Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2020 Volume 44 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 44 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Gambogic acid inhibits proliferation and induces apoptosis of human acute T‑cell leukemia cells by inducing autophagy and downregulating β‑catenin signaling pathway: Mechanisms underlying the effect of Gambogic acid on T‑ALL cells

  • Authors:
    • Tongtong Wang
    • Jing Du
    • Dexia Kong
    • Guosheng Yang
    • Qihao Zhou
    • Fei You
    • Yan Lin
    • Ying Wang
  • View Affiliations / Copyright

    Affiliations: Department of General Practice, Wangjiangshan Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
  • Pages: 1747-1757
    |
    Published online on: August 11, 2020
       https://doi.org/10.3892/or.2020.7726
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The main active compound of Garcinia hanburyi (referred to as gamboge) is gambogic acid (GA), which has long been a Chinese herbal medicine for treating several types of cancer. However, the potential therapeutic role and mechanisms of GA in T‑cell acute lymphoblastic leukemia (T‑ALL) remain unclear. In the present study, the effects of GA on proliferation, cell cycle, apoptosis, and autophagy in T‑ALL cell lines were investigated. The possible mechanisms underlying GA activity were also examined. The results showed that GA inhibited proliferation, induced apoptosis, and activated autophagy in T‑ALL cell lines (Jurkat and Molt‑4 cells). Findings confirmed that GA has an antileukemia effect against peripheral blood lymphocyte cells in patients with ALL. GA inhibited phospho‑GSK3β S9 (p‑GSK3β S9) protein levels to inactivate Wnt signaling and suppress β‑catenin protein levels. In addition, the inhibitory effect of GA on T‑ALL was reversed by overexpression of β‑catenin. Thus, GA can inhibit the growth and survival of T‑ALL cells. GA also had antileukemic activity, at least in part, through the downregulation of the Wnt/β‑catenin signaling pathway.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Belmonte M, Hoofd C, Weng AP and Giambra V: Targeting leukemia stem cells: Which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia? Curr Oncol. 23:34–41. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Van Vlierberghe P and Ferrando A: The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest. 122:3398–3406. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M, Stow P, Su X, Shurtleff S, Pui CH, et al: New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 117:6267–6276. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Pui CH, Carroll WL, Meshinchi S and Arceci RJ: Biology, risk stratification, and therapy of pediatric acute leukemias: An update. J Clin Oncol. 29:5512011. View Article : Google Scholar : PubMed/NCBI

5 

Pui CH, Robison LL and Look AT: Acute lymphoblastic leukaemia. Lancet. 371:1030–1043. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Cailleteau C, Micallef L, Lepage C, Cardot PJ, Beneytout JL, Liagre B and Battu S: Investigating the relationship between cell cycle stage and diosgenin-induced megakaryocytic differentiation of HEL cells using sedimentation field-flow fractionation. Anal Bioanal Chem. 398:1273–1283. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Leger DY, Liagre B and Beneytout JL: Role of MAPKs and NF-kappaB in diosgenin-induced megakaryocytic differentiation and subsequent apoptosis in HEL cells. Int J Oncol. 28:201–207. 2006.PubMed/NCBI

8 

Cragg GM and Newman DJ: Nature: A vital source of leads for anticancer drug development. Phytochem Rev. 8:313–331. 2009. View Article : Google Scholar

9 

Yu J, Guo QL, You QD, Lin SS, Li Z, Gu HY, Zhang HW, Tan Z and Wang X: Repression of telomerase reverse transcriptase mRNA and hTERT promoter by gambogic acid in human gastric carcinoma cells. Cancer Chemother Pharmacol. 58:434–443. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Kasibhatla S, Jessen KA, Maliartchouk S, Wang JY, English NM, Drewe J, Qiu L, Archer SP, Ponce AE, Sirisoma N, et al: A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. Proc Natl Acad Sci USA. 102:12095–12100. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Zhao L, Guo QL, You QD, Wu ZQ and Gu HY: Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells. Biol Pharm Bull. 27:998–1003. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Duan D, Zhang B, Yao J, Liu Y, Sun J, Ge C, Peng S and Fang J: Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free Radic Biol Med. 69:15–25. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Xu X, Liu Y, Wang L, He J, Zhang H, Chen X, Li Y, Yang J and Tao J: Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells. Int J Dermatol. 48:186–192. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Li C, Qi Q, Lu N, Dai Q, Li F, Wang X, You Q and Guo Q: Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells. Biochem Cell Biol. 90:718–730. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Shi X, Chen X, Li X, Lan X, Zhao C, Liu S, Huang H, Liu N, Liao S, Song W, et al: Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin Cancer Res. 20:151–163. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Chantarasriwong O, Batova A, Chavasiri W and Theodorakis EA: Chemistry and biology of the caged Garcinia xanthones. Chemistry. 16:9944–9962. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Kashyap D, Mondal R, Tuli HS, Kumar G and Sharma AK: Molecular targets of gambogic acid in cancer: Recent trends and advancements. Tumour Biol. 37:12915–12925. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, et al: Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin Med. 14:482019. View Article : Google Scholar : PubMed/NCBI

19 

Teimouri M, Junaid M, Saleem S, Khan A and Ali A: In-vitro analysis of selective nutraceuticals binding to human transcription factors through computer aided molecular docking predictions. Bioinformation. 12:354–358. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S and Polakis P: Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 272:1023–1026. 1996. View Article : Google Scholar : PubMed/NCBI

21 

Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T and Clevers H: Wnt signaling through inhibition of β-catenin degradation in an intact axin1 complex. Cell. 149:1245–1256. 2012. View Article : Google Scholar : PubMed/NCBI

22 

He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B and Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science. 281:1509–1512. 1998. View Article : Google Scholar : PubMed/NCBI

23 

Tetsu O and McCormick F: Beta-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 398:422–426. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Cadigan KM and Nusse R: Wnt signaling: A common theme in animal development. Genes Dev. 11:3286–3305. 1997. View Article : Google Scholar : PubMed/NCBI

25 

Nejak-Bowen KN and Monga SP: Beta-catenin signaling, liver regeneration and hepatocellular cancer: Sorting the good from the bad. Semin Cancer Biol. 21:44–58. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M, et al: Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA. 106:3925–3929. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Banerji V, Frumm SM, Ross KN, Li LS, Schinzel AC, Hahn CK, Kakoza RM, Chow KT, Ross L, Alexe G, et al: The intersection of genetic and chemical genomic screens identifies GSK-3α as a target in human acute myeloid leukemia. J Clin Invest. 122:935–947. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC and Cleary ML: Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature. 455:1205–1209. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Staal FJ, Famili F, Garcia Perez L and Pike-Overzet K: Aberrant Wnt signaling in leukemia. Cancers (Basel). 8:782016. View Article : Google Scholar

31 

Weerkamp F, van Dongen JJ and Staal FJ: Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia. 20:1197–1205. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, et al: A: c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20:2096–2109. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Koch U and Radtke F: Mechanisms of T cell development and transformation. Annu Rev Cell Dev Biol. 27:539–562. 2011. View Article : Google Scholar : PubMed/NCBI

34 

den Hoed MA, Pluijm SM, te Winkel ML, de Groot-Kruseman HA, Fiocco M, Hoogerbrugge P, Leeuw JA, Bruin MC, van der Sluis IM, Bresters D, et al: Aggravated bone density decline following symptomatic osteonecrosis in children with acute lymphoblastic leukemia. Haematologica. 100:1564–1570. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Sutton R, Shaw PJ, Venn NC, Law T, Dissanayake A, Kilo T, Haber M, Norris MD, Fraser C, Alvaro F, et al: Persistent MRD before and after allogeneic BMT predicts relapse in children with acute lymphoblastic leukaemia. Br J Haematol. 168:395–404. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Bleckmann K and Schrappe M: Advances in therapy for Philadelphia-positive acute lymphoblastic leukaemia of childhood and adolescence. Br J Haematol. 172:855–869. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, Ren X, An Y, Wu Y, Sun W, et al: DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 131:356–369. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Liu Y, Wang W, Xu J, Li L, Dong Q, Shi Q, Zuo G, Zhou L, Weng Y, Tang M, et al: Dihydroartemisinin inhibits tumor growth of human osteosarcoma cells by suppressing Wnt/β-catenin signaling. Oncol Rep. 30:1723–1730. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Giambra V, Jenkins CE, Lam SH, Hoofd C, Belmonte M, Wang X, Gusscott S, Gracias D and Weng AP: Leukemia stem cells in T-ALL require active Hif1α and Wnt signaling. Blood. 125:3917–3927. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Gottardi CJ and Gumbiner BM: Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol. 167:339–349. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Gao S, Li X, Ding X, Jiang L and Yang Q: Huaier extract restrains the proliferative potential of endocrine-resistant breast cancer cells through increased ATM by suppressing miR-203. Sci Rep. 7:73132017. View Article : Google Scholar : PubMed/NCBI

42 

Gavet O and Pines J: Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell. 18:533–543. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI and Armstrong SA: The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 327:1650–1653. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA, Stein L, Kalaitzidis D, Lane SW and Armstrong SA: Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell. 10:412–424. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, Nicolini FE, Müller-Tidow C, Bhatia R, Brunton VG, et al: Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 119:1501–1510. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Perrotti D, Jamieson C, Goldman J and Skorski T: Chronic myeloid leukemia: Mechanisms of blastic transformation. J Clin Invest. 120:2254–2264. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Sparks AB, Morin PJ, Vogelstein B and Kinzler KW: Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58:1130–1134. 1998.PubMed/NCBI

48 

Beurel E, Grieco SF and Jope RS: Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol Ther. 148:114–131. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Frame S, Cohen P and Biondi RM: A common phosphate binding site explains the unique substrate specificity of GSK3 and Its Inactivation by Phosphorylation. Mol Cell. 7:1321–1327. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Huber BE and Thorgeirsson SS: Analysis of c-myc expression in a human hepatoma cell line. Cancer Res. 47:3414–3420. 1987.PubMed/NCBI

51 

Hönscheid P, Datta K and Muders MH: Autophagy: Detection, regulation and its role in cancer and therapy response. Int J Radiat Biol. 90:628–635. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Schneider JL and Cuervo AM: Autophagy and human disease: Emerging themes. Curr Opin Genet Dev. 26:16–23. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Ghavami S, Gupta S, Ambrose E, Hnatowich M, Freed DH and Dixon IM: Autophagy and heart disease: Implications for cardiac ischemia-reperfusion damage. Curr Mol Med. 14:616–629. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Hashimoto D, Bläuer M, Hirota M, Ikonen NH, Sand J and Laukkarinen J: Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer. 50:1382–1390. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Ryter SW and Choi AMK: Autophagy in lung disease pathogenesis and therapeutics. Redox Biol. 4:215–225. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Kimura S, Fujita N, Noda T and Yoshimori T: Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol. 452:1–12. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Liu G, Liu J, Pian L, Gui S and Lu B: α-lipoic acid protects against carbon tetrachloride-induced liver cirrhosis through the suppression of the TGF-β/Smad3 pathway and autophagy Mol Med Rep. 19:841–850. 2019.PubMed/NCBI

58 

Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X and Chen YG: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol. 12:781–790. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Zhang Y, Wang F, Han L, Wu Y, Li S, Yang X, Wang Y, Ren F, Zhai Y, Wang D, et al: GABARAPL1 Negatively regulates Wnt/β-catenin signaling by mediating Dvl2 degradation through the autophagy pathway. Cell Physiol Biochem. 27:503–512. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang T, Du J, Kong D, Yang G, Zhou Q, You F, Lin Y and Wang Y: Gambogic acid inhibits proliferation and induces apoptosis of human acute T‑cell leukemia cells by inducing autophagy and downregulating β‑catenin signaling pathway: Mechanisms underlying the effect of Gambogic acid on T‑ALL cells. Oncol Rep 44: 1747-1757, 2020.
APA
Wang, T., Du, J., Kong, D., Yang, G., Zhou, Q., You, F. ... Wang, Y. (2020). Gambogic acid inhibits proliferation and induces apoptosis of human acute T‑cell leukemia cells by inducing autophagy and downregulating β‑catenin signaling pathway: Mechanisms underlying the effect of Gambogic acid on T‑ALL cells. Oncology Reports, 44, 1747-1757. https://doi.org/10.3892/or.2020.7726
MLA
Wang, T., Du, J., Kong, D., Yang, G., Zhou, Q., You, F., Lin, Y., Wang, Y."Gambogic acid inhibits proliferation and induces apoptosis of human acute T‑cell leukemia cells by inducing autophagy and downregulating β‑catenin signaling pathway: Mechanisms underlying the effect of Gambogic acid on T‑ALL cells". Oncology Reports 44.4 (2020): 1747-1757.
Chicago
Wang, T., Du, J., Kong, D., Yang, G., Zhou, Q., You, F., Lin, Y., Wang, Y."Gambogic acid inhibits proliferation and induces apoptosis of human acute T‑cell leukemia cells by inducing autophagy and downregulating β‑catenin signaling pathway: Mechanisms underlying the effect of Gambogic acid on T‑ALL cells". Oncology Reports 44, no. 4 (2020): 1747-1757. https://doi.org/10.3892/or.2020.7726
Copy and paste a formatted citation
x
Spandidos Publications style
Wang T, Du J, Kong D, Yang G, Zhou Q, You F, Lin Y and Wang Y: Gambogic acid inhibits proliferation and induces apoptosis of human acute T‑cell leukemia cells by inducing autophagy and downregulating β‑catenin signaling pathway: Mechanisms underlying the effect of Gambogic acid on T‑ALL cells. Oncol Rep 44: 1747-1757, 2020.
APA
Wang, T., Du, J., Kong, D., Yang, G., Zhou, Q., You, F. ... Wang, Y. (2020). Gambogic acid inhibits proliferation and induces apoptosis of human acute T‑cell leukemia cells by inducing autophagy and downregulating β‑catenin signaling pathway: Mechanisms underlying the effect of Gambogic acid on T‑ALL cells. Oncology Reports, 44, 1747-1757. https://doi.org/10.3892/or.2020.7726
MLA
Wang, T., Du, J., Kong, D., Yang, G., Zhou, Q., You, F., Lin, Y., Wang, Y."Gambogic acid inhibits proliferation and induces apoptosis of human acute T‑cell leukemia cells by inducing autophagy and downregulating β‑catenin signaling pathway: Mechanisms underlying the effect of Gambogic acid on T‑ALL cells". Oncology Reports 44.4 (2020): 1747-1757.
Chicago
Wang, T., Du, J., Kong, D., Yang, G., Zhou, Q., You, F., Lin, Y., Wang, Y."Gambogic acid inhibits proliferation and induces apoptosis of human acute T‑cell leukemia cells by inducing autophagy and downregulating β‑catenin signaling pathway: Mechanisms underlying the effect of Gambogic acid on T‑ALL cells". Oncology Reports 44, no. 4 (2020): 1747-1757. https://doi.org/10.3892/or.2020.7726
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team