|
1
|
Xue H, Liu L, Zhao Z, Zhang Z, Guan Y,
Cheng H, Zhou Y and Tai G: The N-terminal tail coordinates with
carbohydrate recognition domain to mediate galectin-3 induced
apoptosis in T cells. Oncotarget. 8:49824–49838. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Vereecken P, Debray C, Petein M, Awada A,
Lalmand MC, Laporte M, Van Den Heule B, Verhest A and Pochet R:
Expression of galectin-3 in primary and metastatic melanoma:
Immunohistochemical studies on human lesions and nude mice
xenograft tumors. Arch Dermatol Res. 296:353–358. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Newlaczyl AU and Yu LG: Galectin-3-a
jack-of-all-trades in cancer. Cancer Lett. 313:123–128. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Li YS, Li XT, Yu LG, Wang L, Shi ZY and
Guo XL: Roles of galectin-3 in metabolic disorders and tumor cell
metabolism. Int J Biol Macromol. 142:463–473. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fortuna-Costa A, Gomes AM, Kozlowski EO,
Stelling MP and Pavão MS: Extracellular galectin-3 in tumor
progression and metastasis. Front Oncol. 4:1382014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Farhad M, Rolig AS and Redmond WL: The
role of Galectin-3 in modulating tumor growth and immunosuppression
within the tumor microenvironment. Oncoimmunology. 7:e14344672018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ahmed H and AlSadek DM: Galectin-3 as a
potential target to prevent cancer metastasis. Clin Med Insights
Oncol. 9:113–121. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ahmad N, Gabius HJ, André S, Kaltner H,
Sabesan S, Roy R, Liu B, Macaluso F and Brewer CF: Galectin-3
precipitates as a pentamer with synthetic multivalent carbohydrates
and forms heterogeneous cross-linked complexes. J Biol Chem.
279:10841–10847. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nangia-Makker P, Hogan V and Raz A:
Galectin-3 and cancer stemness. Glycobiology. 28:172–181. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mehul B and Hughes RC: Plasma membrane
targetting, vesicular budding and release of galectin 3 from the
cytoplasm of mammalian cells during secretion. J Cell Sci.
110:1169–1178. 1997.PubMed/NCBI
|
|
11
|
Elad-Sfadia G, Haklai R, Balan E and Kloog
Y: Galectin-3 augments K-Ras activation and triggers a Ras signal
that attenuates ERK but not phosphoinositide 3-kinase activity. J
Biol Chem. 279:34922–34930. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Honjo Y, Nangia-Makker P, Inohara H and
Raz A: Down-regulation of galectin-3 suppresses tumorigenicity of
human breast carcinoma cells. Clin Cancer Res. 7:661–668.
2001.PubMed/NCBI
|
|
13
|
Chen HY, Fermin A, Vardhana S, Weng IC, Lo
KF, Chang EY, Maverakis E, Yang RY, Hsu DK, Dustin ML and Liu FT:
Galectin-3 negatively regulates TCR-mediated CD4+ T-cell
activation at the immunological synapse. Proc Natl Acad Sci USA.
106:14496–14501. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Grigorian A and Demetriou M: Manipulating
cell surface glycoproteins by targeting n-glycan-galectin
interactions. Methods Enzymol. 480:245–266. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Di Lella S, Sundblad V, Cerliani JP,
Guardia CM, Estrin DA, Vasta GR and Rabinovich GA: When galectins
recognize glycans: From biochemistry to physiology and back again.
Biochemistry. 50:7842–7857. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sato S and Hughes RC: Binding specificity
of a baby hamster kidney lectin for H type I and II chains,
polylactosamine glycans, and appropriately glycosylated forms of
laminin and fibronectin. J Biol Chem. 267:6983–6990.
1992.PubMed/NCBI
|
|
17
|
Yamaoka A, Kuwabara I, Frigeri LG and Liu
FT: A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates
superoxide production by neutrophils. J Immunol. 154:3479–3487.
1995.PubMed/NCBI
|
|
18
|
Kuwabara I and Liu FT: Galectin-3 promotes
adhesion of human neutrophils to laminin. J Immunol. 156:3939–3944.
1996.PubMed/NCBI
|
|
19
|
Karlsson A, Follin P, Leffler H and
Dahlgren C: Galectin-3 activates the NADPH-oxidase in exudated but
not peripheral blood neutrophils. Blood. 91:3430–3438. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
ten Oever J, Giamarellos-Bourboulis EJ,
van de Veerdonk FL, Stelma FF, Simon A, Janssen M, Johnson M,
Pachot A, Kullberg BJ, Joosten LA and Netea MG: Circulating
galectin-3 in infections and non-infectious inflammatory diseases.
Eur J Clin Microbiol Infect Dis. 32:1605–1610. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ruvolo PP: Galectin 3 as a guardian of the
tumor microenvironment. Biochim Biophys Acta. 1863:427–437. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Salomonsson E, Carlsson MC, Osla V,
Hendus-Altenburger R, Kahl-Knutson B, Oberg CT, Sundin A, Nilsson
R, Nordberg-Karlsson E, Nilsson UJ, et al: Mutational tuning of
galectin-3 specificity and biological function. J Biol Chem.
285:35079–35091. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Delacour D, Greb C, Koch A, Salomonsson E,
Leffler H, Le Bivic A and Jacob R: Apical sorting by
galectin-3-dependent glycoprotein clustering. Traffic. 8:379–388.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Anderson KG, Stromnes IM and Greenberg PD:
Obstacles posed by the tumor microenvironment to T cell activity: A
case for synergistic therapies. Cancer Cell. 31:311–325. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gordon-Alonso M, Hirsch T, Wildmann C and
van der Bruggen P: Galectin-3 captures interferon-gamma in the
tumor matrix reducing chemokine gradient production and T-cell
tumor infiltration. Nat Commun. 8:7932017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
de Oliveira JT, Ribeiro C, Barros R, Gomes
C, de Matos AJ, Reis CA, Rutteman GR and Gärtner F: Hypoxia
up-regulates galectin-3 in mammary tumor progression and
metastasis. PLoS One. 10:e01344582015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sun W, Li L, Li LJ, Yang QQ, Zhang ZR and
Huang Y: Two birds, one stone: Dual targeting of the cancer cell
surface and subcellular mitochondria by the galectin-3-binding
peptide G3-C12. Acta Pharmacol Sin. 38:806–822. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bacchi PS, Bloise AC, Bustos SO,
Zimmermann L, Chammas R and Rabbani SR: Metabolism under hypoxia in
Tm1 murine melanoma cells is affected by the presence of
galectin-3, a metabolomics approach. Springerplus. 3:4702014.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Pejnovic NN, Pantic JM, Jovanovic IP,
Radosavljevic GD, Milovanovic MZ, Nikolic IG, Zdravkovic NS, Djukic
AL, Arsenijevic NN and Lukic ML: Galectin-3 deficiency accelerates
high-fat diet-induced obesity and amplifies inflammation in adipose
tissue and pancreatic islets. Diabetes. 62:1932–1944. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yu F, Finley RL Jr, Raz A and Kim HR:
Galectin-3 translocates to the perinuclear membranes and inhibits
cytochrome c release from the mitochondria. A role for synexin in
galectin-3 translocation. J Biol Chem. 277:15819–15827. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sciacchitano S, Lavra L, Morgante A,
Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB and
Ricci A: Galectin-3: One molecule for an alphabet of diseases, from
A to Z. Int J Mol Sci. 19:3792018. View Article : Google Scholar
|
|
32
|
Cardoso AC, Andrade LN, Bustos SO and
Chammas R: Galectin-3 determines tumor cell adaptive strategies in
stressed tumor microenvironments. Front Oncol. 6:1272016.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lee YK, Lin TH, Chang CF and Lo YL:
Galectin-3 silencing inhibits epirubicin-induced ATP binding
cassette transporters and activates the mitochondrial apoptosis
pathway via β-catenin/GSK-3 β modulation in colorectal carcinoma.
PLoS One. 8:e824782013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fei F, Joo EJ, Tarighat SS, Schiffer I,
Paz H, Fabbri M, Abdel-Azim H, Groffen J and Heisterkamp N: B-cell
precursor acute lymphoblastic leukemia and stromal cells
communicate through galectin-3. Oncotarget. 6:11378–11394. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yamamoto-Sugitani M, Kuroda J, Ashihara E,
Nagoshi H, Kobayashi T, Matsumoto Y, Sasaki N, Shimura Y, Kiyota M,
Nakayama R, et al: Galectin-3 (Gal-3) induced by leukemia
microenvironment promotes drug resistance and bone marrow lodgment
in chronic myelogenous leukemia. Proc Natl Acad Sci USA.
108:17468–17473. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Silverman AM, Nakata R, Shimada H, Sposto
R and DeClerck YA: A galectin-3-dependent pathway upregulates
interleukin-6 in the microenvironment of human neuroblastoma.
Cancer Res. 72:2228–2238. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nakayama R, Kuroda J, Taniyama N,
Yamamoto-Sugitani M, Wada S, Kiyota M, Mizutani S, Chinen Y,
Matsumoto Y, Nagoshi H, et al: Suppression of SERPINA1-albumin
complex formation by galectin-3 overexpression leads to paracrine
growth promotion of chronic myelogenous leukemia cells. Leuk Res.
38:103–108. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ruvolo PP, Ruvolo VR, Burks JK, Qiu Y,
Wang RY, Shpall EJ, Mirandola L, Hail N Jr, Zeng Z, McQueen T, et
al: Role of MSC-derived galectin 3 in the AML microenvironment.
Biochim Biophys Acta Mol Cell Res. 1865:959–969. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Song S, Mazurek N, Liu C, Sun Y, Ding QQ,
Liu K, Hung MC and Bresalier RS: Galectin-3 mediates nuclear
beta-catenin accumulation and Wnt signaling in human colon cancer
cells by regulation of glycogen synthase kinase-3beta activity.
Cancer Res. 69:1343–1349. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
McCubrey JA, Davis NM, Abrams SL, Montalto
G, Cervello M, Basecke J, Libra M, Nicoletti F, Cocco L, Martelli
AM and Steelman LS: Diverse roles of GSK-3: Tumor promoter-tumor
suppressor, target in cancer therapy. Adv Biol Regul. 54:176–196.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hermida MA, Dinesh Kumar J and Leslie NR:
GSK3 and its interactions with the PI3K/AKT/mTOR signalling
network. Adv Biol Regul. 65:5–15. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ricciardi MR, Mirabilii S, Licchetta R,
Piedimonte M and Tafuri A: Targeting the Akt, GSK-3, Bcl-2 axis in
acute myeloid leukemia. Adv Biol Regul. 65:36–58. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ruvolo PP: GSK-3 as a novel prognostic
indicator in leukemia. Adv Biol Regul. 65:26–35. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Krause S, Pfeiffer C, Strube S, Alsadeq A,
Fedders H, Vokuhl C, Loges S, Waizenegger J, Ben-Batalla I, Cario
G, et al: Mer tyrosine kinase promotes the survival of
t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central
nervous system (CNS). Blood. 125:820–830. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zeng Y, Danielson KG, Albert TJ, Shapiro
IM and Risbud MV: HIF-1 alpha is a regulator of galectin-3
expression in the intervertebral disc. J Bone Miner Res.
22:1851–1861. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Neder L, Marie SK, Carlotti CG Jr, Gabbai
AA, Rosemberg S, Malheiros SM, Siqueira RP, Oba-Shinjo SM, Uno M,
Aguiar PH, et al: Galectin-3 as an immunohistochemical tool to
distinguish pilocytic astrocytomas from diffuse astrocytomas, and
glioblastomas from anaplastic oligodendrogliomas. Brain Pathol.
14:399–405. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Rêgo MJ, Vieira de Mello GS, da Silva
Santos CA, Chammas R and Beltrão EI: Implications on
glycobiological aspects of tumor hypoxia in breast ductal carcinoma
in situ. Med Mol Morphol. 46:92–96. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ikemori RY, Machado CM, Furuzawa KM,
Nonogaki S, Osinaga E, Umezawa K, de Carvalho MA, Verinaud L and
Chammas R: Galectin-3 up-regulation in hypoxic and nutrient
deprived microenvironments promotes cell survival. PLoS One.
9:e1115922014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liu L, Sakai T, Sano N and Fukui K:
Nucling mediates apoptosis by inhibiting expression of galectin-3
through interference with nuclear factor kappaB signalling. Biochem
J. 380:31–41. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Radosavljevic G, Jovanovic I, Majstorovic
I, Mitrovic M, Lisnic VJ, Arsenijevic N, Jonjic S and Lukic ML:
Deletion of galectin-3 in the host attenuates metastasis of murine
melanoma by modulating tumor adhesion and NK cell activity. Clin
Exp Metastasis. 28:451–462. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kouo T, Huang L, Pucsek AB, Cao M, Solt S,
Armstrong T and Jaffee E: Galectin-3 shapes antitumor immune
responses by suppressing CD8+ T cells via LAG-3 and
inhibiting expansion of plasmacytoid dendritic cells. Cancer
Immunol Res. 3:412–423. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Demotte N, Wieërs G, Van Der Smissen P,
Moser M, Schmidt C, Thielemans K, Squifflet JL, Weynand B, Carrasco
J, Lurquin C, et al: A galectin-3 ligand corrects the impaired
function of human CD4 and CD8 tumor-infiltrating lymphocytes and
favors tumor rejection in mice. Cancer Res. 70:7476–7488. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gordon-Alonso M, Demotte N and van der
Bruggen P: Sugars boost exhausted tumor-infiltrating lymphocytes by
counteracting immunosuppressive activities of galectins.
Oncoimmunology. 3:e287832014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Peng W, Wang HY, Miyahara Y, Peng G and
Wang RF: Tumor-associated galectin-3 modulates the function of
tumor-reactive T cells. Cancer Res. 68:7228–7236. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zubieta MR, Furman D, Barrio M, Bravo AI,
Domenichini E and Mordoh J: Galectin-3 expression correlates with
apoptosis of tumor-associated lymphocytes in human melanoma
biopsies. Am J Pathol. 168:1666–1675. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tsuboi S, Sutoh M, Hatakeyama S, Hiraoka
N, Habuchi T, Horikawa Y, Hashimoto Y, Yoneyama T, Mori K, Koie T,
et al: A novel strategy for evasion of NK cell immunity by tumours
expressing core2 O-glycans. EMBO J. 30:3173–3185. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Suzuki Y, Sutoh M, Hatakeyama S, Mori K,
Yamamoto H, Koie T, Saitoh H, Yamaya K, Funyu T, Habuchi T, et al:
MUC1 carrying core 2 O-glycans functions as a molecular
shield against NK cell attack, promoting bladder tumor metastasis.
Int J Oncol. 40:1831–1838. 2012.PubMed/NCBI
|
|
58
|
Wang W, Guo H, Geng J, Zheng X, Wei H, Sun
R and Tian Z: Tumor-released galectin-3, a soluble inhibitory
ligand of human NKp30, plays an important role in tumor escape from
NK cell attack. J Biol Chem. 289:33311–33319. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Melief SM, Visser M, van der Burg SH and
Verdegaal EME: IDO and galectin-3 hamper the ex vivo generation of
clinical grade tumor-specific T cells for adoptive cell therapy in
metastatic melanoma. Cancer Immunol Immunother. 66:913–926. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Colomb F, Wang W, Simpson D, Zafar M,
Beynon R, Rhodes JM and Yu LG: Galectin-3 interacts with the
cell-surface glycoprotein CD146 (MCAM, MUC18) and induces secretion
of metastasis-promoting cytokines from vascular endothelial cells.
J Biol Chem. 292:8381–8389. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pop VV, Seicean A, Lupan I, Samasca G and
Burz CC: IL-6 roles-molecular pathway and clinical implication in
pancreatic cancer-A systemic review. Immunol Lett. 181:45–50. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Stillman BN, Hsu DK, Pang M, Brewer CF,
Johnson P, Liu FT and Baum LG: Galectin-3 and galectin-1 bind
distinct cell surface glycoprotein receptors to induce T cell
death. J Immunol. 176:778–789. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang RY, Hsu DK and Liu FT: Expression of
galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad
Sci USA. 93:6737–6742. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Haudek KC, Spronk KJ, Voss PG, Patterson
RJ, Wang JL and Arnoys EJ: Dynamics of galectin-3 in the nucleus
and cytoplasm. Biochim Biophys Acta. 1800:181–189. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
van den Brûle F, Califice S and Castronovo
V: Expression of galectins in cancer: A critical review. Glycoconj
J. 19:537–542. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu FT and Rabinovich GA: Galectins as
modulators of tumour progression. Nat Rev Cancer. 5:29–41. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nakahara S, Oka N and Raz A: On the role
of galectin-3 in cancer apoptosis. Apoptosis. 10:267–275. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Honjo Y, Inohara H, Akahani S, Yoshii T,
Takenaka Y, Yoshida J, Hattori K, Tomiyama Y, Raz A and Kubo T:
Expression of cytoplasmic galectin-3 as a prognostic marker in
tongue carcinoma. Clin Cancer Res. 6:4635–4640. 2000.PubMed/NCBI
|
|
69
|
van den Brûle FA, Waltregny D, Liu FT and
Castronovo V: Alteration of the cytoplasmic/nuclear expression
pattern of galectin-3 correlates with prostate carcinoma
progression. Int J Cancer. 89:361–367. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Brown ER, Doig T, Anderson N, Brenn T,
Doherty V, Xu Y, Bartlett JM, Smyth JF and Melton DW: Association
of galectin-3 expression with melanoma progression and prognosis.
Eur J Cancer. 48:865–874. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Califice S, Castronovo V, Bracke M and van
den Brûle F: Dual activities of galectin-3 in human prostate
cancer: Tumor suppression of nuclear galectin-3 vs tumor promotion
of cytoplasmic galectin-3. Oncogene. 23:7527–7536. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dumic J, Dabelic S and Flögel M:
Galectin-3: An open-ended story. Biochim Biophys Acta.
1760:616–635. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Levy R, Biran A, Poirier F, Raz A and
Kloog Y: Galectin-3 mediates cross-talk between K-Ras and Let-7c
tumor suppressor microRNA. PLoS One. 6:e274902011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Song S, Ji B, Ramachandran V, Wang H,
Hafley M, Logsdon C and Bresalier RS: Overexpressed galectin-3 in
pancreatic cancer induces cell proliferation and invasion by
binding Ras and activating Ras signaling. PLoS One. 7:e426992012.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Streetly MJ, Maharaj L, Joel S, Schey SA,
Gribben JG and Cotter FE: GCS-100, a novel galectin-3 antagonist,
modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death.
Blood. 115:3939–3948. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Harazono Y, Nakajima K and Raz A: Why
anti-Bcl-2 clinical trials fail: A solution. Cancer Metastasis Rev.
33:285–294. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Song L, Tang JW, Owusu L, Sun MZ, Wu J and
Zhang J: Galectin-3 in cancer. Clin Chim Acta. 431:185–191. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Prieto VG, Mourad-Zeidan AA, Melnikova V,
Johnson MM, Lopez A, Diwan AH, Lazar AJ, Shen SS, Zhang PS, Reed
JA, et al: Galectin-3 expression is associated with tumor
progression and pattern of sun exposure in melanoma. Clin Cancer
Res. 12:6709–6715. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nangia-Makker P, Honjo Y, Sarvis R,
Akahani S, Hogan V, Pienta KJ and Raz A: Galectin-3 induces
endothelial cell morphogenesis and angiogenesis. Am J Pathol.
156:899–909. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Henderson NC, Mackinnon AC, Farnworth SL,
Poirier F, Russo FP, Iredale JP, Haslett C, Simpson KJ and Sethi T:
Galectin-3 regulates myofibroblast activation and hepatic fibrosis.
Proc Natl Acad Sci USA. 103:5060–5065. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sioud M, Mobergslien A, Boudabous A and
Fløisand Y: Evidence for the involvement of galectin-3 in
mesenchymal stem cell suppression of allogeneic T-cell
proliferation. Scand J Immunol. 71:267–274. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Henderson NC, Mackinnon AC, Farnworth SL,
Kipari T, Haslett C, Iredale JP, Liu FT, Hughes J and Sethi T:
Galectin-3 expression and secretion links macrophages to the
promotion of renal fibrosis. Am J Pathol. 172:288–298. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
O'Driscoll L, Linehan R, Liang YH, Joyce
H, Oglesby I and Clynes M: Galectin-3 expression alters adhesion,
motility and invasion in a lung cell line (DLKP), in vitro.
Anticancer Res. 22:3117–3125. 2002.PubMed/NCBI
|
|
84
|
Melo FH, Butera D, Junqueira Mde S, Hsu
DK, da Silva AM, Liu FT, Santos MF and Chammas R: The promigratory
activity of the matricellular protein galectin-3 depends on the
activation of PI-3 kinase. PLoS One. 6:e293132011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kim SJ, Shin JY, Lee KD, Bae YK, Choi IJ,
Park SH and Chun KH: Galectin-3 facilitates cell motility in
gastric cancer by up-regulating protease-activated receptor-1
(PAR-1) and matrix metalloproteinase-1 (MMP-1). PLoS One.
6:e251032011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hughes RC: Galectins as modulators of cell
adhesion. Biochimie. 83:667–676. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ochieng J, Leite-Browning ML and Warfield
P: Regulation of cellular adhesion to extracellular matrix proteins
by galectin-3. Biochem Biophys Res Commun. 246:788–791. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ochieng J, Warfield P, Green-Jarvis B and
Fentie I: Galectin-3 regulates the adhesive interaction between
breast carcinoma cells and elastin. J Cell Biochem. 75:505–514.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Nangia-Makker P, Balan V and Raz A:
Regulation of tumor progression by extracellular galectin-3. Cancer
Microenviron. 1:43–51. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wu KL, Kuo CM, Huang EY, Pan HM, Huang CC,
Chen YF, Hsiao CC and Yang KD: Extracellular galectin-3 facilitates
colon cancer cell migration and is related to the epidermal growth
factor receptor. Am J Transl Res. 10:24022018.PubMed/NCBI
|
|
91
|
Partridge EA, Le Roy C, Di Guglielmo GM,
Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL and Dennis JW:
Regulation of cytokine receptors by Golgi N-glycan processing and
endocytosis. Science. 306:120–124. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Saeland E, Belo AI, Mongera S, van Die I,
Meijer GA and van Kooyk Y: Differential glycosylation of MUC1 and
CEACAM5 between normal mucosa and tumour tissue of colon cancer
patients. Int J Cancer. 131:117–128. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Markowska AI, Liu FT and Panjwani N:
Galectin-3 is an important mediator of VEGF- and bFGF-mediated
angiogenic response. J Exp Med. 207:1981–1993. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Demotte N, Bigirimana R, Wieërs G,
Stroobant V, Squifflet JL, Carrasco J, Thielemans K, Baurain JF,
Van Der Smissen P, Courtoy PJ and van der Bruggen P: A short
treatment with galactomannan GM-CT-01 corrects the functions of
freshly isolated human tumor-infiltrating lymphocytes. Clin Cancer
Res. 20:1823–1833. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Dong R, Zhang M, Hu Q, Zheng S, Soh A,
Zheng Y and Yuan H: Galectin-3 as a novel biomarker for disease
diagnosis and a target for therapy (Review). Int J Mol Med.
41:599–614. 2018.PubMed/NCBI
|
|
96
|
Traber PG and Zomer E: Therapy of
experimental NASH and fibrosis with galectin inhibitors. PLoS One.
8:e834812013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bayes-Genis A, de Antonio M, Vila J,
Peñafiel J, Galán A, Barallat J, Zamora E, Urrutia A and Lupón J:
Head-to-head comparison of 2 myocardial fibrosis biomarkers for
long-term heart failure risk stratification: ST2 versus galectin-3.
J Am Coll Cardiol. 63:158–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Linch S, Kasiewicz MJ, McNamara M, Hilgart
I, Farhad M and Redmond W: Galectin-3 inhibition using novel
inhibitor GR-MD-02 improves survival and immune function while
reducing tumor vasculature. J Immunother Cancer. 3 (Suppl
2):P3062015. View Article : Google Scholar
|
|
99
|
Courtnay R, Ngo DC, Malik N, Ververis K,
Tortorella SM and Karagiannis TC: Cancer metabolism and the Warburg
effect: The role of HIF-1 and PI3K. Mol Biol Rep. 42:841–851. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Cairns RA, Harris IS and Mak TW:
Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zheng J, Lu W, Wang C, Xing Y, Chen X and
Ai Z: Galectin-3 induced by hypoxia promotes cell migration in
thyroid cancer cells. Oncotarget. 8:101475–101488. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Rinaldi G, Rossi M and Fendt SM: Metabolic
interactions in cancer: Cellular metabolism at the interface
between the microenvironment, the cancer cell phenotype and the
epigenetic landscape. Wiley Interdiscip Rev Syst Biol Med. 10:2018.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Gao X, Balan V, Tai G and Raz A:
Galectin-3 induces cell migration via a calcium-sensitive
MAPK/ERK1/2 pathway. Oncotarget. 5:2077–2084. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Nakahara S and Raz A: Regulation of
cancer-related gene expression by galectin-3 and the molecular
mechanism of its nuclear import pathway. Cancer Metastasis Rev.
26:605–610. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yu F, Finley RL Jr, Raz A and Kim HR:
Galectin-3 translocates to the perinuclear membranes and inhibits
cytochrome c release from the mitochondria. A role for synexin in
galectin-3 translocation. J Biol Chem. 277:15819–15827. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wang D, You D and Li L: Galectin-3
regulates chemotherapy sensitivity in epithelial ovarian carcinoma
via regulating mitochondrial function. J Toxicol Sci. 44:47–56.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Dupont J, Reverchon M, Cloix L, Froment P
and Ramé C: Involvement of adipokines, AMPK, PI3K and the PPAR
signaling pathways in ovarian follicle development and cancer. Int
J Dev Biol. 56:959–967. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wu Y, Sarkissyan M, Mcghee E, Lee S and
Vadgama JV: Combined inhibition of glycolysis and AMPK induces
synergistic breast cancer cell killing. Breast Cancer Res Treat.
151:529–539. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Dos Santos SN, Sheldon H, Pereira JX,
Paluch C, Bridges EM, El-Cheikh MC, Harris AL and Bernardes ES:
Galectin-3 acts as an angiogenic switch to induce tumor
angiogenesis via Jagged-1/Notch activation. Oncotarget.
8:49484–49501. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Dange MC, Agarwal AK and Kalraiya RD:
Extracellular galectin-3 induces MMP9 expression by activating p38
MAPK pathway via lysosome-associated membrane protein-1 (LAMP1).
Mol Cell Biochem. 404:79–86. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Simons AL, Orcutt KP, Madsen JM,
Scarbrough PM and Spitz DR: The role of Akt pathway signaling in
glucose metabolism and metabolic oxidative stress. Oxidative stress
in cancer biology and therapy. Oxidative Stress in Applied Basic
Research and Clinical Practice. Spitz D, Dornfeld K, Krishnan K and
Gius D: Humana Press; Totowa, NJ: pp. 21–46. 2012, http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-1-61779-397-4_2
View Article : Google Scholar
|
|
114
|
Lu H, Forbes RA and Verma A:
Hypoxia-inducible factor 1 activation by aerobic glycolysis
implicates the Warburg effect in carcinogenesis. J Biol Chem.
277:23111–23115. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Manalo DJ, Rowan A, Lavoie T, Natarajan L,
Kelly BD, Ye SQ, Garcia JG and Semenza GL: Transcriptional
regulation of vascular endothelial cell responses to hypoxia by
HIF-1. Blood. 105:659–669. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Minet E, Michel G, Remacle J and Michiels
C: Role of HIF-1 as a transcription factor involved in embryonic
development, cancer progression and apoptosis (Review). Int J Mol
Med. 5:253–262. 2000.PubMed/NCBI
|
|
117
|
Kim JW, Tchernyshyov I, Semenza GL and
Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase
kinase: A metabolic switch required for cellular adaptation to
hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kariya Y, Oyama M, Hashimoto Y, Gu J and
Kariya Y: β4-Integrin/PI3K signaling promotes tumor progression
through the galectin-3-N-glycan complex. Mol Cancer Res.
16:1024–1034. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lippert E, Falk W, Bataille F, Kähne T,
Naumann M, Goeke M, Herfarth H, Schoelmerich J and Rogler G:
Soluble galectin-3 is a strong, colonic epithelial-cell-derived,
lamina propria fibroblast-stimulating factor. Gut. 56:43–51. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia
X, He S, Qiang F, Li A, Shu Y, et al: CHIP functions as a novel
suppressor of tumour angiogenesis with prognostic significance in
human gastric cancer. Gut. 62:496–508. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wilde L, Roche M, Domingo-Vidal M, Tanson
K, Philp N, Curry J and Martinez-Outschoorn U: Metabolic coupling
and the reverse Warburg effect in cancer: Implications for novel
biomarker and anticancer agent development. Semin Oncol.
44:198–203. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Greijer AE, van der Groep P, Kemming D,
Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JA, van
Diest PJ and van der Wall E: Up-regulation of gene expression by
hypoxia is mediated predominantly by hypoxia-inducible factor 1
(HIF-1). J Pathol. 206:291–304. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhao W, Ajani JA, Sushovan G, Ochi N,
Hwang R, Hafley M, Johnson RL, Bresalier RS, Logsdon CD, Zhang Z
and Song S: Galectin-3 mediates tumor cell-stroma interactions by
activating pancreatic stellate cells to produce cytokines via
integrin signaling. Gastroenterology. 154:1524–1537.e6. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
McCubrey JA, Rakus D, Gizak A, Steelman
LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto
G, Cervello M, et al: Effects of mutations in Wnt/β-catenin,
hedgehog, Notch and PI3K pathways on GSK-3 activity-diverse effects
on cell growth, metabolism and cancer. Biochim Biophys Acta.
1863:2942–2976. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Shimura T, Takenaka Y, Tsutsumi S, Hogan
V, Kikuchi A and Raz A: Galectin-3, a novel binding partner of
beta-catenin. Cancer Res. 64:6363–6367. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Liu C, Li Y, Semenov M, Han C, Baeg GH,
Tan Y, Zhang Z, Lin X and He X: Control of beta-catenin
phosphorylation/degradation by a dual-kinase mechanism. Cell.
108:837–847. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Sun S, Schiller JH, Spinola M and Minna
JD: New molecularly targeted therapies for lung cancer. J Clin
Invest. 117:2740–2750. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Yoshimura A, Gemma A, Hosoya Y, Komaki E,
Hosomi Y, Okano T, Takenaka K, Matuda K, Seike M, Uematsu K, et al:
Increased expression of the LGALS3 (galectin 3) gene in human
non-small-cell lung cancer. Genes Chromosomes Cancer. 37:159–164.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Nakayama S, Soejima K, Yasuda H, Yoda S,
Satomi R, Ikemura S, Terai H, Sato T, Yamaguchi N, Hamamoto J, et
al: FOXD1 expression is associated with poor prognosis in non-small
cell lung cancer. Anticancer Res. 35:261–268. 2015.PubMed/NCBI
|
|
130
|
Li CH, Chang YC, Hsiao M and Liang SM:
FOXD1 and Gal-3 form a positive regulatory loop to regulate lung
cancer aggressiveness. Cancers (Basel). 11:18972019. View Article : Google Scholar
|
|
131
|
Kataoka Y, Igarashi T, Ohshio Y, Fujita T
and Hanaoka J: Predictive importance of galectin-3 for recurrence
of non-small cell lung cancer. Gen Thorac Cardiovasc Surg.
67:704–711. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Chung LY, Tang SJ, Wu YC, Sun GH, Liu HY
and Sun KH: Galectin-3 augments tumor initiating property and
tumorigenicity of lung cancer through interaction with β-catenin.
Oncotarget. 6:4936–4952. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Rabinovich GA and Toscano MA: Turning
‘sweet’ on immunity: Galectin-glycan interactions in immune
tolerance and inflammation. Nat Rev Immunol. 9:338–352. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Toscano MA, Bianco GA, Ilarregui JM, Croci
DO, Correale J, Hernandez JD, Zwirner NW, Poirier F, Riley EM, Baum
LG and Rabinovich GA: Differential glycosylation of TH1, TH2 and
TH-17 effector cells selectively regulates susceptibility to cell
death. Nat Immunol. 8:825–834. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
135
|
Demetriou M, Granovsky M, Quaggin S and
Dennis JW: Negative regulation of T-cell activation and
autoimmunity by Mgat5 N-glycosylation. Nature. 409:733–739. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Novak R, Dabelic S and Dumic J: Galectin-1
and galectin-3 expression profiles in classically and alternatively
activated human macrophages. Biochim Biophys Acta. 1820:1383–1390.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Capalbo C, Scafetta G, Filetti M,
Marchetti P and Bartolazzi A: Predictive biomarkers for checkpoint
inhibitor-based immunotherapy: The Galectin-3 signature in NSCLCs.
Int J Mol Sci. 20:16072019. View Article : Google Scholar
|
|
138
|
Gibney GT, Weiner LM and Atkins MB:
Predictive biomarkers for checkpoint inhibitor-based immunotherapy.
Lancet Oncol. 17:e542–e551. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Tang W, Huang C, Tang C, Xu J and Wang H:
Galectin-3 may serve as a potential marker for diagnosis and
prognosis in papillary thyroid carcinoma: A meta-analysis. Onco
Targets Ther. 9:455–460. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Xue G, Liu J, Huang J, Zhang J, Zhang W,
Wu J and Shang X: Detection of galectin-3 in both serum and tissue
for early diagnosis of thyroid carcinoma. Nan Fang Yi Ke Da Xue Xue
Bao. 33:1027–1030. 2013.(In Chinese). PubMed/NCBI
|
|
141
|
Yılmaz E, Karşıdağ T, Tatar C and Tüzün S:
Serum galectin-3: Diagnostic value for papillary thyroid carcinoma.
Ulus Cerrahi Derg. 31:192–196. 2015.PubMed/NCBI
|
|
142
|
Shi RL, Qu N, Liao T, Wang YL, Wang Y, Sun
GH and Ji QH: Expression, clinical significance and mechanism of
Slit2 in papillary thyroid cancer. Int J Oncol. 48:2055–2062. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Shi RL, Qu N, Liao T, Wei WJ, Lu ZW, Ma B,
Wang YL and Ji QH: Relationship of body mass index with BRAF
(V600E) mutation in papillary thyroid cancer. Tumour Biol.
37:8383–8390. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Park YJ, Kim YA, Lee YJ, Kim SH, Park SY,
Kim KW, Chung JK, Youn YK, Kim KH, Park DJ and Cho BY: Papillary
microcarcinoma in comparison with larger papillary thyroid
carcinoma in BRAF(V600E) mutation, clinicopathological features,
and immunohistochemical findings. Head Neck. 32:38–45.
2010.PubMed/NCBI
|
|
145
|
Batistatou A, Charalabopoulos K, Nakanishi
Y, Vagianos C, Hirohashi S, Agnantis NJ and Scopa CD: Differential
expression of dysadherin in papillary thyroid carcinoma and
microcarcinoma: Correlation with E-cadherin. Endocr Pathol.
19:197–202. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Huang L, Wang X, Huang X, Gui H, Li Y,
Chen Q, Liu D and Liu L: Diagnostic significance of CK19,
galectin-3, CD56, TPO and Ki67 expression and BRAF mutation in
papillary thyroid carcinoma. Oncol Lett. 15:4269–4277.
2018.PubMed/NCBI
|
|
147
|
Lu ZZ, Zhang Y, Wei SF, Li DS, Zhu QH, Sun
SJ, Li M and Li LI: Outcome of papillary thyroid microcarcinoma:
Study of 1,990 cases. Mol Clin Oncol. 3:672–676. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Nasr MR, Mukhopadhyay S, Zhang S and
Katzenstein AL: Absence of the BRAF mutation in HBME1+ and
CK19+ atypical cell clusters in Hashimoto thyroiditis: Supportive
evidence against preneoplastic change. Am J Clin Pathol.
132:906–912. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Paz A, Haklai R, Elad-Sfadia G, Ballan E
and Kloog Y: Galectin-1 binds oncogenic H-Ras to mediate Ras
membrane anchorage and cell transformation. Oncogene. 20:7486–7493.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Trent JC II, McConkey DJ, Loughlin SM,
Harbison MT, Fernandez A and Ananthaswamy HN: Ras signaling in
tumor necrosis factor-induced apoptosis. EMBO J. 15:4497–4505.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Crul M, de Klerk GJ, Beijnen JH and
Schellens JH: Ras biochemistry and farnesyl transferase inhibitors:
A literature survey. Anticancer Drugs. 12:163–184. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Adjei AA: Blocking oncogenic Ras signaling
for cancer therapy. J Natl Cancer Inst. 93:1062–1074. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Levy R, Grafi-Cohen M, Kraiem Z and Kloog
Y: Galectin-3 promotes chronic activation of K-Ras and
differentiation block in malignant thyroid carcinomas. Mol Cancer
Ther. 9:2208–2219. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Nangia-Makker P, Conklin J, Hogan V and
Raz A: Carbohydrate-binding proteins in cancer, and their ligands
as therapeutic agents. Trends Mol Med. 8:187–192. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Menachem A, Bodner O, Pastor J, Raz A and
Kloog Y: Inhibition of malignant thyroid carcinoma cell
proliferation by Ras and galectin-3 inhibitors. Cell Death Discov.
1:150472015. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Rosenberg SA, Yannelli JR, Yang JC,
Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA,
Einhorn JH and White DE: Treatment of patients with metastatic
melanoma with autologous tumor-infiltrating lymphocytes and
interleukin 2. J Natl Cancer Inst. 86:1159–1166. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Li ZW, Wang Y, Xue WC, Si L, Cui CL, Cao
DF, Zhou LX, Guo J and Lu AP: Expression and prognostic
significance of galectin-1 and galectin-3 in benign nevi and
melanomas. Zhonghua Bing Li Xue Za Zhi. 42:801–805. 2013.(In
Chinese). PubMed/NCBI
|
|
158
|
Ma XH, Piao SF, Dey S, Mcafee Q,
Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, et al:
Targeting ER stress-induced autophagy overcomes BRAF inhibitor
resistance in melanoma. J Clin Invest. 124:1406–1417. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Villanueva J, Vultur A, Lee JT,
Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu
X, Gimotty PA, Kee D, et al: Acquired resistance to BRAF inhibitors
mediated by a RAF kinase switch in melanoma can be overcome by
cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 18:683–695. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Mourad-Zeidan AA, Melnikova VO, Wang H,
Raz A and Bar-Eli M: Expression profiling of Galectin-3-depleted
melanoma cells reveals its major role in melanoma cell plasticity
and vasculogenic mimicry. Am J Pathol. 173:1839–1852. 2008.
View Article : Google Scholar : PubMed/NCBI
|