Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2020 Volume 44 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 44 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

TGF‑β1‑induced epithelial‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p‑AMPK pathway in breast cancer cells

  • Authors:
    • Qian‑Qian Liu
    • Hong‑Yu Huo
    • Song Ao
    • Ting Liu
    • Li Yang
    • Zai‑Yi Fei
    • Zhi‑Qiang Zhang
    • Lei Ding
    • Qing‑Hua Cui
    • Jie Lin
    • Min Yu
    • Wei Xiong
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry and Genetics, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China, Chifeng Blood Centre, Chifeng, Inner Mongolia, Chifeng 024000, P.R. China, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, P.R. China
  • Pages: 1206-1215
    |
    Published online on: June 25, 2020
       https://doi.org/10.3892/or.2020.7661
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer is the most common malignancy in women, and metastasis is the leading cause of death in breast cancer patients. Previous studies have shown that epithelial‑mesenchymal transition (EMT) is involved in the metastasis of breast cancer, but the metabolic reprogramming and regulation mechanisms involved in the EMT process are still unclear. In the present study, we successfully constructed an EMT cell model induced by transforming growth factor β1 (TGF‑β1) treatment of MCF‑7 cells at different times. The results showed that cell adhesion decreased, cell invasion increased and ATP levels increased in EMT MCF‑7 cells treated with TGF‑β1. Furthermore, the expression of fatty acid synthase (FASN) was decreased, and the expression of key fatty acid β‑oxidation enzymes (CPT1 and CD36) was elevated in treated cells compared to control cells. These results showed that the fatty acid oxidation pathway was enhanced. In addition, the expression of NADH:ubiquinone oxidoreductase subunit B8 (NDUFB8), mitochondrial transcription factor A (TFAM) and cytochrome c oxidase subunit I (COXI) increased, and the mitochondrial DNA copy number and ROS levels were also significantly increased during TGF‑β1‑induced EMT. These results indicated that mitochondrial oxidative phosphorylation (OXPHOS) activity was enhanced during EMT. In addition, we observed that the expression of p‑AMPK was increased and ACC (Acetyl‑CoA Carboxylase) was decreased during TGF‑β1‑induced EMT in MCF‑7 cells. Immunohistochemical analysis of clinical samples revealed high expression of FASN in epithelial cells that had high expression of E‑cadherin, while high expression of CPT‑1 was observed in mesenchymal cells that had high expression of vimentin. Results of the current study showed a metabolic transition in TGF‑β1‑induced EMT in MCF‑7 cells. This transition may regulate fatty acid oxidation and OXPHOS activity in EMT MCF‑7 cells through the p‑AMPK pathway. These data suggest that a metabolic transition that suppresses lipogenesis and favors energy production is an essential component of TGF‑β1‑induced EMT and metastasis in breast cancer. This study thus provides a new strategy for identifying new therapeutic targets for breast cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV and Mitsis M: Breast cancer in young women: An overview. Updates Surg. 69:313–317. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Medeiros B and Allan AL: Molecular mechanisms of breast cancer metastasis to the lung: Clinical and experimental perspectives. Int J Mol Sc. 20:22722019. View Article : Google Scholar

3 

Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL and Massagué J: Genes that mediate breast cancer metastasis to lung. Nature. 436:518–524. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Hu J, Li G, Zhang P, Zhuang X and Hu G: A CD44v+ subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity. Cell Death Dis. 8:e26792017. View Article : Google Scholar : PubMed/NCBI

5 

Xu X, Yan Q, Wang Y and Dong X: NTN4 is associated with breast cancer metastasis via regulation of EMT-related biomarkers. Oncol Rep. 37:449–457. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, Van Keymeulen A, Brown D, Moers V, Lemaire S, et al: Identification of the tumour transition states occurring during EMT. Nature. 556:463–468. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Nieto MA, Huang RY, Jackson RA and Thiery JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Ungefroren H, Witte D and Lehnert H: The role of small GTPases of the Rho/Rac family in TGF-β-induced EMT and cell motility in cancer. Dev Dyn. 247:451–461. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Liu FL, Mo EP, Yang L, Du J, Wang HS, Zhang H, Kurihara H, Xu J and Cai SH: Autophagy is involved in TGF-β1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment. Oncotarget. 7:4122–4141. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Huang R and Zong X: Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Crit Rev Oncol Hematol. 115:13–22. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Chen XL, Lei L, Hong LL and Ling ZQ: Potential role of NDRG2 in reprogramming cancer metabolism and epithelial-to-mesenchymal transition. Histol Histopathol. 33:655–663. 2018.PubMed/NCBI

12 

Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY and Thiery JP: Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med. 6:1279–1293. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Syed V: TGF-β Signaling in Cancer. J Cell Biochem. 117:1279–1287. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Kim I and He YY: Targeting the AMP-activated protein kinase for cancer prevention and therapy. Front Oncol. 3:1752013. View Article : Google Scholar : PubMed/NCBI

15 

Chiarugi P and Cirri P: Metabolic exchanges within tumor microenvironment. Cancer Lett. 380:272–280. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Gouirand V, Guillaumond F and Vasseur S: Influence of the tumor microenvironment on cancer cells metabolic reprogramming. Front Oncol. 8:1172018. View Article : Google Scholar : PubMed/NCBI

17 

Cheng S, Wang G, Wang Y, Cai L, Qian K, Ju L, Liu X, Xiao Y and Wang X: Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARγ-mediated pathway in bladder cancer. Clin Sci (Lond). 133:1745–1758. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Chen RR, Yung MMH, Xuan Y, Zhan S, Leung LL, Liang RR, Leung THY, Yang H, Xu D, Sharma R, et al: Targeting of lipid metabolism with a metabolic inhibitor cocktail eradicates peritoneal metastases in ovarian cancer cells. Commun Biol. 2:2812019. View Article : Google Scholar : PubMed/NCBI

19 

Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, Matei D and Cheng JX: Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell. 20:303–314.e5. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Klein M, Seeger P, Schuricht B, Alper SL and Schwab A: Polarization of Na(+)/H(+) and Cl(−)/HCO (3)(−) exchangers in migrating renal epithelial cells. J Gen Physiol. 115:599–608. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR and Noël J: Regulation of the formation of tumor cell pseudopodia by the Na(+)/H(+) exchanger NHE1. J Cell Sc. 113:3649–3662. 2000.

22 

Fan FT, Shen CS, Tao L, Tian C, Liu ZG, Zhu ZJ, Liu YP, Pei CS, Wu HY, Zhang L, et al: PKM2 regulates hepatocellular carcinoma cell epithelial-mesenchymal transition and migration upon EGFR activation. Asian Pac J Cancer Prev. 15:1961–1970. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Arseneault R, Chien A, Newington JT, Rappon T, Harris R and Cumming RC: Attenuation of LDHA expression in cancer cells leads to redox-dependent alterations in cytoskeletal structure and cell migration. Cancer Lett. 338:255–266. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Liu X, Wang X, Zhang J, Lam EK, Shin VY, Cheng AS, Yu J, Chan FK, Sung JJ and Jin HC: Warburg effect revisited: An epigenetic link between glycolysis and gastric carcinogenesis. Oncogene. 29:442–450. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Yang L, Hou Y, Yuan J, Tang S, Zhang H, Zhu Q, Du YE, Zhou M, Wen S, Xu L, et al: Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways. Oncotarget. 6:25755–25769. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Hardie DG, Schaffer BE and Brunet A: AMPK: An energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26:190–201. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Carling D: AMPK signalling in health and disease. Current opinion in cell biology. 45:31–37. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Wu Y, Sarkissyan M, McGhee E, Lee S and Vadgama JV: Combined inhibition of glycolysis and AMPK induces synergistic breast cancer cell killing. Curr Opin Cell Biol. 151:529–539. 2015.

29 

Liu X, Chhipa RR, Nakano I and Dasgupta B: The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther. 13:596–605. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Mauro L, Naimo GD, Gelsomino L, Malivindi R, Bruno L, Pellegrino M, Tarallo R, Memoli D, Weisz A, Panno ML and Andò S: Uncoupling effects of estrogen receptor alpha on LKB1/AMPK interaction upon adiponectin exposure in breast cancer. FASEB J. 32:4343–4355. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu QQ, Huo HY, Ao S, Liu T, Yang L, Fei ZY, Zhang ZQ, Ding L, Cui QH, Lin J, Lin J, et al: TGF‑β1‑induced epithelial‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p‑AMPK pathway in breast cancer cells. Oncol Rep 44: 1206-1215, 2020.
APA
Liu, Q., Huo, H., Ao, S., Liu, T., Yang, L., Fei, Z. ... Xiong, W. (2020). TGF‑β1‑induced epithelial‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p‑AMPK pathway in breast cancer cells. Oncology Reports, 44, 1206-1215. https://doi.org/10.3892/or.2020.7661
MLA
Liu, Q., Huo, H., Ao, S., Liu, T., Yang, L., Fei, Z., Zhang, Z., Ding, L., Cui, Q., Lin, J., Yu, M., Xiong, W."TGF‑β1‑induced epithelial‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p‑AMPK pathway in breast cancer cells". Oncology Reports 44.3 (2020): 1206-1215.
Chicago
Liu, Q., Huo, H., Ao, S., Liu, T., Yang, L., Fei, Z., Zhang, Z., Ding, L., Cui, Q., Lin, J., Yu, M., Xiong, W."TGF‑β1‑induced epithelial‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p‑AMPK pathway in breast cancer cells". Oncology Reports 44, no. 3 (2020): 1206-1215. https://doi.org/10.3892/or.2020.7661
Copy and paste a formatted citation
x
Spandidos Publications style
Liu QQ, Huo HY, Ao S, Liu T, Yang L, Fei ZY, Zhang ZQ, Ding L, Cui QH, Lin J, Lin J, et al: TGF‑β1‑induced epithelial‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p‑AMPK pathway in breast cancer cells. Oncol Rep 44: 1206-1215, 2020.
APA
Liu, Q., Huo, H., Ao, S., Liu, T., Yang, L., Fei, Z. ... Xiong, W. (2020). TGF‑β1‑induced epithelial‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p‑AMPK pathway in breast cancer cells. Oncology Reports, 44, 1206-1215. https://doi.org/10.3892/or.2020.7661
MLA
Liu, Q., Huo, H., Ao, S., Liu, T., Yang, L., Fei, Z., Zhang, Z., Ding, L., Cui, Q., Lin, J., Yu, M., Xiong, W."TGF‑β1‑induced epithelial‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p‑AMPK pathway in breast cancer cells". Oncology Reports 44.3 (2020): 1206-1215.
Chicago
Liu, Q., Huo, H., Ao, S., Liu, T., Yang, L., Fei, Z., Zhang, Z., Ding, L., Cui, Q., Lin, J., Yu, M., Xiong, W."TGF‑β1‑induced epithelial‑mesenchymal transition increases fatty acid oxidation and OXPHOS activity via the p‑AMPK pathway in breast cancer cells". Oncology Reports 44, no. 3 (2020): 1206-1215. https://doi.org/10.3892/or.2020.7661
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team