|
1
|
Santoro A, Pannone G, Papagerakis S,
Serpico R and Bufo P: Epigenetic profiling of oral cancer. InTech.
Mar 14–2012.(Epub ahead of print). doi: 10.5772/31386.
|
|
2
|
Tsantoulis PK, Kastrinakis NG, Tourvas AD,
Laskaris G and Gorgoulis VG: Advances in the biology of oral
cancer. Oral Oncol. 43:523–534. 2007. View Article : Google Scholar
|
|
3
|
Gupta B, Johnson NW and Kumar N: Global
epidemiology of head and neck cancers: A continuing challenge.
Oncology. 91:13–23. 2016. View Article : Google Scholar
|
|
4
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar
|
|
5
|
Huppi K, Volfovsky N, Mackiewicz M,
Runfola T, Jones TL, Martin SE, Stephens R and Caplen NJ: MicroRNAs
and genomic instability. Semin Cancer Biol. 17:65–73. 2007.
View Article : Google Scholar
|
|
6
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR,
Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant
KC, Allen A, et al: Circulating microRNAs as stable blood-based
markers for cancer detection. Proc Natl Acad Sci USA.
105:10513–10518. 2008. View Article : Google Scholar
|
|
7
|
Chawla JP, Iyer N, Soodan KS, Sharma A,
Khurana SK and Priyadarshni P: Role of miRNA in cancer diagnosis,
prognosis, therapy and regulation of its expression by Epstein-Barr
virus and human papillomaviruses: With special reference to oral
cancer. Oral Oncol. 51:731–737. 2015. View Article : Google Scholar
|
|
8
|
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K,
Guo J, Zhang Y, Chen J, Guo X, et al: Characterization of microRNAs
in serum: A novel class of biomarkers for diagnosis of cancer and
other diseases. Cell Res. 18:997–1006. 2008. View Article : Google Scholar
|
|
9
|
Croce CM and Calin GA: miRNAs, cancer, and
stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar
|
|
10
|
Di Leva G, Garofalo M and Croce CM:
MicroRNAs in cancer. Annu Rev Pathol. 9:287–314. 2014. View Article : Google Scholar
|
|
11
|
Fabbri M: MicroRNAs and cancer: Towards a
personalized medicine. Curr Mol Med. 13:751–756. 2013. View Article : Google Scholar
|
|
12
|
Madhura MG, Rao RS, Patil S, Fageeh HN,
Alhazmi A and Awan KH: Advanced diagnostic aids for oral cancer.
Dis Mon. Jun 25–2020.(Epub ahead of print). doi:
10.1016/j.disamonth.2020.101034. View Article : Google Scholar
|
|
13
|
Gombos K, Horváth R, Szele E, Juhász K,
Gocze K, Somlai K, Pajkos G, Ember I and Olasz L: miRNA expression
profiles of oral squamous cell carcinomas. Anticancer Res.
33:1511–1517. 2013.
|
|
14
|
Maclellan SA, Lawson J, Baik J, Guillaud
M, Poh CF and Garnis C: Differential expression of miRNAs in the
serum of patients with high-risk oral lesions. Cancer Med.
1:268–274. 2012. View
Article : Google Scholar
|
|
15
|
Momen-Heravi F, Trachtenberg AJ, Kuo WP
and Cheng YS: Genomewide study of salivary MicroRNAs for detection
of oral cancer. J Dent Res. 93 (Suppl 7):86S–93S. 2014. View Article : Google Scholar
|
|
16
|
He Q, Chen Z, Cabay RJ, Zhang L, Luan X,
Chen D, Yu T, Wang A and Zhou X: microRNA-21 and microRNA-375 from
oral cytology as biomarkers for oral tongue cancer detection. Oral
Oncol. 57:15–20. 2016. View Article : Google Scholar
|
|
17
|
Chen L, Hu J, Pan L, Yin X, Wang Q and
Chen H: Diagnostic and prognostic value of serum miR-99a expression
in oral squamous cell carcinoma. Cancer Biomark. 23:333–339. 2018.
View Article : Google Scholar
|
|
18
|
He L, Ping F, Fan Z, Zhang C, Deng M,
Cheng B and Xia J: Salivary exosomal miR-24-3p serves as a
potential detective biomarker for oral squamous cell carcinoma
screening. Biomed Pharmacother. 121:1095532020. View Article : Google Scholar
|
|
19
|
Lu Z, He Q, Liang J, Li W, Su Q, Chen Z,
Wan Q, Zhou X, Cao L, Sun J, et al: miR-31-5p is a potential
circulating biomarker and therapeutic target for oral cancer. Mol
Ther Nucleic Acids. 16:471–480. 2019. View Article : Google Scholar
|
|
20
|
Gai C, Camussi F, Broccoletti R, Gambino
A, Cabras M, Molinaro L, Carossa S, Camussi G and Arduino PG:
Salivary extracellular vesicle-associated miRNAs as potential
biomarkers in oral squamous cell carcinoma. BMC Cancer. 18:4392018.
View Article : Google Scholar
|
|
21
|
Chang YA, Weng SL, Yang SF, Chou CH, Huang
WC, Tu SJ, Chang TH, Huang CN, Jong YJ and Huang HD: A
Three-MicroRNA signature as a potential biomarker for the early
detection of oral cancer. Int J Mol Sci. 19:7582018. View Article : Google Scholar
|
|
22
|
Berania I, Cardin GB, Clément I, Guertin
L, Ayad T, Bissada E, Nguyen-Tan PF, Filion E, Guilmette J, Gologan
O, et al: Four PTEN-targeting co-expressed miRNAs and
ACTN4-targeting miR-548b are independent prognostic biomarkers in
human squamous cell carcinoma of the oral tongue. Int J Cancer.
141:2318–2328. 2017. View Article : Google Scholar
|
|
23
|
Supic G, Zeljic K, Rankov AD, Kozomara R,
Nikolic A, Radojkovic D and Magic Z: miR-183 and miR-21 expression
as biomarkers of progression and survival in tongue carcinoma
patients. Clin Oral Investig. 22:401–409. 2018. View Article : Google Scholar
|
|
24
|
Xu H, Yang Y, Zhao H, Yang X, Luo Y, Ren
Y, Liu W and Li N: Serum miR-483-5p: A novel diagnostic and
prognostic biomarker for patients with oral squamous cell
carcinoma. Tumour Biol. 37:447–453. 2016. View Article : Google Scholar
|
|
25
|
Gu WL, Ye DX and Wu JJ: Expression and
clinical significance of plasma microRNA-125b level in patients
with oral squamous cell carcinoma. Shanghai Kou Qiang Yi Xue.
24:71–75. 2015.(In Chinese).
|
|
26
|
Zahran F, Ghalwash D, Shaker O, Al-Johani
K and Scully C: Salivary microRNAs in oral cancer. Oral Dis.
21:739–747. 2015. View Article : Google Scholar
|
|
27
|
Lu YC, Chang JT, Huang YC, Huang CC, Chen
WH, Lee LY, Huang BS, Chen YJ, Li HF and Cheng AJ: Combined
determination of circulating miR-196a and miR-196b levels produces
high sensitivity and specificity for early detection of oral
cancer. Clin Biochem. 48:115–121. 2015. View Article : Google Scholar
|
|
28
|
Ries J, Vairaktaris E, Kintopp R, Baran C,
Neukam FW and Nkenke E: Alterations in miRNA expression patterns in
whole blood of OSCC patients. In Vivo. 28:851–861. 2014.
|
|
29
|
Ries J, Baran C, Wehrhan F, Weber M, Motel
C, Kesting M and Nkenke E: The altered expression levels of
miR-186, miR-494 and miR-3651 in OSCC tissue vary from those of the
whole blood of OSCC patients. Cancer Biomark. 24:19–30. 2019.
View Article : Google Scholar
|
|
30
|
Wu N, Lu Y and Liang JZ: Expression and
correlation of survivin and hsa-miR-542-3p in patients with oral
squamous cell carcinoma. Shanghai Kou Qiang Yi Xue. 25:720–724.
2016.(In Chinese).
|
|
31
|
Duz MB, Karatas OF, Guzel E, Turgut NF,
Yilmaz M, Creighton CJ and Ozen M: Identification of miR-139-5p as
a saliva biomarker for tongue squamous cell carcinoma: A pilot
study. Cell Oncol (Dordr). 39:187–193. 2016. View Article : Google Scholar
|
|
32
|
Lai YH, Liu H, Chiang WF, Chen TW, Chu LJ,
Yu JS, Chen SJ, Chen HC and Tan BC: MiR-31-5p-ACOX1 Axis enhances
tumorigenic fitness in oral squamous cell carcinoma via the
promigratory prostaglandin E2. Theranostics. 8:486–504. 2018.
View Article : Google Scholar
|
|
33
|
Zheng X, Wu K, Liao S, Pan Y, Sun Y, Chen
X, Zhang Y, Xia S, Hu Y and Zhang J: MicroRNA-transcription factor
network analysis reveals miRNAs cooperatively suppress RORA in oral
squamous cell carcinoma. Oncogenesis. 7:792018. View Article : Google Scholar
|
|
34
|
Cheng CM, Shiah SG, Huang CC, Hsiao JR and
Chang JY: Up-regulation of miR-455-5p by the TGF-β-SMAD signalling
axis promotes the proliferation of oral squamous cancer cells by
targeting UBE2B. J Pathol. 240:38–49. 2016. View Article : Google Scholar
|
|
35
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:e050052015. View Article : Google Scholar
|
|
36
|
Wu M, Duan Q, Liu X, Zhang P, Fu Y, Zhang
Z, Liu L, Cheng J and Jiang H: MiR-155-5p promotes oral cancer
progression by targeting chromatin remodeling gene ARID2. Biomed
Pharmacother. 122:1096962020. View Article : Google Scholar
|
|
37
|
Chen YH, Song Y, Yu YL, Cheng W and Tong
X: miRNA-10a promotes cancer cell proliferation in oral squamous
cell carcinoma by upregulating GLUT1 and promoting glucose
metabolism. Oncol Lett. 17:5441–5446. 2019.
|
|
38
|
Higaki M, Shintani T, Hamada A, Rosli SNZ
and Okamoto T: Eldecalcitol (ED-71)-induced exosomal miR-6887-5p
suppresses squamous cell carcinoma cell growth by targeting
heparin-binding protein 17/fibroblast growth factor-binding
protein-1 (HBp17/FGFBP-1). In vitro cellular & developmental
biology. In Vitro Cell Dev Biol Anim. 56:222–233. 2020. View Article : Google Scholar
|
|
39
|
Li YY, Tao YW, Gao S, Li P, Zheng JM,
Zhang SE, Liang J and Zhang Y: Cancer-associated fibroblasts
contribute to oral cancer cells proliferation and metastasis via
exosome-mediated paracrine miR-34a-5p. EBioMedicine. 36:209–220.
2018. View Article : Google Scholar
|
|
40
|
Dickman CT, Lawson J, Jabalee J, MacLellan
SA, LePard NE, Bennewith KL and Garnis C: Selective extracellular
vesicle exclusion of miR-142-3p by oral cancer cells promotes both
internal and extracellular malignant phenotypes. Oncotarget.
8:15252–15266. 2017. View Article : Google Scholar
|
|
41
|
Fang X, Tang Z, Zhang H and Quan H: Long
non-coding RNA DNM3OS/miR-204-5p/HIP1 axis modulates oral cancer
cell viability and migration. J Oral Pathol Med. 49:865–875. 2020.
View Article : Google Scholar
|
|
42
|
Jakob M, Mattes LM, Küffer S, Unger K,
Hess J, Bertlich M, Haubner F, Ihler F, Canis M, Weiss BG and Kitz
J: MicroRNA expression patterns in oral squamous cell carcinoma:
hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for
oral cancer. Head Neck. 41:3499–3515. 2019. View Article : Google Scholar
|
|
43
|
Falzone L, Lupo G, La Rosa GR, Crimi S,
Anfuso CD, Salemi R, Rapisarda E, Libra M and Candido S:
Identification of Novel MicroRNAs and their diagnostic and
prognostic significance in oral cancer. Cancers. 11:6102019.
View Article : Google Scholar
|
|
44
|
Hsing EW, Shiah SG, Peng HY, Chen YW, Chuu
CP, Hsiao JR, Lyu PC and Chang JY: TNF-α-induced miR-450a mediates
TMEM182 expression to promote oral squamous cell carcinoma
motility. PLoS One. 14:e02134632019. View Article : Google Scholar
|
|
45
|
Kurihara-Shimomura M, Sasahira T,
Shimomura H, Nakashima C and Kirita T: miR-29b-1-5p the oncogenic
activity of induces the epithelial-mesenchymal transition in oral
squamous cell carcinoma. J Clin Med. 24:2732019. View Article : Google Scholar
|
|
46
|
Lu Y, Li Y, Wang Z, Xie S, Wang Q, Lei X,
Ruan Y and Li J: Downregulation of RGMA by HIF-1A/miR-210-3p axis
promotes cell proliferation in oral squamous cell carcinoma. Biomed
Pharmacother. 112:1086082019. View Article : Google Scholar
|
|
47
|
Yuan G, Wu H, Du Y and He F: Tumor
suppressor role of microRNA-545 in oral squamous cell carcinoma.
Oncol Lett. 17:2063–2068. 2019.
|
|
48
|
Qiu YF, Wang MX, Meng LN, Zhang R and Wang
W: MiR-21 regulates proliferation and apoptosis of oral cancer
cells through TNF-α. Eur Rev Med Pharmacol Sci. 22:7735–7741.
2018.
|
|
49
|
Zheng J, Wang J, Jia Y, Liu T, Duan Y,
Liang X and Liu L: microRNA-211 promotes proliferation, migration,
and invasion ability of oral squamous cell carcinoma cells via
targeting the bridging integrator 1 protein. J Cell Biochem.
120:4644–4653. 2019. View Article : Google Scholar
|
|
50
|
Peng SY, Tu HF, Yang CC, Wu CH, Liu CJ,
Chang KW and Lin SC: miR-134 targets PDCD7 to reduce E-cadherin
expression and enhance oral cancer progression. Int J Cancer.
143:2892–2904. 2018. View Article : Google Scholar
|
|
51
|
Kim JS, Choi DW, Kim CS, Yu SK, Kim HJ, Go
DS, Lee SA, Moon SM, Kim SG, Chun HS, et al: MicroRNA-203 induces
apoptosis by targeting in YD-38 oral cancer cells. Anticancer Res.
38:3477–3485. 2018. View Article : Google Scholar
|
|
52
|
Wang L, Wei Y, Yan Y, Wang H, Yang J,
Zheng Z, Zha J, Bo P, Tang Y, Guo X, et al: CircDOCK1 suppresses
cell apoptosis via inhibition of miR-196a-5p by targeting BIRC3 in
OSCC. Oncol Rep. 39:951–966. 2018.
|
|
53
|
Ruan P, Tao Z and Tan A: Low expression of
miR-30a-5p induced the proliferation and invasion of oral cancer
via promoting the expression of FAP. Biosci Rep.
38:BSR201710272018. View Article : Google Scholar
|
|
54
|
Sakha S, Muramatsu T, Ueda K and Inazawa
J: Exosomal microRNA miR-1246 induces cell motility and invasion
through the regulation of DENND2D in oral squamous cell carcinoma.
Sci Rep. 6:387502016. View Article : Google Scholar
|
|
55
|
Chuerduangphui J, Ekalaksananan T,
Chaiyarit P, Patarapadungkit N, Chotiyano A, Kongyingyoes B,
Promthet S and Pientong C: Effects of arecoline on proliferation of
oral squamous cell carcinoma cells by dysregulating c-Myc and
miR-22, directly targeting oncostatin M. PLoS One. 13:e01920092018.
View Article : Google Scholar
|
|
56
|
Harsha C, Banik K, Ang HL, Girisa S,
Vikkurthi R, Parama D, Rana V, Shabnam B, Khatoon E, Kumar AP and
Kunnumakkara AB: Targeting AKT/mTOR in oral cancer: Mechanisms and
advances in clinical trials. Int J Mol Sci. 21:32852020. View Article : Google Scholar
|
|
57
|
Manikandan M, Deva Magendhra Rao AK,
Arunkumar G, Manickavasagam M, Rajkumar KS, Rajaraman R and
Munirajan AK: Oral squamous cell carcinoma: microRNA expression
profiling and integrative analyses for elucidation of
tumourigenesis mechanism. Mol Cancer. 15:282016. View Article : Google Scholar
|
|
58
|
Uesugi A, Kozaki K, Tsuruta T, Furuta M,
Morita K, Imoto I, Omura K and Inazawa J: The tumor suppressive
microRNA miR-218 targets the mTOR component Rictor and inhibits AKT
phosphorylation in oral cancer. Cancer Res. 71:5765–5778. 2011.
View Article : Google Scholar
|
|
59
|
Moratin J, Hartmann S, Brands R, Brisam M,
Mutzbauer G, Scholz C, Seher A, Müller-Richter U, Kübler AC and
Linz C: Evaluation of miRNA-expression and clinical tumour
parameters in oral squamous cell carcinoma (OSCC). J
Craniomaxillofac Surg. 44:876–881. 2016. View Article : Google Scholar
|
|
60
|
Chen D, Chen Z, Jin Y, Dragas D, Zhang L,
Adjei BS, Wang A, Dai Y and Zhou X: MicroRNA-99 family members
suppress Homeobox A1 expression in epithelial cells. PLoS One.
8:e806252013. View Article : Google Scholar
|
|
61
|
Chen R, Zhang Y and Zhang X: MiR-1254
functions as a tumor suppressor in oral squamous cell carcinoma by
targeting CD36. Technol Cancer Res Treat. Aug 11–2019.doi:
10.1177/1533033819859447. View Article : Google Scholar
|
|
62
|
Chen X, Xu H, Sun G and Zhang Y: LncRNA
CASC9 affects cell proliferation, migration, and invasion of tongue
squamous cell carcinoma via regulating miR-423-5p/SOX12 Axes.
Cancer Manage Res. 12:277–287. 2020. View Article : Google Scholar
|
|
63
|
Rastogi B, Kumar A, Raut SK, Panda NK,
Rattan V, Joshi N and Khullar M: Downregulation of miR-377 promotes
oral squamous cell carcinoma growth and migration by targeting
HDAC9. Cancer Invest. 35:152–162. 2017. View Article : Google Scholar
|
|
64
|
Chen F, Qi S, Zhang X, Wu J, Yang X and
Wang R: miR-23a-3p suppresses cell proliferation in oral squamous
cell carcinomas by targeting FGF2 and correlates with a better
prognosis: miR-23a-3p inhibits OSCC growth by targeting FGF2.
Pathol Res Pract. 215:660–667. 2019. View Article : Google Scholar
|
|
65
|
Li X, Liu K, Zhou W and Jiang Z: MiR-155
targeting FoxO3a regulates oral cancer cell proliferation,
apoptosis, and DDP resistance through targeting FoxO3a. Cancer
Biomark. 27:105–111. 2020. View Article : Google Scholar
|
|
66
|
Fu S, Chen HH, Cheng P, Zhang CB and Wu Y:
MiR-155 regulates oral squamous cell carcinoma Tca8113 cell
proliferation, cycle, and apoptosis via regulating p27Kip1. Eur Rev
Med Pharmacol Sci. 21:937–944. 2017.
|
|
67
|
Bufalino A, Cervigne NK, de Oliveira CE,
Fonseca FP, Rodrigues PC, Macedo CC, Sobral LM, Miguel MC, Lopes
MA, Paes Leme AF, et al: Low miR-143/miR-145 cluster levels induce
activin A overexpression in oral squamous cell carcinomas, which
contributes to poor prognosis. PLoS One. 10:e01365992015.
View Article : Google Scholar
|
|
68
|
Huang WC, Chan SH, Jang TH, Chang JW, Ko
YC, Yen TC, Chiang SL, Chiang WF, Shieh TY, Liao CT, et al:
miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral
squamous cell carcinoma invasion and metastasis. Cancer Res.
74:751–764. 2014. View Article : Google Scholar
|
|
69
|
Yu EH, Tu HF, Wu CH, Yang CC and Chang KW:
MicroRNA-21 promotes perineural invasion and impacts survival in
patients with oral carcinoma. J Chin Med Assoc. 80:383–388. 2017.
View Article : Google Scholar
|
|
70
|
Tu HF, Chang KW, Cheng HW and Liu CJ:
Upregulation of miR-372 and −373 associates with lymph node
metastasis and poor prognosis of oral carcinomas. Laryngoscope.
125:E365–E370. 2015. View Article : Google Scholar
|
|
71
|
Zhang B, Li Y, Hou D, Shi Q, Yang S and Li
Q: MicroRNA-375 inhibits growth and enhances radiosensitivity in
oral squamous cell carcinoma by targeting insulin like growth
factor 1 receptor. Cell Physiol Biochem. 42:2105–2117. 2017.
View Article : Google Scholar
|
|
72
|
Weng JH, Yu CC, Lee YC, Lin CW, Chang WW
and Kuo YL: miR-494-3p induces cellular senescence and enhances
radiosensitivity in human oral squamous carcinoma cells. Int J Mol
Sci. 17:10922016. View Article : Google Scholar
|
|
73
|
Min A, Zhu C, Peng S, Shuai C, Sun L, Han
Y, Qian Y, Gao S and Su T: Downregulation of Microrna-148a in
cancer-associated fibroblasts from oral cancer promotes cancer cell
migration and invasion by targeting Wnt10b. J Biochem Mol Toxicol.
30:186–191. 2016. View Article : Google Scholar
|