|
1
|
Cavallo F, Giovanni C, Nanni P, Forni G
and Lollini PL: 2011: The immune hallmarks of cancer. Cancer
Immunol Immunother. 60:319–326. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cronin KA, Lake AJ, Scott S, Sherman RL,
Noone AM, Howlader N, Henley SJ, Anderson RN, Firth AU, Ma J, et
al: Annual report to the nation on the status of cancer, part I:
National cancer statistics. Cancer. 124:2785–2800. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Breast Cancer Treatment|Treatment Options
for Breast Cancer.
|
|
5
|
Miller KD, Nogueira L, Mariotto AB,
Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL and Siegel
RL: Cancer treatment and survivorship statistics, 2019. CA Cancer J
Clin. 69:363–385. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yingchoncharoen P, Kalinowski DS and Des
Richardson R: Lipid-based drug delivery systems in cancer therapy:
What is available and what is yet to come. Pharmacol Rev.
68:701–787. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mudshinge SR, Deore AB, Patil S and
Bhalgat CM: Nanoparticles: Emerging carriers for drug delivery.
Saudi Pharm J. 19:129–141. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Del Pozo-Rodríguez A, Solinís MÁ and
Rodríguez-Gascón A: Applications of lipid nanoparticles in gene
therapy. Eur J Pharm Biopharm. 109:184–193. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hashemi M and Kalalinia F: Application of
encapsulation technology in stem cell therapy. Life Sci.
143:139–146. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Aagaard L and Rossi JJ: RNAi therapeutics:
Principles, prospects and challenges. Adv Drug Deliv Rev. 59:75–86.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen G, Wang Y, Xie R and Gong S:
Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles
for efficient siRNA delivery. J Control Release. 259:105–114. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou
Z, Xiao X, Yang Y, Sheng W, Wu Y and Zeng Y: Hyaluronic
acid-chitosan nanoparticles for co-delivery of MiR-34a and
doxorubicin in therapy against triple negative breast cancer.
Biomaterials. 35:4333–4344. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hogrefe RI, Lebedev AV, Zon G, Pirollo KF,
Rait A, Zhou Q, Yu W and Chang EH: Chemically modified short
interfering hybrids (siHYBRIDS): Nanoimmunoliposome delivery in
vitro and in vivo for RNAi of HER-2. Nucleosides Nucleotides
Nucleic Acids. 25:889–907. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shu D, Li H, Shu Y, Xiong G, Carson WE
III, Haque F, Xu R and Guo P: Systemic delivery of Anti-miRNA for
suppression of triple negative breast cancer utilizing RNA
nanotechnology. ACS Nano. 9:9731–9740. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Urban-Klein B, Werth S, Abuharbeid S,
Czubayko F and Aigner A: RNAi-mediated gene-targeting through
systemic application of polyethylenimine (PEI)-complexed siRNA in
vivo. Gene Ther. 12:461–466. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yhee JY, Song S, Lee SJ, Park SG, Kim KS,
Kim MG, Son S, Koo H, Kwon IC, Jeong JH, et al: Cancer-targeted
MDR-1 siRNA delivery using self-cross-linked glycol chitosan
nanoparticles to overcome drug resistance. J Control Release.
198:1–9. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guo P, You JO, Yang J, Di J, Moses MA and
Auguste DT: Inhibiting metastatic breast cancer cell migration via
the synergy of targeted, pH-triggered siRNA delivery and chemokine
axis blockade. Mol Pharm. 11:755–765. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Reichmuth AM, Oberli MA, Jaklenec A,
Langer R and Blankschtein D: mRNA vaccine delivery using lipid
nanoparticles. Ther Deliv. 7:319–334. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
de la Harpe K, Kondiah P, Choonara Y,
Marimuthu T, du Toit L and Pillay V: The hemocompatibility of
nanoparticles: A review of cell-nanoparticle interactions and
hemostasis. Cells. 8:12092019. View Article : Google Scholar
|
|
22
|
Buzea C, Pacheco II and Robbie K:
Nanomaterials and nanoparticles: Sources and toxicity.
Biointerphases. 2:MR17–MR71. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Huang Y, Gao X and Chen J:
Leukocyte-derived biomimetic nanoparticulate drug delivery systems
for cancer therapy. Acta Pharm Sin B. 8:4–13. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Huynh A, Madu CO and Lu Y: siRNA: A
promising new tool for future breast cancer therapy. Oncomedicine.
3:74–81. 2018. View Article : Google Scholar
|
|
25
|
Singh A, Trivedi P and Jain NK: Advances
in siRNA delivery in cancer therapy. Artif Cells Nanomed
Biotechnol. 46:274–283. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hayward SL, Francis DM, Kholmatov P and
Kidambi S: Targeted delivery of MicroRNA125a-5p by engineered lipid
nanoparticles for the treatment of HER2 positive metastatic breast
cancer. J Biomed Nanotechnol. 12:554–568. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu J, Meng T, Ming Y, Wen L, Cheng B, Liu
N, Huang X, Hong Y, Yuan H and Hu F: MicroRNA-200c delivered by
solid lipid nanoparticles enhances the effect of paclitaxel on
breast cancer stem cell. Int J Nanomedicine. 11:6713–6725. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang X, Yu B, Wu Y, Lee RJ and Lee LJ:
Efficient down-regulation of CDK4 by novel lipid
nanoparticle-mediated siRNA delivery. Anticancer Res. 31:1619–1626.
2011.PubMed/NCBI
|
|
29
|
Tang J, Howard CB, Mahler SM, Thurecht KJ,
Huang L and Xu ZP: Enhanced delivery of siRNA to triple negative
breast cancer cells in vitro and in vivo through functionalizing
lipid-coated calcium phosphate nanoparticles with dual target
ligands. Nanoscale. 10:4258–4266. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yu YH, Kim E, Park DE, Shim G, Lee S, Kim
YB, Kim CW and Oh YK: Cationic solid lipid nanoparticles for
co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm.
80:268–273. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zheng ZM, Tang S and Tao M: Development of
resistance to RNAi in mammalian cells. Ann NY Acad Sci.
1058:105–118. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Guo H, Ingolia NT, Weissman JS and Bartel
DP: Mammalian microRNAs predominantly act to decrease target mRNA
levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yang W, Lee DY and Ben-David Y: The roles
of microRNAs in tumorigenesis and angiogenesis. Int J Physiol
Pathophysiol Pharmacol. 3:140–155. 2011.PubMed/NCBI
|
|
34
|
Kwon T, Chandimali N, Huynh DL, Zhang JJ,
Kim N, Bak Y, Yoon DY, Yu DY, Lee JC, Gera M, et al: BRM270
inhibits cancer stem cell maintenance via microRNA regulation in
chemoresistant A549 lung adenocarcinoma cells. Cell Death Dis.
9:2442018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhao M, Ang L, Huang J and Wang J:
MicroRNAs regulate the epithelial-mesenchymal transition and
influence breast cancer invasion and metastasis. Tumour Biol.
39:1010428317691682. 2017. View Article : Google Scholar
|
|
36
|
Barbarotto E and Calin GA: MicroRNAs and
drug resistance. Drug Resistance Cancer Cells. 102:257–270
|
|
37
|
Kim J, Yao F, Xiao Z, Sun Y and Ma L:
MicroRNAs and metastasis: Small RNAs play big roles. Cancer
Metastasis Rev. 37:5–15. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
McGuire A, Brown JA and Kerin MJ:
Metastatic breast cancer: The potential of miRNA for diagnosis and
treatment monitoring. Cancer Metastasis Rev. 34:145–155. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Volinia S, Galasso M, Sana ME, Wise TF,
Palatini J, Huebner K and Croce CM: Breast cancer signatures for
invasiveness and prognosis defined by deep sequencing of microRNA.
Proc Natl Acad Sci USA. 109:3024–3029. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Garzon R, Calin GA and Croce CM: MicroRNAs
in cancer. Ann Rev Med. 60:167–179. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Klinge CM: Non-coding RNAs in breast
cancer: Intracellular and intercellular communication. Noncoding
RNA. 4:402018.
|
|
42
|
Kanasty R, Dorkin JR, Vegas A and Anderson
D: Delivery materials for siRNA therapeutics. Nat Materials.
12:967–977. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Majumder S and Jacob ST: Emerging role of
microRNAs in drug-resistant breast cancer. Gene Expr. 15:141–151.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Papadaki C, Stratigos M, Markakis G,
Spiliotaki M, Mastrostamatis G, Nikolaou C, Mavroudis D and Agelaki
S: Circulating microRNAs in the early prediction of disease
recurrence in primary breast cancer. Breast Cancer Res. 20:722018.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Quan Y, Huang X and Quan X: Expression of
miRNA-206 and miRNA-145 in breast cancer and correlation with
prognosis. Oncol Lett. 16:6638–6642. 2018.PubMed/NCBI
|
|
46
|
Wang H, Peng R, Wang J, Qin Z and Xue L:
Circulating microRNAs as potential cancer biomarkers: The advantage
and disadvantage. Clinical Epigenetics. 10:592018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Abdelrahim M, Safe S, Baker C and
Abudayyeh A: RNAi and cancer: Implications and applications. J RNAi
Gene Silencing. 2:136–145. 2006.PubMed/NCBI
|
|
48
|
Ewert KK, Zidovska A, Ahmad A, Bouxsein
NF, Evans HM, McAllister CS, Samuel CE and Safinya CR: Cationic
liposome-nucleic acid complexes for gene delivery and silencing:
Pathways and mechanisms for plasmid DNA and siRNA. Top Curr Chem.
296:191–226. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lin Q, Chen J, Zhang Z and Zheng G:
Lipid-based nanoparticles in the systemic delivery of siRNA.
Nanomedicine. 9:105–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
van Zandwijk N, Pavlakis N, Kao SC, Linton
A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey
DL, et al: Safety and activity of microRNA-loaded minicells in
patients with recurrent malignant pleural mesothelioma: A
first-in-man, phase 1, open-label, dose-escalation study. Lancet
Oncol. 18:1386–1396. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hong DS, Kang YK, Borad M, Sachdev J,
Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1
study of MRX34, a liposomal miR-34a mimic, in patients with
advanced solid tumours. Br J Cancer. 122:1630–1637. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Anselmo AC and Mitragotri S: Nanoparticles
in the clinic: An update. Bioeng Transl Med. 4:e101432019.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Qattan A: Gene Silencing Agents in Breast
Cancer. Modulating Gene Expression-Abridging the RNAi and
CRISPR-Cas9 Technologies. Singh A W..Khan M: Intech Open; 2019,
View Article : Google Scholar
|
|
54
|
Stratton MR, Campbell PJ and Futreal PA:
The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Pedroso de Lima MC, Simões S, Pires P,
Faneca H and Düzgüneş N: Cationic lipid-DNA complexes in gene
delivery: From biophysics to biological applications. Adv Drug
Deliv Rev. 47:277–294. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Meraz IM, Savage DJ, Segura-Ibarra V, Li
J, Rhudy J, Gu J and Serda RE: Adjuvant cationic liposomes
presenting MPL and IL-12 induce cell death, suppress tumor growth,
and alter the cellular phenotype of tumors in a murine model of
breast cancer. Mol Pharm. 11:3484–3491. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yu S, Bi X, Yang L, Wu S, Yu Y, Jiang B,
Zhang A, Lan K and Duan S: Co-delivery of paclitaxel and
PLK1-targeted siRNA using aptamer-functionalized cationic liposome
for synergistic anti-breast cancer effects in vivo. J Biomed
Nanotechnol. 15:1135–1148. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang W, Shao A, Zhang N, Fang J, Ruan JJ
and Ruan BH: Cationic Polymethacrylate-modified liposomes
significantly enhanced doxorubicin delivery and antitumor activity.
Sci Rep. 7:430362017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sun Y, Zhao Y, Zhao X, Lee RJ, Teng L and
Zhou C: Enhancing the therapeutic delivery of oligonucleotides by
chemical modification and nanoparticle encapsulation. Molecules.
22:17242017. View Article : Google Scholar
|
|
60
|
Angelini G, Pisani M, Mobbili G, Marini M
and Gasbarri C: Neutral liposomes containing crown ether-lipids as
potential DNA vectors. Biochim Biophys Acta. 1828:2506–2512. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yan Y, Li XQ, Duan JL, Bao CJ, Cui YN, Su
ZB, Xu JR, Luo Q, Chen M, Xie Y and Lu WL: Nanosized functional
miRNA liposomes and application in the treatment of TNBC by
silencing Slug gene. Int J Nanomedicine. 14:3645–3667. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lu YC, Ou-Yang FU, Hsieh CM, Chang KJ,
Chen DR, Tu CW, Wang HC and Hou MF: Pegylated liposomal doxorubicin
as adjuvant therapy for stage I–III operable breast cancer. In
Vivo. 30:159–163. 2016.PubMed/NCBI
|
|
63
|
Xu D, Tian W and Shen H: Curcumin prevents
induced drug resistance: A novel function? Chin J Cancer Res.
23:218–223. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tang X, Bi H, Feng J and Cao J: Effect of
curcumin on multidrug resistance in resistant human gastric
carcinoma cell line SGC7901/VCR. Acta Pharmacologica Sinica.
26:1009–1016. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Thorn CF, Oshiro C, Marsh S,
Hernandez-Boussard T, McLeod H, Klein TE and Altman RB: Doxorubicin
pathways: Pharmacodynamics and adverse effects. Pharmacogenet
Genomics. 21:440–446. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhou S, Li J, Xu H, Zhang S, Chen X, Chen
W, Yang S, Zhong S, Zhao J and Tang J: Liposomal curcumin alters
chemosensitivity of breast cancer cells to Adriamycin via
regulating microRNA expression. Gene. 622:1–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Golkar N, Samani SM and Tamaddon AM: Data
on cell growth inhibition induced by anti-VEGF siRNA delivered by
Stealth liposomes incorporating G2 PAMAM-cholesterol versus
Metafectene® as a function of exposure time and siRNA
concentration. Data Brief. 8:1018–1023. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chen J, Sun X, Shao R, Xu Y, Gao J and
Liang W: VEGF siRNA delivered by polycation liposome-encapsulated
calcium phosphate nanoparticles for tumor angiogenesis inhibition
in breast cancer. Int J Nanomedicine. 12:6075–6088. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Leung AK, Tam YY and Cullis PR: Lipid
Nanoparticles for short interfering RNA delivery. Adv Genet.
88:71–110. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fernandez-Piñeiro I, Badiola I and Sanchez
A: Nanocarriers for microRNA delivery in cancer medicine.
Biotechnol Adv. 35:350–360. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pandey H, Rani R and Agarwal V: Liposome
and their applications in cancer therapy. Brazilian Arch Biol
Technol. 592016.http://dx.doi.org/10.1590/1678-4324-2016150477.
|
|
72
|
Liu HM, Zhang YF, Xie YD, Cai YF, Li BY,
Li W, Zeng LY, Li YL and Yu RT: Hypoxia-responsive ionizable
liposome delivery siRNA for glioma therapy. Int J Nanomedicine.
12:1065–1083. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Modi S, Xiang TX and Anderson BD: Enhanced
active liposomal loading of a poorly soluble ionizable drug using
supersaturated drug solutions. J Control Release. 162:330–339.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fenske DB, Chonn A and Cullis PR:
Liposomal nanomedicines: An emerging field. Toxicol Pathol.
36:21–29. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Johnston MJ, Semple SC, Klimuk SK, Edwards
K, Eisenhardt ML, Leng EC, Karlsson G, Yanko D and Cullis PR:
Therapeutically optimized rates of drug release can be achieved by
varying the drug-to-lipid ratio in liposomal vincristine
formulations. Biochim Biophys Acta. 1758:55–64. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lujan H, Griffin WC, Taube JH and Sayes
CM: Synthesis and characterization of nanometer-sized liposomes for
encapsulation and microRNA transfer to breast cancer cells. Int J
Nanomedicine. 14:5159–5173. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
de Antonellis P, Liguori L, Falanga A,
Carotenuto M, Ferrucci V, Andolfo I, Marinaro F, Scognamiglio I,
Virgilio A, De Rosa G, et al: MicroRNA 199b-5p delivery through
stable nucleic acid lipid particles (SNALPs) in tumorigenic cell
lines. Naunyn Schmiedebergs Arch Pharmacol. 386:287–302. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Samanta S, Rajasingh S, Drosos N, Zhou Z,
Dawn B and Rajasingh J: Exosomes: New molecular targets of
diseases. Acta pharmacologica Sinica. 39:501–513. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bhome R, Del Vecchio F, Lee GH, Bullock
MD, Primrose JN, Sayan AE and Mirnezami AH: Exosomal microRNAs
(exomiRs): Small molecules with a big role in cancer. Cancer Lett.
420:228–235. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang J, Li S, Li L, Li M, Guo C, Yao J
and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and
function. Genomics Proteomics Bioinformatics. 13:17–24. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Xin Y, Wang X, Meng K, Ni C, Lv Z and Guan
D: Identification of exosomal miR-455-5p and miR-1255a as
therapeutic targets for breast cancer. Biosci Rep.
40:BSR201903032020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Harris DA, Patel SH, Gucek M, Hendrix A,
Westbroek W and Taraska JW: Exosomes released from breast cancer
carcinomas stimulate cell movement. PLoS One. 10:e01174952015.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lin R, Wang S and Zhao RC: Exosomes from
human adipose-derived mesenchymal stem cells promote migration
through Wnt signaling pathway in a breast cancer cell model. Mol
Cell Biochem. 383:13–20. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wu CY, Du SL, Zhang J, Liang AL and Liu
YJ: Exosomes and breast cancer: A comprehensive review of novel
therapeutic strategies from diagnosis to treatment. Cancer Gene
Ther. 24:6–12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Taylor DD and Gercel-Taylor C: MicroRNA
signatures of tumor-derived exosomes as diagnostic biomarkers of
ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Silva J, Garcia V, Zaballos A, Provencio
M, Lombardía L, Almonacid L, García JM, Domínguez G, Peña C, Diaz
R, et al: Vesicle-related microRNAs in plasma of nonsmall cell lung
cancer patients and correlation with survival. Eur Respir J.
37:617–623. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Rabinowits G, Gerçel-Taylor C, Day JM,
Taylor DD and Kloecker GH: Exosomal MicroRNA: A diagnostic marker
for lung cancer. Clinical Lung Cancer. 10:42–46. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wu H, Wang Q, Zhong H, Li L, Zhang Q,
Huang Q and Yu Z: Differentially expressed microRNAs in exosomes of
patients with breast cancer revealed by next-generation sequencing.
Oncol Rep. 43:240–250. 2019.PubMed/NCBI
|
|
89
|
Allen TM, Hansen C, Martin F, Redemann C
and Yau-Young A: Liposomes containing synthetic lipid derivatives
of poly(ethylene glycol) show prolonged circulation half-lives in
vivo. Biochim Biophys Acta. 1066:29–36. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Klibanov AL, Maruyama K, Torchilin VP and
Huang L: Amphipathic polyethyleneglycols effectively prolong the
circulation time of liposomes. FEBS Lett. 268:235–237. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Senior J, Delgado C, Fisher D, Tilcock C
and Gregoriadis G: Influence of surface hydrophilicity of liposomes
on their interaction with plasma protein and clearance from the
circulation: Studies with poly(ethylene glycol)-coated vesicles.
Biochim Biophys Acta. 1062:77–82. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Immordino ML, Dosio F and Cattel L:
Stealth liposomes: Review of the basic science, rationale, and
clinical applications, existing and potential. Int J Nanomedicine.
1:297–315. 2006.PubMed/NCBI
|
|
93
|
Caliceti P: Pharmacokinetic and
biodistribution properties of poly(ethylene glycol)-protein
conjugates. Adv Drug Delivery Rev. 55:1261–1277. 2003. View Article : Google Scholar
|
|
94
|
Barenholz Y: Doxil®−The first
FDA-approved Nano-drug: Lessons learned. J Control Release.
160:117–134. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Vakhshiteh F, Khabazian E, Atyabi F, Ostad
SN, Madjd Z and Dinarvand R: Peptide-conjugated liposomes for
targeted miR-34a delivery to suppress breast cancer and cancer
stem-like population. J Drug Deliv Sci Technol. 57:1016872020.
View Article : Google Scholar
|
|
96
|
Amstad E, Kohlbrecher J, Müller E,
Schweizer T, Textor M and Reimhult E: Triggered release from
liposomes through magnetic actuation of iron oxide nanoparticle
containing membranes. Nano Lett. 11:1664–1670. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nahire R, Hossain R, Patel R, Paul S,
Meghnani V, Ambre AH, Gange KN, Katti KS, Leclerc E, Srivastava DK,
et al: pH-Triggered echogenicity and contents release from
liposomes. Mol Pharm. 11:4059–4068. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Khan DR, Webb MN, Cadotte TH and Gavette
MN: Use of targeted liposome-based chemotherapeutics to treat
breast cancer. Breast Cancer (Auckl). 9 (Suppl 2):S1–S5. 2015.
|
|
99
|
Ta T and Porter TM: Thermosensitive
liposomes for localized delivery and triggered release of
chemotherapy. J Control Release. 169:112–125. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Elegbede AI, Banerjee J, Hanson AJ,
Tobwala S, Ganguli B, Wang R, Lu X, Srivastava DK and Mallik S:
Mechanistic studies of the triggered release of liposomal contents
by matrix metalloproteinase-9. J Am Chem Soc. 130:10633–10642.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Brown S and Khan DR: The treatment of
breast cancer using liposome technology. J Drug Deliv.
2012:2129652012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Sneider A, Jadia R, Piel B, VanDyke D,
Tsiros C and Rai P: Engineering remotely triggered liposomes to
target triple negative breast cancer. Oncomedicine. 2:1–13. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yang G, Liu Z, Li Y, Hou Y, Fei X, Su C,
Wang S, Zhuang Z and Guo Z: Facile synthesis of black phosphorus-Au
nanocomposites for enhanced photothermal cancer therapy and
surface-enhanced Raman scattering analysis. Biomater Sci.
5:2048–2055. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Qiu M, Ren WX, Jeong T, Won M, Park GY,
Sang DK, Liu LP, Zhang H and Kim JS: Omnipotent phosphorene: A
next-generation, two-dimensional nanoplatform for multidisciplinary
biomedical applications. Chem Soc Rev. 47:5588–5601. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Sun S, Xu Y, Fu P, Chen M, Sun S, Zhao R,
Wang J, Liang X and Wang S: Ultrasound-targeted photodynamic and
gene dual therapy for effectively inhibiting triple negative breast
cancer by cationic porphyrin lipid microbubbles loaded with
HIF1α-siRNA. Nanoscale. 10:19945–19956. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tang J, Li B, Howard CB, Mahler SM,
Thurecht KJ, Wu Y, Huang L and Xu ZP: Multifunctional lipid-coated
calcium phosphate nanoplatforms for complete inhibition of large
triple negative breast cancer via targeted combined therapy.
Biomaterials. 216:1192322019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ghasemiyeh P and Mohammadi-Samani S: Solid
lipid nanoparticles and nanostructured lipid carriers as novel drug
delivery systems: Applications, advantages and disadvantages. Res
Pharma Sci. 13:288–303. 2018. View Article : Google Scholar
|