Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
January-2021 Volume 45 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2021 Volume 45 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma

  • Authors:
    • Shijie Li
    • Yiqiao Zhao
    • Xiaonan Chen
  • View Affiliations / Copyright

    Affiliations: Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 239-253
    |
    Published online on: November 12, 2020
       https://doi.org/10.3892/or.2020.7849
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Dysregulated circular RNAs (circRNAs) often contribute to the occurrence and development of various tumors; however, the function and mechanism of circRNAs are largely unknown in human bladder cancer (BC). In the present study, dysregulated circRNAs between BC and adjacent non‑neoplastic bladder tissues were analyzed by circRNA microarray. We randomly selected 10 upregulated and five downregulated circRNAs for validation by quantitative real‑time PCR. Bioinformatics analysis was further conducted to investigate the potential function of these differentially expressed circRNAs, with the differential expression of hsa_circRNA_100876, mir‑136‑5p, and mRNA‑chromobox 4 (CBX4) subsequently verified. A total of 512 differentially expressed circRNAs were identified after scanning and normalization (340 upregulated and 172 downregulated circRNAs), with pathway and Gene Ontology analyses revealing their association with multiple significant cancer pathways. Construction of a circRNA‑microRNA‑mRNA network suggested additional potential roles of these circRNAs. The expression of hsa_circRNA_100876 and CBX4 was significantly negatively correlated with the expression of miR‑136‑5p. Additionally, hsa_circRNA_100876 was highly positively correlated with CBX4 expression. The results revealed that hsa_circRNA_100876 inhibition suppressed BC cell proliferation and it was associated with advanced T stage and lymphatic metastasis, and poor overall survival of BC patients. In conclusion, these differentially expressed circRNAs offer novel insights into potential biological markers or new therapeutic targets for the treatment of BC. Furthermore, hsa_circRNA_100876 may increase the expression of CBX4 by competing with miR‑136‑5p, ultimately promoting the malignant biological behavior of BC. Aberrantly expressed hsa_circRNA_100876 could be used as a potential non‑invasive biomarker for the early detection and screening of BC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Kaufman DS, Shipley WU and Feldman AS: Bladder cancer. Lancet. 374:239–249. 2009. View Article : Google Scholar

2 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar

3 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar

4 

Kim WT, Kim YH, Jeong P, Seo SP, Kang HW, Kim YJ, Yun SJ, Lee SC, Moon SK, Choi Y, et al: Urinary cell-free nucleic acid IQGAP3: A new non-invasive diagnostic marker for bladder cancer. Oncotarget. 9:14354–14365. 2018. View Article : Google Scholar

5 

Fatica A and Bozzoni I: Long non-coding RNAs: New players in cell differentiation and development. Nat Rev Genet. 15:7–21. 2014. View Article : Google Scholar

6 

Li PF, Chen SC, Xia T, Jiang XM, Shao YF, Xiao BX and Guo JM: Non-coding RNAs and gastric cancer. World J Gastroenterol. 20:5411–5419. 2014. View Article : Google Scholar

7 

Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar

8 

Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R and Finn SP: Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front Mol Biosci. 4:382017. View Article : Google Scholar

9 

Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar

10 

Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar

11 

Cocquerelle C, Mascrez B, Hétuin D and Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J. 7:155–160. 1993. View Article : Google Scholar

12 

Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar

13 

Vidal AF, Sandoval GT, Magalhaes L, Santos SE and Ribeiro-dos-Santos A: Circular RNAs as a new field in gene regulation and their implications in translational research. Epigenomics. 8:551–562. 2016. View Article : Google Scholar

14 

Xu S, Zhou L, Ponnusamy M, Zhang L, Dong Y, Zhang Y, Wang Q, Liu J and Wang K: A comprehensive review of circRNA: From purification and identification to disease marker potential. PeerJ. 6:e55032018. View Article : Google Scholar

15 

Zhang X, Zhou H, Jing W, Luo P, Qiu S, Liu X, Zhu M, Liang C, Yu M and Tu J: The circular RNA hsa_circ_0001445 regulates the proliferation and migration of hepatocellular carcinoma and may serve as a diagnostic biomarker. Dis Markers. 2018:30734672018. View Article : Google Scholar

16 

Jiang MM, Mai ZT, Wan SZ, Chi YM, Zhang X, Sun BH and Di QG: Microarray profiles reveal that circular RNA hsa_circ_0007385 functions as an oncogene in non-small cell lung cancer tumorigenesis. J Cancer Res Clin Oncol. 144:667–674. 2018. View Article : Google Scholar

17 

Zhong Z, Lv M and Chen J: Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 6:309192016. View Article : Google Scholar

18 

Cai D, Liu Z and Kong G: Molecular and bioinformatics analyses identify 7 circular RNAs involved in regulation of oncogenic transformation and cell proliferation in human bladder cancer. Med Sci Monit. 24:1654–1661. 2018. View Article : Google Scholar

19 

Enright AJ, John B, Gaul U, Tuschl T, Sander C and Marks DS: MicroRNA targets in Drosophila. Genome Biol. 5:R12003. View Article : Google Scholar

20 

Pasquinelli AE: MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 13:271–282. 2012. View Article : Google Scholar

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

22 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. Nat Genet. 25:25–29. 2000. View Article : Google Scholar

23 

Gerlich M and Neumann S: KEGG: Kyoto encyclopedia of genes and genomes. Nuclc Acids Res. 28:27–30. 2000. View Article : Google Scholar

24 

Shi Z, Kadeer A, Wang M, Wen B, Li M, Huang J, Gao Y, Liu E, Liu D, Jia D and Liang C: The deregulation of miR-133b is associated with poor prognosis in bladder cancer. Pathol Res Pract. 215:354–357. 2019. View Article : Google Scholar

25 

Yu QF, Liu P, Li ZY, Zhang CF, Chen SQ, Li ZH, Zhang GY and Li JC: MiR-103/107 induces tumorigenicity in bladder cancer cell by suppressing PTEN. Eur Rev Med Pharmacol Sci. 22:8616–8623. 2018.

26 

Wang F, Zu Y, Zhu S, Yang Y, Huang W, Xie H and Li G: Long noncoding RNA MAGI2-AS3 regulates CCDC19 expression by sponging miR-15b-5p and suppresses bladder cancer progression. Biochem Biophys Res Commun. 507:231–235. 2018. View Article : Google Scholar

27 

Li Y, Wan B, Liu L, Zhou L and Zeng Q: Circular RNA circMTO1 suppresses bladder cancer metastasis by sponging miR-221 and inhibiting epithelial-to-mesenchymal transition. Biochem Biophys Res Commun. 508:991–996. 2019. View Article : Google Scholar

28 

Sun M, Zhao W, Chen Z, Li M, Li S, Wu B and Bu R: Circ_0058063 regulates CDK6 to promote bladder cancer progression by sponging miR-145-5p. J Cell Physiol. 234:4812–4824. 2019. View Article : Google Scholar

29 

Zhao X, Wang Y, Yu Q, Yu P, Zheng Q, Yang X and Gao D: Circular RNAs in gastrointestinal cancer: Current knowledge, biomarkers and targeted therapy (Review). Int J Mol Med. 46:1611–1632. 2020.

30 

Zhang JR and Sun HJ: Roles of circular RNAs in diabetic complications: From molecular mechanisms to therapeutic potential. Gene. 763:1450662020. View Article : Google Scholar

31 

Hua L, Huang L, Zhang X, Feng H and Shen B: Knockdown of circular RNA CEP128 suppresses proliferation and improves cytotoxic efficacy of temozolomide in glioma cells by regulating miR-145-5p. Neuroreport. 30:1231–1238. 2019. View Article : Google Scholar

32 

Gan J, Yuan J, Liu Y, Lu Z, Xue Y, Shi L and Zeng H: Circular RNA_101237 mediates anoxia/reoxygenation injury by targeting let-7a-5p/IGF2BP3 in cardiomyocytes. Int J Mol Med. 45:451–460. 2020.

33 

Chen S, Li T, Zhao Q, Xiao B and Guo J: Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta. 466:167–171. 2017. View Article : Google Scholar

34 

Xiao-Long M, Kun-Peng Z and Chun-Lin Z: Circular RNA circ_HIPK3 is down-regulated and suppresses cell proliferation, migration and invasion in osteosarcoma. J Cancer. 9:1856–1862. 2018. View Article : Google Scholar

35 

Yao JT, Zhao SH, Liu QP, Lv MQ, Zhou DX, Liao ZJ and Nan KJ: Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol Res Pract. 213:453–456. 2017. View Article : Google Scholar

36 

Yuan W, Peng S, Wang J, Wei C, Ye Z, Wang Y, Wang M, Xu H, Jiang S, Sun D, et al: Identification and characterization of circRNAs as competing endogenous RNAs for miRNA-mRNA in colorectal cancer. PeerJ. 7:e76022019. View Article : Google Scholar

37 

Su Y, Du Z, Zhong G, Ya Y, Bi J, Shi J, Chen L, Dong W and Lin T: circ5912 suppresses cancer progression via inducing MET in bladder cancer. Aging (Albany NY). 11:10826–10838. 2019. View Article : Google Scholar

38 

Chaar I, Amara S, Elamine OE, Khiari M, Ounissi D, Khalfallah T, Ben Hmida A, Mzabi S and Bouraoui S: Biological significance of promoter hypermethylation of p14/ARF gene: Relationships to p53 mutational status in Tunisian population with colorectal carcinoma. Tumour Biol. 35:1439–1449. 2014. View Article : Google Scholar

39 

Hsu HS and Wang YC, Tseng RC, Chang JW, Chen JT, Shih CM, Chen CY and Wang YC: 5′ cytosine-phospho-guanine island methylation is responsible for p14ARF inactivation and inversely correlates with p53 overexpression in resected non-small cell lung cancer. Clin Cancer Res. 10:4734–4741. 2004. View Article : Google Scholar

40 

Iida S, Akiyama Y, Nakajima T, Ichikawa W, Nihei Z, Sugihara K and Yuasa Y: Alterations and hypermethylation of the p14(ARF) gene in gastric cancer. Int J Cancer. 87:654–658. 2000. View Article : Google Scholar

41 

Ito T, Nishida N, Fukuda Y, Nishimura T, Komeda T and Nakao K: Alteration of the p14(ARF) gene and p53 status in human hepatocellular carcinomas. J Gastroenterol. 39:355–361. 2004. View Article : Google Scholar

42 

Domínguez G, Carballido J, Silva J, Silva JM, García JM, Menéndez J, Provencio M, España P and Bonilla F: p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin Cancer Res. 8:980–985. 2002.

43 

Berggren P, Kumar R, Sakano S, Hemminki L, Wada T, Steineck G, Adolfsson J, Larsson P, Norming U, Wijkström H and Hemminki K: Detecting homozygous deletions in the CDKN2A(p16(INK4a))/ARF(p14(ARF)) gene in urinary bladder cancer using real-time quantitative PCR. Clin Cancer Res. 9:235–242. 2003.

44 

Liang Z, Xie W, Wu R, Geng H, Zhao L, Xie C, Li X, Zhu M, Zhu W, Zhu J, et al: Inhibition of tobacco smoke-induced bladder MAPK activation and epithelial-mesenchymal transition in mice by curcumin. Int J Clin Exp Pathol. 8:4503–4513. 2015.

45 

Miller JE and Reese JC: Ccr4-Not complex: The control freak of eukaryotic cells. Crit Rev Biochem Mol Biol. 47:315–333. 2012. View Article : Google Scholar

46 

Noel N, Couteau J, Maillet G, Gobet F, D'Aloisio F, Minier C and Pfister C: TP53 and FGFR3 gene mutation assessment in urine: Pilot study for bladder cancer diagnosis. Anticancer Res. 35:4915–4921. 2015.

47 

Knowles MA: Role of FGFR3 in urothelial cell carcinoma: Biomarker and potential therapeutic target. World J Urol. 25:581–593. 2007. View Article : Google Scholar

48 

Dong L, Lin F, Wu W, Liu Y and Huang W: Verteporfin inhibits YAP-induced bladder cancer cell growth and invasion via Hippo signaling pathway. Int J Med Sci. 15:645–652. 2018. View Article : Google Scholar

49 

Zhong Z, Huang M, Lv M, He Y, Duan C, Zhang L and Chen J: Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 403:305–317. 2017. View Article : Google Scholar

50 

Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J and Zhou Y: Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 6:6001–6013. 2015. View Article : Google Scholar

51 

Chen P, Zhao L, Pan X, Jin L, Lin C, Xu W, Xu J, Guan X, Wu X, Wang Y, et al: Tumor suppressor microRNA-136-5p regulates the cellular function of renal cell carcinoma. Oncol Lett. 15:5995–6002. 2018.

52 

Shen S, Yue H, Li Y, Qin J, Li K, Liu Y and Wang J: Upregulation of miR-136 in human non-small cell lung cancer cells promotes Erk1/2 activation by targeting PPP2R2A. Tumour Biol. 35:631–640. 2014. View Article : Google Scholar

53 

Yan M, Li X, Tong D, Han C, Zhao R, He Y and Jin X: miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep. 36:65–71. 2016. View Article : Google Scholar

54 

Scelfo A, Piunti A and Pasini D: The controversial role of the Polycomb group proteins in transcription and cancer: How much do we not understand Polycomb proteins? FEBS J. 282:1703–1722. 2015. View Article : Google Scholar

55 

Haindl M, Harasim T, Eick D and Muller S: The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep. 9:273–279. 2008. View Article : Google Scholar

56 

Eifler K and Vertegaal AC: Mapping the SUMOylated landscape. FEBS J. 282:3669–3680. 2015. View Article : Google Scholar

57 

Ma RG, Zhang Y, Sun TT and Cheng B: Epigenetic regulation by polycomb group complexes: Focus on roles of CBX proteins. J Zhejiang Univ Sci B. 15:412–428. 2014. View Article : Google Scholar

58 

Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei Z, Yin QQ, Ma LN, Zhou AW, Wang LS, et al: Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 25:118–131. 2014. View Article : Google Scholar

59 

Fukagawa A, Ishii H, Miyazawa K and Saitoh M: δEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells. Cancer Med. 4:125–135. 2015. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li S, Zhao Y and Chen X: Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma. Oncol Rep 45: 239-253, 2021.
APA
Li, S., Zhao, Y., & Chen, X. (2021). Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma. Oncology Reports, 45, 239-253. https://doi.org/10.3892/or.2020.7849
MLA
Li, S., Zhao, Y., Chen, X."Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma". Oncology Reports 45.1 (2021): 239-253.
Chicago
Li, S., Zhao, Y., Chen, X."Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma". Oncology Reports 45, no. 1 (2021): 239-253. https://doi.org/10.3892/or.2020.7849
Copy and paste a formatted citation
x
Spandidos Publications style
Li S, Zhao Y and Chen X: Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma. Oncol Rep 45: 239-253, 2021.
APA
Li, S., Zhao, Y., & Chen, X. (2021). Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma. Oncology Reports, 45, 239-253. https://doi.org/10.3892/or.2020.7849
MLA
Li, S., Zhao, Y., Chen, X."Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma". Oncology Reports 45.1 (2021): 239-253.
Chicago
Li, S., Zhao, Y., Chen, X."Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma". Oncology Reports 45, no. 1 (2021): 239-253. https://doi.org/10.3892/or.2020.7849
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team