Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2020 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer (Review)

  • Authors:
    • Macrina B. Silva‑Cázares
    • María Z. Saavedra‑Leos
    • Euclides Jordan‑Alejandre
    • Stephanie I. Nuñez‑Olvera
    • Isaac Cómpean‑Martínez
    • César López‑Camarillo
  • View Affiliations / Copyright

    Affiliations: Institutional Doctorate in Engineering and Matherials Science, Autonomous University of San Luis Potosí, San Luis Potosí 78760, México, Oncogenomics Laboratory, Autonomous University of México City, México City 03100, México
  • Pages: 2353-2363
    |
    Published online on: October 5, 2020
       https://doi.org/10.3892/or.2020.7791
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer is the most common type of cancer with the highest morbidity and mortality rates in women worldwide. Recent efforts to improve the current antitumor therapies have led to the development of novel treatment approaches based on the delivery of therapeutic non‑coding RNAs (ncRNAs) using nanotechnology. Treatment methods using lipid‑based nanoparticles (LBNPs) have greatly improved the delivery efficiency of ncRNAs into tumor cells and tissues. This type of delivery approach has provided significant advantages, such as reduced therapeutic doses, lower cytotoxicity to normal cells and the ability to reverse resistance to chemotherapy. LBNPs have demonstrated the ability to deliver therapeutic ncRNAs, more specifically microRNAs (miRNAs) and small interfering RNAs (siRNAs); this has been reported modulate the expression levels of oncogenes and tumor suppressor genes involved in several biological processes, including cell growth and proliferation, cell death, invasion and metastasis, thus impairing the malignant behavior of tumors. Therefore, ncRNA‑based therapies combined with the LBNP delivery strategy, namely nanomiRNAs, may represent a promising antitumor strategy guaranteeing superior biocompatibility, higher biodegradability, lower immunogenicity and decreased toxicity to normal cells compared with other therapeutic approaches. The present review summarized the current knowledge of the application of LBNPs for delivering miRNAs and siRNAs in breast cancer cells and mouse models, in addition to discussing their promising antitumor effects.
View Figures

Figure 1

View References

1 

Cavallo F, Giovanni C, Nanni P, Forni G and Lollini PL: 2011: The immune hallmarks of cancer. Cancer Immunol Immunother. 60:319–326. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, Henley SJ, Anderson RN, Firth AU, Ma J, et al: Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer. 124:2785–2800. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Breast Cancer Treatment|Treatment Options for Breast Cancer.

5 

Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL and Siegel RL: Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 69:363–385. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

7 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Yingchoncharoen P, Kalinowski DS and Des Richardson R: Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol Rev. 68:701–787. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Mudshinge SR, Deore AB, Patil S and Bhalgat CM: Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J. 19:129–141. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Del Pozo-Rodríguez A, Solinís MÁ and Rodríguez-Gascón A: Applications of lipid nanoparticles in gene therapy. Eur J Pharm Biopharm. 109:184–193. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Hashemi M and Kalalinia F: Application of encapsulation technology in stem cell therapy. Life Sci. 143:139–146. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Aagaard L and Rossi JJ: RNAi therapeutics: Principles, prospects and challenges. Adv Drug Deliv Rev. 59:75–86. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Chen G, Wang Y, Xie R and Gong S: Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. J Control Release. 259:105–114. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, Xiao X, Yang Y, Sheng W, Wu Y and Zeng Y: Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials. 35:4333–4344. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Hogrefe RI, Lebedev AV, Zon G, Pirollo KF, Rait A, Zhou Q, Yu W and Chang EH: Chemically modified short interfering hybrids (siHYBRIDS): Nanoimmunoliposome delivery in vitro and in vivo for RNAi of HER-2. Nucleosides Nucleotides Nucleic Acids. 25:889–907. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Shu D, Li H, Shu Y, Xiong G, Carson WE III, Haque F, Xu R and Guo P: Systemic delivery of Anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano. 9:9731–9740. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Urban-Klein B, Werth S, Abuharbeid S, Czubayko F and Aigner A: RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12:461–466. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Yhee JY, Song S, Lee SJ, Park SG, Kim KS, Kim MG, Son S, Koo H, Kwon IC, Jeong JH, et al: Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. J Control Release. 198:1–9. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Guo P, You JO, Yang J, Di J, Moses MA and Auguste DT: Inhibiting metastatic breast cancer cell migration via the synergy of targeted, pH-triggered siRNA delivery and chemokine axis blockade. Mol Pharm. 11:755–765. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Reichmuth AM, Oberli MA, Jaklenec A, Langer R and Blankschtein D: mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 7:319–334. 2016. View Article : Google Scholar : PubMed/NCBI

21 

de la Harpe K, Kondiah P, Choonara Y, Marimuthu T, du Toit L and Pillay V: The hemocompatibility of nanoparticles: A review of cell-nanoparticle interactions and hemostasis. Cells. 8:12092019. View Article : Google Scholar

22 

Buzea C, Pacheco II and Robbie K: Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2:MR17–MR71. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Huang Y, Gao X and Chen J: Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharm Sin B. 8:4–13. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Huynh A, Madu CO and Lu Y: siRNA: A promising new tool for future breast cancer therapy. Oncomedicine. 3:74–81. 2018. View Article : Google Scholar

25 

Singh A, Trivedi P and Jain NK: Advances in siRNA delivery in cancer therapy. Artif Cells Nanomed Biotechnol. 46:274–283. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Hayward SL, Francis DM, Kholmatov P and Kidambi S: Targeted delivery of MicroRNA125a-5p by engineered lipid nanoparticles for the treatment of HER2 positive metastatic breast cancer. J Biomed Nanotechnol. 12:554–568. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Liu J, Meng T, Ming Y, Wen L, Cheng B, Liu N, Huang X, Hong Y, Yuan H and Hu F: MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine. 11:6713–6725. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Wang X, Yu B, Wu Y, Lee RJ and Lee LJ: Efficient down-regulation of CDK4 by novel lipid nanoparticle-mediated siRNA delivery. Anticancer Res. 31:1619–1626. 2011.PubMed/NCBI

29 

Tang J, Howard CB, Mahler SM, Thurecht KJ, Huang L and Xu ZP: Enhanced delivery of siRNA to triple negative breast cancer cells in vitro and in vivo through functionalizing lipid-coated calcium phosphate nanoparticles with dual target ligands. Nanoscale. 10:4258–4266. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Yu YH, Kim E, Park DE, Shim G, Lee S, Kim YB, Kim CW and Oh YK: Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm. 80:268–273. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Zheng ZM, Tang S and Tao M: Development of resistance to RNAi in mammalian cells. Ann NY Acad Sci. 1058:105–118. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Guo H, Ingolia NT, Weissman JS and Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Yang W, Lee DY and Ben-David Y: The roles of microRNAs in tumorigenesis and angiogenesis. Int J Physiol Pathophysiol Pharmacol. 3:140–155. 2011.PubMed/NCBI

34 

Kwon T, Chandimali N, Huynh DL, Zhang JJ, Kim N, Bak Y, Yoon DY, Yu DY, Lee JC, Gera M, et al: BRM270 inhibits cancer stem cell maintenance via microRNA regulation in chemoresistant A549 lung adenocarcinoma cells. Cell Death Dis. 9:2442018. View Article : Google Scholar : PubMed/NCBI

35 

Zhao M, Ang L, Huang J and Wang J: MicroRNAs regulate the epithelial-mesenchymal transition and influence breast cancer invasion and metastasis. Tumour Biol. 39:1010428317691682. 2017. View Article : Google Scholar

36 

Barbarotto E and Calin GA: MicroRNAs and drug resistance. Drug Resistance Cancer Cells. 102:257–270

37 

Kim J, Yao F, Xiao Z, Sun Y and Ma L: MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev. 37:5–15. 2018. View Article : Google Scholar : PubMed/NCBI

38 

McGuire A, Brown JA and Kerin MJ: Metastatic breast cancer: The potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev. 34:145–155. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K and Croce CM: Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA. 109:3024–3029. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Garzon R, Calin GA and Croce CM: MicroRNAs in cancer. Ann Rev Med. 60:167–179. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Klinge CM: Non-coding RNAs in breast cancer: Intracellular and intercellular communication. Noncoding RNA. 4:402018.

42 

Kanasty R, Dorkin JR, Vegas A and Anderson D: Delivery materials for siRNA therapeutics. Nat Materials. 12:967–977. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Majumder S and Jacob ST: Emerging role of microRNAs in drug-resistant breast cancer. Gene Expr. 15:141–151. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Papadaki C, Stratigos M, Markakis G, Spiliotaki M, Mastrostamatis G, Nikolaou C, Mavroudis D and Agelaki S: Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res. 20:722018. View Article : Google Scholar : PubMed/NCBI

45 

Quan Y, Huang X and Quan X: Expression of miRNA-206 and miRNA-145 in breast cancer and correlation with prognosis. Oncol Lett. 16:6638–6642. 2018.PubMed/NCBI

46 

Wang H, Peng R, Wang J, Qin Z and Xue L: Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clinical Epigenetics. 10:592018. View Article : Google Scholar : PubMed/NCBI

47 

Abdelrahim M, Safe S, Baker C and Abudayyeh A: RNAi and cancer: Implications and applications. J RNAi Gene Silencing. 2:136–145. 2006.PubMed/NCBI

48 

Ewert KK, Zidovska A, Ahmad A, Bouxsein NF, Evans HM, McAllister CS, Samuel CE and Safinya CR: Cationic liposome-nucleic acid complexes for gene delivery and silencing: Pathways and mechanisms for plasmid DNA and siRNA. Top Curr Chem. 296:191–226. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Lin Q, Chen J, Zhang Z and Zheng G: Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine. 9:105–120. 2014. View Article : Google Scholar : PubMed/NCBI

50 

van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Anselmo AC and Mitragotri S: Nanoparticles in the clinic: An update. Bioeng Transl Med. 4:e101432019. View Article : Google Scholar : PubMed/NCBI

53 

Qattan A: Gene Silencing Agents in Breast Cancer. Modulating Gene Expression-Abridging the RNAi and CRISPR-Cas9 Technologies. Singh A W..Khan M: Intech Open; 2019, View Article : Google Scholar

54 

Stratton MR, Campbell PJ and Futreal PA: The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Pedroso de Lima MC, Simões S, Pires P, Faneca H and Düzgüneş N: Cationic lipid-DNA complexes in gene delivery: From biophysics to biological applications. Adv Drug Deliv Rev. 47:277–294. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Meraz IM, Savage DJ, Segura-Ibarra V, Li J, Rhudy J, Gu J and Serda RE: Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm. 11:3484–3491. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Yu S, Bi X, Yang L, Wu S, Yu Y, Jiang B, Zhang A, Lan K and Duan S: Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J Biomed Nanotechnol. 15:1135–1148. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Wang W, Shao A, Zhang N, Fang J, Ruan JJ and Ruan BH: Cationic Polymethacrylate-modified liposomes significantly enhanced doxorubicin delivery and antitumor activity. Sci Rep. 7:430362017. View Article : Google Scholar : PubMed/NCBI

59 

Sun Y, Zhao Y, Zhao X, Lee RJ, Teng L and Zhou C: Enhancing the therapeutic delivery of oligonucleotides by chemical modification and nanoparticle encapsulation. Molecules. 22:17242017. View Article : Google Scholar

60 

Angelini G, Pisani M, Mobbili G, Marini M and Gasbarri C: Neutral liposomes containing crown ether-lipids as potential DNA vectors. Biochim Biophys Acta. 1828:2506–2512. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Yan Y, Li XQ, Duan JL, Bao CJ, Cui YN, Su ZB, Xu JR, Luo Q, Chen M, Xie Y and Lu WL: Nanosized functional miRNA liposomes and application in the treatment of TNBC by silencing Slug gene. Int J Nanomedicine. 14:3645–3667. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Lu YC, Ou-Yang FU, Hsieh CM, Chang KJ, Chen DR, Tu CW, Wang HC and Hou MF: Pegylated liposomal doxorubicin as adjuvant therapy for stage I–III operable breast cancer. In Vivo. 30:159–163. 2016.PubMed/NCBI

63 

Xu D, Tian W and Shen H: Curcumin prevents induced drug resistance: A novel function? Chin J Cancer Res. 23:218–223. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Tang X, Bi H, Feng J and Cao J: Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacologica Sinica. 26:1009–1016. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE and Altman RB: Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet Genomics. 21:440–446. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Zhou S, Li J, Xu H, Zhang S, Chen X, Chen W, Yang S, Zhong S, Zhao J and Tang J: Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression. Gene. 622:1–12. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Golkar N, Samani SM and Tamaddon AM: Data on cell growth inhibition induced by anti-VEGF siRNA delivered by Stealth liposomes incorporating G2 PAMAM-cholesterol versus Metafectene® as a function of exposure time and siRNA concentration. Data Brief. 8:1018–1023. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Chen J, Sun X, Shao R, Xu Y, Gao J and Liang W: VEGF siRNA delivered by polycation liposome-encapsulated calcium phosphate nanoparticles for tumor angiogenesis inhibition in breast cancer. Int J Nanomedicine. 12:6075–6088. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Leung AK, Tam YY and Cullis PR: Lipid Nanoparticles for short interfering RNA delivery. Adv Genet. 88:71–110. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Fernandez-Piñeiro I, Badiola I and Sanchez A: Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv. 35:350–360. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Pandey H, Rani R and Agarwal V: Liposome and their applications in cancer therapy. Brazilian Arch Biol Technol. 592016.http://dx.doi.org/10.1590/1678-4324-2016150477.

72 

Liu HM, Zhang YF, Xie YD, Cai YF, Li BY, Li W, Zeng LY, Li YL and Yu RT: Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy. Int J Nanomedicine. 12:1065–1083. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Modi S, Xiang TX and Anderson BD: Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. J Control Release. 162:330–339. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Fenske DB, Chonn A and Cullis PR: Liposomal nanomedicines: An emerging field. Toxicol Pathol. 36:21–29. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Johnston MJ, Semple SC, Klimuk SK, Edwards K, Eisenhardt ML, Leng EC, Karlsson G, Yanko D and Cullis PR: Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim Biophys Acta. 1758:55–64. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Lujan H, Griffin WC, Taube JH and Sayes CM: Synthesis and characterization of nanometer-sized liposomes for encapsulation and microRNA transfer to breast cancer cells. Int J Nanomedicine. 14:5159–5173. 2019. View Article : Google Scholar : PubMed/NCBI

77 

de Antonellis P, Liguori L, Falanga A, Carotenuto M, Ferrucci V, Andolfo I, Marinaro F, Scognamiglio I, Virgilio A, De Rosa G, et al: MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines. Naunyn Schmiedebergs Arch Pharmacol. 386:287–302. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B and Rajasingh J: Exosomes: New molecular targets of diseases. Acta pharmacologica Sinica. 39:501–513. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Bhome R, Del Vecchio F, Lee GH, Bullock MD, Primrose JN, Sayan AE and Mirnezami AH: Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer. Cancer Lett. 420:228–235. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Xin Y, Wang X, Meng K, Ni C, Lv Z and Guan D: Identification of exosomal miR-455-5p and miR-1255a as therapeutic targets for breast cancer. Biosci Rep. 40:BSR201903032020. View Article : Google Scholar : PubMed/NCBI

82 

Harris DA, Patel SH, Gucek M, Hendrix A, Westbroek W and Taraska JW: Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS One. 10:e01174952015. View Article : Google Scholar : PubMed/NCBI

83 

Lin R, Wang S and Zhao RC: Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem. 383:13–20. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Wu CY, Du SL, Zhang J, Liang AL and Liu YJ: Exosomes and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Cancer Gene Ther. 24:6–12. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Taylor DD and Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Silva J, Garcia V, Zaballos A, Provencio M, Lombardía L, Almonacid L, García JM, Domínguez G, Peña C, Diaz R, et al: Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J. 37:617–623. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD and Kloecker GH: Exosomal MicroRNA: A diagnostic marker for lung cancer. Clinical Lung Cancer. 10:42–46. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Wu H, Wang Q, Zhong H, Li L, Zhang Q, Huang Q and Yu Z: Differentially expressed microRNAs in exosomes of patients with breast cancer revealed by next-generation sequencing. Oncol Rep. 43:240–250. 2019.PubMed/NCBI

89 

Allen TM, Hansen C, Martin F, Redemann C and Yau-Young A: Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta. 1066:29–36. 1991. View Article : Google Scholar : PubMed/NCBI

90 

Klibanov AL, Maruyama K, Torchilin VP and Huang L: Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235–237. 1990. View Article : Google Scholar : PubMed/NCBI

91 

Senior J, Delgado C, Fisher D, Tilcock C and Gregoriadis G: Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: Studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta. 1062:77–82. 1991. View Article : Google Scholar : PubMed/NCBI

92 

Immordino ML, Dosio F and Cattel L: Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 1:297–315. 2006.PubMed/NCBI

93 

Caliceti P: Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Delivery Rev. 55:1261–1277. 2003. View Article : Google Scholar

94 

Barenholz Y: Doxil®−The first FDA-approved Nano-drug: Lessons learned. J Control Release. 160:117–134. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Vakhshiteh F, Khabazian E, Atyabi F, Ostad SN, Madjd Z and Dinarvand R: Peptide-conjugated liposomes for targeted miR-34a delivery to suppress breast cancer and cancer stem-like population. J Drug Deliv Sci Technol. 57:1016872020. View Article : Google Scholar

96 

Amstad E, Kohlbrecher J, Müller E, Schweizer T, Textor M and Reimhult E: Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett. 11:1664–1670. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Nahire R, Hossain R, Patel R, Paul S, Meghnani V, Ambre AH, Gange KN, Katti KS, Leclerc E, Srivastava DK, et al: pH-Triggered echogenicity and contents release from liposomes. Mol Pharm. 11:4059–4068. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Khan DR, Webb MN, Cadotte TH and Gavette MN: Use of targeted liposome-based chemotherapeutics to treat breast cancer. Breast Cancer (Auckl). 9 (Suppl 2):S1–S5. 2015.

99 

Ta T and Porter TM: Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 169:112–125. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Elegbede AI, Banerjee J, Hanson AJ, Tobwala S, Ganguli B, Wang R, Lu X, Srivastava DK and Mallik S: Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9. J Am Chem Soc. 130:10633–10642. 2008. View Article : Google Scholar : PubMed/NCBI

101 

Brown S and Khan DR: The treatment of breast cancer using liposome technology. J Drug Deliv. 2012:2129652012. View Article : Google Scholar : PubMed/NCBI

102 

Sneider A, Jadia R, Piel B, VanDyke D, Tsiros C and Rai P: Engineering remotely triggered liposomes to target triple negative breast cancer. Oncomedicine. 2:1–13. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Yang G, Liu Z, Li Y, Hou Y, Fei X, Su C, Wang S, Zhuang Z and Guo Z: Facile synthesis of black phosphorus-Au nanocomposites for enhanced photothermal cancer therapy and surface-enhanced Raman scattering analysis. Biomater Sci. 5:2048–2055. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Qiu M, Ren WX, Jeong T, Won M, Park GY, Sang DK, Liu LP, Zhang H and Kim JS: Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem Soc Rev. 47:5588–5601. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Sun S, Xu Y, Fu P, Chen M, Sun S, Zhao R, Wang J, Liang X and Wang S: Ultrasound-targeted photodynamic and gene dual therapy for effectively inhibiting triple negative breast cancer by cationic porphyrin lipid microbubbles loaded with HIF1α-siRNA. Nanoscale. 10:19945–19956. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Tang J, Li B, Howard CB, Mahler SM, Thurecht KJ, Wu Y, Huang L and Xu ZP: Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. Biomaterials. 216:1192322019. View Article : Google Scholar : PubMed/NCBI

107 

Ghasemiyeh P and Mohammadi-Samani S: Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharma Sci. 13:288–303. 2018. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Silva‑Cázares MB, Saavedra‑Leos MZ, Jordan‑Alejandre E, Nuñez‑Olvera SI, Cómpean‑Martínez I and López‑Camarillo C: Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer (Review). Oncol Rep 44: 2353-2363, 2020.
APA
Silva‑Cázares, M.B., Saavedra‑Leos, M.Z., Jordan‑Alejandre, E., Nuñez‑Olvera, S.I., Cómpean‑Martínez, I., & López‑Camarillo, C. (2020). Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer (Review). Oncology Reports, 44, 2353-2363. https://doi.org/10.3892/or.2020.7791
MLA
Silva‑Cázares, M. B., Saavedra‑Leos, M. Z., Jordan‑Alejandre, E., Nuñez‑Olvera, S. I., Cómpean‑Martínez, I., López‑Camarillo, C."Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer (Review)". Oncology Reports 44.6 (2020): 2353-2363.
Chicago
Silva‑Cázares, M. B., Saavedra‑Leos, M. Z., Jordan‑Alejandre, E., Nuñez‑Olvera, S. I., Cómpean‑Martínez, I., López‑Camarillo, C."Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer (Review)". Oncology Reports 44, no. 6 (2020): 2353-2363. https://doi.org/10.3892/or.2020.7791
Copy and paste a formatted citation
x
Spandidos Publications style
Silva‑Cázares MB, Saavedra‑Leos MZ, Jordan‑Alejandre E, Nuñez‑Olvera SI, Cómpean‑Martínez I and López‑Camarillo C: Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer (Review). Oncol Rep 44: 2353-2363, 2020.
APA
Silva‑Cázares, M.B., Saavedra‑Leos, M.Z., Jordan‑Alejandre, E., Nuñez‑Olvera, S.I., Cómpean‑Martínez, I., & López‑Camarillo, C. (2020). Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer (Review). Oncology Reports, 44, 2353-2363. https://doi.org/10.3892/or.2020.7791
MLA
Silva‑Cázares, M. B., Saavedra‑Leos, M. Z., Jordan‑Alejandre, E., Nuñez‑Olvera, S. I., Cómpean‑Martínez, I., López‑Camarillo, C."Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer (Review)". Oncology Reports 44.6 (2020): 2353-2363.
Chicago
Silva‑Cázares, M. B., Saavedra‑Leos, M. Z., Jordan‑Alejandre, E., Nuñez‑Olvera, S. I., Cómpean‑Martínez, I., López‑Camarillo, C."Lipid‑based nanoparticles for the therapeutic delivery of non‑coding RNAs in breast cancer (Review)". Oncology Reports 44, no. 6 (2020): 2353-2363. https://doi.org/10.3892/or.2020.7791
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team