7:689–702. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Açil Y, Torz K, Gülses A, Wieker H, Gerle
M, Purcz N, Will OM, Eduard Meyer J and Wiltfang J: An experimental
study on antitumoral effects of KI-21-3, a synthetic fragment of
antimicrobial peptide LL-37, on oral squamous cell carcinoma. J
Craniomaxillofac Surg. 46:1586–1592. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sakai E and Tsuchida N: Most human
squamous cell carcinomas in the oral cavity contain mutated p53
tumor-suppressor genes. Oncogene. 7:927–933. 1992.PubMed/NCBI
|
|
59
|
Min BM, Baek JH, Shin KH, Gujuluva CN,
Cherrick HM and Park NH: Inactivation of the p53 gene by either
mutation or HPV infection is extremely frequent in human oral
squamous cell carcinoma cell lines. Eur J Cancer B Oral Oncol.
30B:338–345. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kanata H, Yane K, Ota I, Miyahara H,
Matsunaga T, Takahashi A, Ohnishi K, Ohnishi T and Hosoi H: CDDP
induces p53-dependent apoptosis in tongue cancer cells. Int J
Oncol. 17:513–517. 2000.PubMed/NCBI
|
|
61
|
Ohnishi K, Ota I, Takahashi A and Ohnishi
T: Glycerol restores p53-dependent radiosensitivity of human head
and neck cancer cells bearing mutant p53. Br J Cancer.
83:1735–1739. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ratushny V, Astsaturov I, Burtness BA,
Golemis EA and Silverman JS: Targeting EGFR resistance networks in
head and neck cancer. Cell Signal. 21:1255–1268. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Meloche S and Pouysségur J: The ERK1/2
mitogen-activated protein kinase pathway as a master regulator of
the G1- to S-phase transition. Oncogene. 26:3227–3239. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Qiao M, Sheng S and Pardee AB: Metastasis
and AKT activation. Cell Cycle. 7:2991–2996. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nijnik A, Pistolic J, Filewod NCJ and
Hancock REW: Signaling pathways mediating chemokine induction in
keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun.
4:377–386. 2012. View Article : Google Scholar : PubMed/NCBI
|