Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November-2020 Volume 44 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 44 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review)

  • Authors:
    • Yanan Guo
    • Rong Shen
    • Linghui Yu
    • Xin Zheng
    • Rong Cui
    • Yanfeng Song
    • Degui Wang
  • View Affiliations / Copyright

    Affiliations: School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 73000, P.R. China
  • Pages: 1799-1809
    |
    Published online on: September 22, 2020
       https://doi.org/10.3892/or.2020.7777
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Galectin‑3 is expressed in various tissues and plays an important role in the tumor microenvironment (TME). Galectin‑3 has been found to be overexpressed in a variety of cancers and is associated with tumor progression and metastasis. Over the past decades, emerging evidence has suggested that the TME may induce galectin‑3 expression to maintain cellular homeostasis and promote cell survival. Furthermore, galectin‑3 regulates immune cell function to promote tumor‑driven immunosuppression through several mechanisms. In the TME, intracellular and extracellular galectin‑3 has different functions. In addition, it has been reported that galectin‑3 is associated with glycolysis and mitochondrial metabolism in tumors, and it is involved in the regulation of relevant signaling pathways, thus promoting cancer cell survival via adapting to the TME. The aim of the present review was to summarize the current knowledge on galectin‑3 production and its function in the TME, its effect on TME immunosuppression, its association with tumor metabolism and relevant signaling pathways, and to report common types of cancer in which galectin‑3 is highly expressed, in order to ensure a comprehensive understanding of the critical effects of galectin‑3 on tumor progression and metastasis.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Xue H, Liu L, Zhao Z, Zhang Z, Guan Y, Cheng H, Zhou Y and Tai G: The N-terminal tail coordinates with carbohydrate recognition domain to mediate galectin-3 induced apoptosis in T cells. Oncotarget. 8:49824–49838. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Vereecken P, Debray C, Petein M, Awada A, Lalmand MC, Laporte M, Van Den Heule B, Verhest A and Pochet R: Expression of galectin-3 in primary and metastatic melanoma: Immunohistochemical studies on human lesions and nude mice xenograft tumors. Arch Dermatol Res. 296:353–358. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Newlaczyl AU and Yu LG: Galectin-3-a jack-of-all-trades in cancer. Cancer Lett. 313:123–128. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Li YS, Li XT, Yu LG, Wang L, Shi ZY and Guo XL: Roles of galectin-3 in metabolic disorders and tumor cell metabolism. Int J Biol Macromol. 142:463–473. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP and Pavão MS: Extracellular galectin-3 in tumor progression and metastasis. Front Oncol. 4:1382014. View Article : Google Scholar : PubMed/NCBI

6 

Farhad M, Rolig AS and Redmond WL: The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment. Oncoimmunology. 7:e14344672018. View Article : Google Scholar : PubMed/NCBI

7 

Ahmed H and AlSadek DM: Galectin-3 as a potential target to prevent cancer metastasis. Clin Med Insights Oncol. 9:113–121. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Ahmad N, Gabius HJ, André S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F and Brewer CF: Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem. 279:10841–10847. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Nangia-Makker P, Hogan V and Raz A: Galectin-3 and cancer stemness. Glycobiology. 28:172–181. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Mehul B and Hughes RC: Plasma membrane targetting, vesicular budding and release of galectin 3 from the cytoplasm of mammalian cells during secretion. J Cell Sci. 110:1169–1178. 1997.PubMed/NCBI

11 

Elad-Sfadia G, Haklai R, Balan E and Kloog Y: Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem. 279:34922–34930. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Honjo Y, Nangia-Makker P, Inohara H and Raz A: Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clin Cancer Res. 7:661–668. 2001.PubMed/NCBI

13 

Chen HY, Fermin A, Vardhana S, Weng IC, Lo KF, Chang EY, Maverakis E, Yang RY, Hsu DK, Dustin ML and Liu FT: Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc Natl Acad Sci USA. 106:14496–14501. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Grigorian A and Demetriou M: Manipulating cell surface glycoproteins by targeting n-glycan-galectin interactions. Methods Enzymol. 480:245–266. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR and Rabinovich GA: When galectins recognize glycans: From biochemistry to physiology and back again. Biochemistry. 50:7842–7857. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Sato S and Hughes RC: Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin. J Biol Chem. 267:6983–6990. 1992.PubMed/NCBI

17 

Yamaoka A, Kuwabara I, Frigeri LG and Liu FT: A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol. 154:3479–3487. 1995.PubMed/NCBI

18 

Kuwabara I and Liu FT: Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol. 156:3939–3944. 1996.PubMed/NCBI

19 

Karlsson A, Follin P, Leffler H and Dahlgren C: Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood. 91:3430–3438. 1998. View Article : Google Scholar : PubMed/NCBI

20 

ten Oever J, Giamarellos-Bourboulis EJ, van de Veerdonk FL, Stelma FF, Simon A, Janssen M, Johnson M, Pachot A, Kullberg BJ, Joosten LA and Netea MG: Circulating galectin-3 in infections and non-infectious inflammatory diseases. Eur J Clin Microbiol Infect Dis. 32:1605–1610. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Ruvolo PP: Galectin 3 as a guardian of the tumor microenvironment. Biochim Biophys Acta. 1863:427–437. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Salomonsson E, Carlsson MC, Osla V, Hendus-Altenburger R, Kahl-Knutson B, Oberg CT, Sundin A, Nilsson R, Nordberg-Karlsson E, Nilsson UJ, et al: Mutational tuning of galectin-3 specificity and biological function. J Biol Chem. 285:35079–35091. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Delacour D, Greb C, Koch A, Salomonsson E, Leffler H, Le Bivic A and Jacob R: Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic. 8:379–388. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Anderson KG, Stromnes IM and Greenberg PD: Obstacles posed by the tumor microenvironment to T cell activity: A case for synergistic therapies. Cancer Cell. 31:311–325. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Gordon-Alonso M, Hirsch T, Wildmann C and van der Bruggen P: Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration. Nat Commun. 8:7932017. View Article : Google Scholar : PubMed/NCBI

26 

de Oliveira JT, Ribeiro C, Barros R, Gomes C, de Matos AJ, Reis CA, Rutteman GR and Gärtner F: Hypoxia up-regulates galectin-3 in mammary tumor progression and metastasis. PLoS One. 10:e01344582015. View Article : Google Scholar : PubMed/NCBI

27 

Sun W, Li L, Li LJ, Yang QQ, Zhang ZR and Huang Y: Two birds, one stone: Dual targeting of the cancer cell surface and subcellular mitochondria by the galectin-3-binding peptide G3-C12. Acta Pharmacol Sin. 38:806–822. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Bacchi PS, Bloise AC, Bustos SO, Zimmermann L, Chammas R and Rabbani SR: Metabolism under hypoxia in Tm1 murine melanoma cells is affected by the presence of galectin-3, a metabolomics approach. Springerplus. 3:4702014. View Article : Google Scholar : PubMed/NCBI

29 

Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Milovanovic MZ, Nikolic IG, Zdravkovic NS, Djukic AL, Arsenijevic NN and Lukic ML: Galectin-3 deficiency accelerates high-fat diet-induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes. 62:1932–1944. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Yu F, Finley RL Jr, Raz A and Kim HR: Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem. 277:15819–15827. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB and Ricci A: Galectin-3: One molecule for an alphabet of diseases, from A to Z. Int J Mol Sci. 19:3792018. View Article : Google Scholar

32 

Cardoso AC, Andrade LN, Bustos SO and Chammas R: Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front Oncol. 6:1272016. View Article : Google Scholar : PubMed/NCBI

33 

Lee YK, Lin TH, Chang CF and Lo YL: Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3 β modulation in colorectal carcinoma. PLoS One. 8:e824782013. View Article : Google Scholar : PubMed/NCBI

34 

Fei F, Joo EJ, Tarighat SS, Schiffer I, Paz H, Fabbri M, Abdel-Azim H, Groffen J and Heisterkamp N: B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through galectin-3. Oncotarget. 6:11378–11394. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Yamamoto-Sugitani M, Kuroda J, Ashihara E, Nagoshi H, Kobayashi T, Matsumoto Y, Sasaki N, Shimura Y, Kiyota M, Nakayama R, et al: Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia. Proc Natl Acad Sci USA. 108:17468–17473. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Silverman AM, Nakata R, Shimada H, Sposto R and DeClerck YA: A galectin-3-dependent pathway upregulates interleukin-6 in the microenvironment of human neuroblastoma. Cancer Res. 72:2228–2238. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Nakayama R, Kuroda J, Taniyama N, Yamamoto-Sugitani M, Wada S, Kiyota M, Mizutani S, Chinen Y, Matsumoto Y, Nagoshi H, et al: Suppression of SERPINA1-albumin complex formation by galectin-3 overexpression leads to paracrine growth promotion of chronic myelogenous leukemia cells. Leuk Res. 38:103–108. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Ruvolo PP, Ruvolo VR, Burks JK, Qiu Y, Wang RY, Shpall EJ, Mirandola L, Hail N Jr, Zeng Z, McQueen T, et al: Role of MSC-derived galectin 3 in the AML microenvironment. Biochim Biophys Acta Mol Cell Res. 1865:959–969. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K, Hung MC and Bresalier RS: Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res. 69:1343–1349. 2009. View Article : Google Scholar : PubMed/NCBI

40 

McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Basecke J, Libra M, Nicoletti F, Cocco L, Martelli AM and Steelman LS: Diverse roles of GSK-3: Tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol Regul. 54:176–196. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Hermida MA, Dinesh Kumar J and Leslie NR: GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul. 65:5–15. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M and Tafuri A: Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul. 65:36–58. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Ruvolo PP: GSK-3 as a novel prognostic indicator in leukemia. Adv Biol Regul. 65:26–35. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Krause S, Pfeiffer C, Strube S, Alsadeq A, Fedders H, Vokuhl C, Loges S, Waizenegger J, Ben-Batalla I, Cario G, et al: Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS). Blood. 125:820–830. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Zeng Y, Danielson KG, Albert TJ, Shapiro IM and Risbud MV: HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc. J Bone Miner Res. 22:1851–1861. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Neder L, Marie SK, Carlotti CG Jr, Gabbai AA, Rosemberg S, Malheiros SM, Siqueira RP, Oba-Shinjo SM, Uno M, Aguiar PH, et al: Galectin-3 as an immunohistochemical tool to distinguish pilocytic astrocytomas from diffuse astrocytomas, and glioblastomas from anaplastic oligodendrogliomas. Brain Pathol. 14:399–405. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Rêgo MJ, Vieira de Mello GS, da Silva Santos CA, Chammas R and Beltrão EI: Implications on glycobiological aspects of tumor hypoxia in breast ductal carcinoma in situ. Med Mol Morphol. 46:92–96. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Ikemori RY, Machado CM, Furuzawa KM, Nonogaki S, Osinaga E, Umezawa K, de Carvalho MA, Verinaud L and Chammas R: Galectin-3 up-regulation in hypoxic and nutrient deprived microenvironments promotes cell survival. PLoS One. 9:e1115922014. View Article : Google Scholar : PubMed/NCBI

49 

Liu L, Sakai T, Sano N and Fukui K: Nucling mediates apoptosis by inhibiting expression of galectin-3 through interference with nuclear factor kappaB signalling. Biochem J. 380:31–41. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Radosavljevic G, Jovanovic I, Majstorovic I, Mitrovic M, Lisnic VJ, Arsenijevic N, Jonjic S and Lukic ML: Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity. Clin Exp Metastasis. 28:451–462. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T and Jaffee E: Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res. 3:412–423. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K, Squifflet JL, Weynand B, Carrasco J, Lurquin C, et al: A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res. 70:7476–7488. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Gordon-Alonso M, Demotte N and van der Bruggen P: Sugars boost exhausted tumor-infiltrating lymphocytes by counteracting immunosuppressive activities of galectins. Oncoimmunology. 3:e287832014. View Article : Google Scholar : PubMed/NCBI

54 

Peng W, Wang HY, Miyahara Y, Peng G and Wang RF: Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res. 68:7228–7236. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Zubieta MR, Furman D, Barrio M, Bravo AI, Domenichini E and Mordoh J: Galectin-3 expression correlates with apoptosis of tumor-associated lymphocytes in human melanoma biopsies. Am J Pathol. 168:1666–1675. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Tsuboi S, Sutoh M, Hatakeyama S, Hiraoka N, Habuchi T, Horikawa Y, Hashimoto Y, Yoneyama T, Mori K, Koie T, et al: A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans. EMBO J. 30:3173–3185. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Suzuki Y, Sutoh M, Hatakeyama S, Mori K, Yamamoto H, Koie T, Saitoh H, Yamaya K, Funyu T, Habuchi T, et al: MUC1 carrying core 2 O-glycans functions as a molecular shield against NK cell attack, promoting bladder tumor metastasis. Int J Oncol. 40:1831–1838. 2012.PubMed/NCBI

58 

Wang W, Guo H, Geng J, Zheng X, Wei H, Sun R and Tian Z: Tumor-released galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J Biol Chem. 289:33311–33319. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Melief SM, Visser M, van der Burg SH and Verdegaal EME: IDO and galectin-3 hamper the ex vivo generation of clinical grade tumor-specific T cells for adoptive cell therapy in metastatic melanoma. Cancer Immunol Immunother. 66:913–926. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Colomb F, Wang W, Simpson D, Zafar M, Beynon R, Rhodes JM and Yu LG: Galectin-3 interacts with the cell-surface glycoprotein CD146 (MCAM, MUC18) and induces secretion of metastasis-promoting cytokines from vascular endothelial cells. J Biol Chem. 292:8381–8389. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Pop VV, Seicean A, Lupan I, Samasca G and Burz CC: IL-6 roles-molecular pathway and clinical implication in pancreatic cancer-A systemic review. Immunol Lett. 181:45–50. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT and Baum LG: Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol. 176:778–789. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Yang RY, Hsu DK and Liu FT: Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci USA. 93:6737–6742. 1996. View Article : Google Scholar : PubMed/NCBI

64 

Haudek KC, Spronk KJ, Voss PG, Patterson RJ, Wang JL and Arnoys EJ: Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim Biophys Acta. 1800:181–189. 2010. View Article : Google Scholar : PubMed/NCBI

65 

van den Brûle F, Califice S and Castronovo V: Expression of galectins in cancer: A critical review. Glycoconj J. 19:537–542. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Liu FT and Rabinovich GA: Galectins as modulators of tumour progression. Nat Rev Cancer. 5:29–41. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Nakahara S, Oka N and Raz A: On the role of galectin-3 in cancer apoptosis. Apoptosis. 10:267–275. 2005. View Article : Google Scholar : PubMed/NCBI

68 

Honjo Y, Inohara H, Akahani S, Yoshii T, Takenaka Y, Yoshida J, Hattori K, Tomiyama Y, Raz A and Kubo T: Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res. 6:4635–4640. 2000.PubMed/NCBI

69 

van den Brûle FA, Waltregny D, Liu FT and Castronovo V: Alteration of the cytoplasmic/nuclear expression pattern of galectin-3 correlates with prostate carcinoma progression. Int J Cancer. 89:361–367. 2000. View Article : Google Scholar : PubMed/NCBI

70 

Brown ER, Doig T, Anderson N, Brenn T, Doherty V, Xu Y, Bartlett JM, Smyth JF and Melton DW: Association of galectin-3 expression with melanoma progression and prognosis. Eur J Cancer. 48:865–874. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Califice S, Castronovo V, Bracke M and van den Brûle F: Dual activities of galectin-3 in human prostate cancer: Tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene. 23:7527–7536. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Dumic J, Dabelic S and Flögel M: Galectin-3: An open-ended story. Biochim Biophys Acta. 1760:616–635. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Levy R, Biran A, Poirier F, Raz A and Kloog Y: Galectin-3 mediates cross-talk between K-Ras and Let-7c tumor suppressor microRNA. PLoS One. 6:e274902011. View Article : Google Scholar : PubMed/NCBI

74 

Song S, Ji B, Ramachandran V, Wang H, Hafley M, Logsdon C and Bresalier RS: Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling. PLoS One. 7:e426992012. View Article : Google Scholar : PubMed/NCBI

75 

Streetly MJ, Maharaj L, Joel S, Schey SA, Gribben JG and Cotter FE: GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood. 115:3939–3948. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Harazono Y, Nakajima K and Raz A: Why anti-Bcl-2 clinical trials fail: A solution. Cancer Metastasis Rev. 33:285–294. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Song L, Tang JW, Owusu L, Sun MZ, Wu J and Zhang J: Galectin-3 in cancer. Clin Chim Acta. 431:185–191. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Prieto VG, Mourad-Zeidan AA, Melnikova V, Johnson MM, Lopez A, Diwan AH, Lazar AJ, Shen SS, Zhang PS, Reed JA, et al: Galectin-3 expression is associated with tumor progression and pattern of sun exposure in melanoma. Clin Cancer Res. 12:6709–6715. 2006. View Article : Google Scholar : PubMed/NCBI

79 

Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ and Raz A: Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 156:899–909. 2000. View Article : Google Scholar : PubMed/NCBI

80 

Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, Haslett C, Simpson KJ and Sethi T: Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci USA. 103:5060–5065. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Sioud M, Mobergslien A, Boudabous A and Fløisand Y: Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol. 71:267–274. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, Liu FT, Hughes J and Sethi T: Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 172:288–298. 2008. View Article : Google Scholar : PubMed/NCBI

83 

O'Driscoll L, Linehan R, Liang YH, Joyce H, Oglesby I and Clynes M: Galectin-3 expression alters adhesion, motility and invasion in a lung cell line (DLKP), in vitro. Anticancer Res. 22:3117–3125. 2002.PubMed/NCBI

84 

Melo FH, Butera D, Junqueira Mde S, Hsu DK, da Silva AM, Liu FT, Santos MF and Chammas R: The promigratory activity of the matricellular protein galectin-3 depends on the activation of PI-3 kinase. PLoS One. 6:e293132011. View Article : Google Scholar : PubMed/NCBI

85 

Kim SJ, Shin JY, Lee KD, Bae YK, Choi IJ, Park SH and Chun KH: Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1). PLoS One. 6:e251032011. View Article : Google Scholar : PubMed/NCBI

86 

Hughes RC: Galectins as modulators of cell adhesion. Biochimie. 83:667–676. 2001. View Article : Google Scholar : PubMed/NCBI

87 

Ochieng J, Leite-Browning ML and Warfield P: Regulation of cellular adhesion to extracellular matrix proteins by galectin-3. Biochem Biophys Res Commun. 246:788–791. 1998. View Article : Google Scholar : PubMed/NCBI

88 

Ochieng J, Warfield P, Green-Jarvis B and Fentie I: Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin. J Cell Biochem. 75:505–514. 1999. View Article : Google Scholar : PubMed/NCBI

89 

Nangia-Makker P, Balan V and Raz A: Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron. 1:43–51. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Wu KL, Kuo CM, Huang EY, Pan HM, Huang CC, Chen YF, Hsiao CC and Yang KD: Extracellular galectin-3 facilitates colon cancer cell migration and is related to the epidermal growth factor receptor. Am J Transl Res. 10:24022018.PubMed/NCBI

91 

Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL and Dennis JW: Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science. 306:120–124. 2004. View Article : Google Scholar : PubMed/NCBI

92 

Saeland E, Belo AI, Mongera S, van Die I, Meijer GA and van Kooyk Y: Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int J Cancer. 131:117–128. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Markowska AI, Liu FT and Panjwani N: Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med. 207:1981–1993. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Demotte N, Bigirimana R, Wieërs G, Stroobant V, Squifflet JL, Carrasco J, Thielemans K, Baurain JF, Van Der Smissen P, Courtoy PJ and van der Bruggen P: A short treatment with galactomannan GM-CT-01 corrects the functions of freshly isolated human tumor-infiltrating lymphocytes. Clin Cancer Res. 20:1823–1833. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Dong R, Zhang M, Hu Q, Zheng S, Soh A, Zheng Y and Yuan H: Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int J Mol Med. 41:599–614. 2018.PubMed/NCBI

96 

Traber PG and Zomer E: Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One. 8:e834812013. View Article : Google Scholar : PubMed/NCBI

97 

Bayes-Genis A, de Antonio M, Vila J, Peñafiel J, Galán A, Barallat J, Zamora E, Urrutia A and Lupón J: Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. J Am Coll Cardiol. 63:158–166. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Linch S, Kasiewicz MJ, McNamara M, Hilgart I, Farhad M and Redmond W: Galectin-3 inhibition using novel inhibitor GR-MD-02 improves survival and immune function while reducing tumor vasculature. J Immunother Cancer. 3 (Suppl 2):P3062015. View Article : Google Scholar

99 

Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM and Karagiannis TC: Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Mol Biol Rep. 42:841–851. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Zheng J, Lu W, Wang C, Xing Y, Chen X and Ai Z: Galectin-3 induced by hypoxia promotes cell migration in thyroid cancer cells. Oncotarget. 8:101475–101488. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Rinaldi G, Rossi M and Fendt SM: Metabolic interactions in cancer: Cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip Rev Syst Biol Med. 10:2018. View Article : Google Scholar : PubMed/NCBI

104 

Gao X, Balan V, Tai G and Raz A: Galectin-3 induces cell migration via a calcium-sensitive MAPK/ERK1/2 pathway. Oncotarget. 5:2077–2084. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Nakahara S and Raz A: Regulation of cancer-related gene expression by galectin-3 and the molecular mechanism of its nuclear import pathway. Cancer Metastasis Rev. 26:605–610. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Yu F, Finley RL Jr, Raz A and Kim HR: Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem. 277:15819–15827. 2002. View Article : Google Scholar : PubMed/NCBI

108 

Wang D, You D and Li L: Galectin-3 regulates chemotherapy sensitivity in epithelial ovarian carcinoma via regulating mitochondrial function. J Toxicol Sci. 44:47–56. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Dupont J, Reverchon M, Cloix L, Froment P and Ramé C: Involvement of adipokines, AMPK, PI3K and the PPAR signaling pathways in ovarian follicle development and cancer. Int J Dev Biol. 56:959–967. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Wu Y, Sarkissyan M, Mcghee E, Lee S and Vadgama JV: Combined inhibition of glycolysis and AMPK induces synergistic breast cancer cell killing. Breast Cancer Res Treat. 151:529–539. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Dos Santos SN, Sheldon H, Pereira JX, Paluch C, Bridges EM, El-Cheikh MC, Harris AL and Bernardes ES: Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation. Oncotarget. 8:49484–49501. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Dange MC, Agarwal AK and Kalraiya RD: Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Mol Cell Biochem. 404:79–86. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Simons AL, Orcutt KP, Madsen JM, Scarbrough PM and Spitz DR: The role of Akt pathway signaling in glucose metabolism and metabolic oxidative stress. Oxidative stress in cancer biology and therapy. Oxidative Stress in Applied Basic Research and Clinical Practice. Spitz D, Dornfeld K, Krishnan K and Gius D: Humana Press; Totowa, NJ: pp. 21–46. 2012, http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-1-61779-397-4_2 View Article : Google Scholar

114 

Lu H, Forbes RA and Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 277:23111–23115. 2002. View Article : Google Scholar : PubMed/NCBI

115 

Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG and Semenza GL: Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 105:659–669. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Minet E, Michel G, Remacle J and Michiels C: Role of HIF-1 as a transcription factor involved in embryonic development, cancer progression and apoptosis (Review). Int J Mol Med. 5:253–262. 2000.PubMed/NCBI

117 

Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI

118 

Kariya Y, Oyama M, Hashimoto Y, Gu J and Kariya Y: β4-Integrin/PI3K signaling promotes tumor progression through the galectin-3-N-glycan complex. Mol Cancer Res. 16:1024–1034. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Lippert E, Falk W, Bataille F, Kähne T, Naumann M, Goeke M, Herfarth H, Schoelmerich J and Rogler G: Soluble galectin-3 is a strong, colonic epithelial-cell-derived, lamina propria fibroblast-stimulating factor. Gut. 56:43–51. 2007. View Article : Google Scholar : PubMed/NCBI

120 

Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia X, He S, Qiang F, Li A, Shu Y, et al: CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut. 62:496–508. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J and Martinez-Outschoorn U: Metabolic coupling and the reverse Warburg effect in cancer: Implications for novel biomarker and anticancer agent development. Semin Oncol. 44:198–203. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JA, van Diest PJ and van der Wall E: Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol. 206:291–304. 2005. View Article : Google Scholar : PubMed/NCBI

123 

Zhao W, Ajani JA, Sushovan G, Ochi N, Hwang R, Hafley M, Johnson RL, Bresalier RS, Logsdon CD, Zhang Z and Song S: Galectin-3 mediates tumor cell-stroma interactions by activating pancreatic stellate cells to produce cytokines via integrin signaling. Gastroenterology. 154:1524–1537.e6. 2018. View Article : Google Scholar : PubMed/NCBI

124 

McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, et al: Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-diverse effects on cell growth, metabolism and cancer. Biochim Biophys Acta. 1863:2942–2976. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Shimura T, Takenaka Y, Tsutsumi S, Hogan V, Kikuchi A and Raz A: Galectin-3, a novel binding partner of beta-catenin. Cancer Res. 64:6363–6367. 2004. View Article : Google Scholar : PubMed/NCBI

126 

Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X and He X: Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 108:837–847. 2002. View Article : Google Scholar : PubMed/NCBI

127 

Sun S, Schiller JH, Spinola M and Minna JD: New molecularly targeted therapies for lung cancer. J Clin Invest. 117:2740–2750. 2007. View Article : Google Scholar : PubMed/NCBI

128 

Yoshimura A, Gemma A, Hosoya Y, Komaki E, Hosomi Y, Okano T, Takenaka K, Matuda K, Seike M, Uematsu K, et al: Increased expression of the LGALS3 (galectin 3) gene in human non-small-cell lung cancer. Genes Chromosomes Cancer. 37:159–164. 2003. View Article : Google Scholar : PubMed/NCBI

129 

Nakayama S, Soejima K, Yasuda H, Yoda S, Satomi R, Ikemura S, Terai H, Sato T, Yamaguchi N, Hamamoto J, et al: FOXD1 expression is associated with poor prognosis in non-small cell lung cancer. Anticancer Res. 35:261–268. 2015.PubMed/NCBI

130 

Li CH, Chang YC, Hsiao M and Liang SM: FOXD1 and Gal-3 form a positive regulatory loop to regulate lung cancer aggressiveness. Cancers (Basel). 11:18972019. View Article : Google Scholar

131 

Kataoka Y, Igarashi T, Ohshio Y, Fujita T and Hanaoka J: Predictive importance of galectin-3 for recurrence of non-small cell lung cancer. Gen Thorac Cardiovasc Surg. 67:704–711. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Chung LY, Tang SJ, Wu YC, Sun GH, Liu HY and Sun KH: Galectin-3 augments tumor initiating property and tumorigenicity of lung cancer through interaction with β-catenin. Oncotarget. 6:4936–4952. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Rabinovich GA and Toscano MA: Turning ‘sweet’ on immunity: Galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol. 9:338–352. 2009. View Article : Google Scholar : PubMed/NCBI

134 

Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J, Hernandez JD, Zwirner NW, Poirier F, Riley EM, Baum LG and Rabinovich GA: Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol. 8:825–834. 2007. View Article : Google Scholar : PubMed/NCBI

135 

Demetriou M, Granovsky M, Quaggin S and Dennis JW: Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature. 409:733–739. 2001. View Article : Google Scholar : PubMed/NCBI

136 

Novak R, Dabelic S and Dumic J: Galectin-1 and galectin-3 expression profiles in classically and alternatively activated human macrophages. Biochim Biophys Acta. 1820:1383–1390. 2012. View Article : Google Scholar : PubMed/NCBI

137 

Capalbo C, Scafetta G, Filetti M, Marchetti P and Bartolazzi A: Predictive biomarkers for checkpoint inhibitor-based immunotherapy: The Galectin-3 signature in NSCLCs. Int J Mol Sci. 20:16072019. View Article : Google Scholar

138 

Gibney GT, Weiner LM and Atkins MB: Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17:e542–e551. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Tang W, Huang C, Tang C, Xu J and Wang H: Galectin-3 may serve as a potential marker for diagnosis and prognosis in papillary thyroid carcinoma: A meta-analysis. Onco Targets Ther. 9:455–460. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Xue G, Liu J, Huang J, Zhang J, Zhang W, Wu J and Shang X: Detection of galectin-3 in both serum and tissue for early diagnosis of thyroid carcinoma. Nan Fang Yi Ke Da Xue Xue Bao. 33:1027–1030. 2013.(In Chinese). PubMed/NCBI

141 

Yılmaz E, Karşıdağ T, Tatar C and Tüzün S: Serum galectin-3: Diagnostic value for papillary thyroid carcinoma. Ulus Cerrahi Derg. 31:192–196. 2015.PubMed/NCBI

142 

Shi RL, Qu N, Liao T, Wang YL, Wang Y, Sun GH and Ji QH: Expression, clinical significance and mechanism of Slit2 in papillary thyroid cancer. Int J Oncol. 48:2055–2062. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Shi RL, Qu N, Liao T, Wei WJ, Lu ZW, Ma B, Wang YL and Ji QH: Relationship of body mass index with BRAF (V600E) mutation in papillary thyroid cancer. Tumour Biol. 37:8383–8390. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Park YJ, Kim YA, Lee YJ, Kim SH, Park SY, Kim KW, Chung JK, Youn YK, Kim KH, Park DJ and Cho BY: Papillary microcarcinoma in comparison with larger papillary thyroid carcinoma in BRAF(V600E) mutation, clinicopathological features, and immunohistochemical findings. Head Neck. 32:38–45. 2010.PubMed/NCBI

145 

Batistatou A, Charalabopoulos K, Nakanishi Y, Vagianos C, Hirohashi S, Agnantis NJ and Scopa CD: Differential expression of dysadherin in papillary thyroid carcinoma and microcarcinoma: Correlation with E-cadherin. Endocr Pathol. 19:197–202. 2008. View Article : Google Scholar : PubMed/NCBI

146 

Huang L, Wang X, Huang X, Gui H, Li Y, Chen Q, Liu D and Liu L: Diagnostic significance of CK19, galectin-3, CD56, TPO and Ki67 expression and BRAF mutation in papillary thyroid carcinoma. Oncol Lett. 15:4269–4277. 2018.PubMed/NCBI

147 

Lu ZZ, Zhang Y, Wei SF, Li DS, Zhu QH, Sun SJ, Li M and Li LI: Outcome of papillary thyroid microcarcinoma: Study of 1,990 cases. Mol Clin Oncol. 3:672–676. 2015. View Article : Google Scholar : PubMed/NCBI

148 

Nasr MR, Mukhopadhyay S, Zhang S and Katzenstein AL: Absence of the BRAF mutation in HBME1+ and CK19+ atypical cell clusters in Hashimoto thyroiditis: Supportive evidence against preneoplastic change. Am J Clin Pathol. 132:906–912. 2009. View Article : Google Scholar : PubMed/NCBI

149 

Paz A, Haklai R, Elad-Sfadia G, Ballan E and Kloog Y: Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene. 20:7486–7493. 2001. View Article : Google Scholar : PubMed/NCBI

150 

Trent JC II, McConkey DJ, Loughlin SM, Harbison MT, Fernandez A and Ananthaswamy HN: Ras signaling in tumor necrosis factor-induced apoptosis. EMBO J. 15:4497–4505. 1996. View Article : Google Scholar : PubMed/NCBI

151 

Crul M, de Klerk GJ, Beijnen JH and Schellens JH: Ras biochemistry and farnesyl transferase inhibitors: A literature survey. Anticancer Drugs. 12:163–184. 2001. View Article : Google Scholar : PubMed/NCBI

152 

Adjei AA: Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst. 93:1062–1074. 2001. View Article : Google Scholar : PubMed/NCBI

153 

Levy R, Grafi-Cohen M, Kraiem Z and Kloog Y: Galectin-3 promotes chronic activation of K-Ras and differentiation block in malignant thyroid carcinomas. Mol Cancer Ther. 9:2208–2219. 2010. View Article : Google Scholar : PubMed/NCBI

154 

Nangia-Makker P, Conklin J, Hogan V and Raz A: Carbohydrate-binding proteins in cancer, and their ligands as therapeutic agents. Trends Mol Med. 8:187–192. 2002. View Article : Google Scholar : PubMed/NCBI

155 

Menachem A, Bodner O, Pastor J, Raz A and Kloog Y: Inhibition of malignant thyroid carcinoma cell proliferation by Ras and galectin-3 inhibitors. Cell Death Discov. 1:150472015. View Article : Google Scholar : PubMed/NCBI

156 

Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH and White DE: Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 86:1159–1166. 1994. View Article : Google Scholar : PubMed/NCBI

157 

Li ZW, Wang Y, Xue WC, Si L, Cui CL, Cao DF, Zhou LX, Guo J and Lu AP: Expression and prognostic significance of galectin-1 and galectin-3 in benign nevi and melanomas. Zhonghua Bing Li Xue Za Zhi. 42:801–805. 2013.(In Chinese). PubMed/NCBI

158 

Ma XH, Piao SF, Dey S, Mcafee Q, Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, et al: Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest. 124:1406–1417. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, et al: Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 18:683–695. 2010. View Article : Google Scholar : PubMed/NCBI

160 

Mourad-Zeidan AA, Melnikova VO, Wang H, Raz A and Bar-Eli M: Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry. Am J Pathol. 173:1839–1852. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guo Y, Shen R, Yu L, Zheng X, Cui R, Song Y and Wang D: Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review). Oncol Rep 44: 1799-1809, 2020.
APA
Guo, Y., Shen, R., Yu, L., Zheng, X., Cui, R., Song, Y., & Wang, D. (2020). Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review). Oncology Reports, 44, 1799-1809. https://doi.org/10.3892/or.2020.7777
MLA
Guo, Y., Shen, R., Yu, L., Zheng, X., Cui, R., Song, Y., Wang, D."Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review)". Oncology Reports 44.5 (2020): 1799-1809.
Chicago
Guo, Y., Shen, R., Yu, L., Zheng, X., Cui, R., Song, Y., Wang, D."Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review)". Oncology Reports 44, no. 5 (2020): 1799-1809. https://doi.org/10.3892/or.2020.7777
Copy and paste a formatted citation
x
Spandidos Publications style
Guo Y, Shen R, Yu L, Zheng X, Cui R, Song Y and Wang D: Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review). Oncol Rep 44: 1799-1809, 2020.
APA
Guo, Y., Shen, R., Yu, L., Zheng, X., Cui, R., Song, Y., & Wang, D. (2020). Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review). Oncology Reports, 44, 1799-1809. https://doi.org/10.3892/or.2020.7777
MLA
Guo, Y., Shen, R., Yu, L., Zheng, X., Cui, R., Song, Y., Wang, D."Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review)". Oncology Reports 44.5 (2020): 1799-1809.
Chicago
Guo, Y., Shen, R., Yu, L., Zheng, X., Cui, R., Song, Y., Wang, D."Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review)". Oncology Reports 44, no. 5 (2020): 1799-1809. https://doi.org/10.3892/or.2020.7777
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team