Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2021 Volume 45 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 45 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Targeting the mitogen‑activated protein kinase kinase and protein kinase A pathways overcomes acquired resistance to Selumetinib in low‑grade glioma cells

  • Authors:
    • Linda Melotti
    • Daniela Meco
    • Alessandra Battaglia
    • Alexia Buzzonetti
    • Maurizio Martini
    • Antonio Ruggiero
    • Giovanni Scambia
    • Riccardo Riccardi
  • View Affiliations / Copyright

    Affiliations: Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, I‑00168 Rome, Italy, Department of Life Science and Public Health, Catholic University of Sacred Heart, I‑00168 Rome, Italy, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, I‑00168 Rome, Italy, Department of Pathology, Fondazione Policlinico A. Gemelli, Catholic University of the Sacred Heart, I‑00141 Rome, Italy
  • Pages: 752-763
    |
    Published online on: November 25, 2020
       https://doi.org/10.3892/or.2020.7867
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The Ras/Raf/MEK/MAPK signaling cascade is frequently activated in human cancer and serves a crucial role in the oncogenesis of pediatric low‑grade gliomas (PLGGs). Therefore, drugs targeting kinases among the mitogen‑activated protein kinase (MAPK) effectors of receptor tyrosine kinase signaling may represent promising candidates for the treatment of PLGGs. The aim of the present study was to elucidate the anticancer effects of the MEK inhibitor Selumetinib on two low‑grade glioma cell lines and the possible underlying effects on intracellular signal transduction. The two cancer cell lines displayed different levels of sensitivity to Selumetinib, as Res186 cells were resistant (IC50>1 µM), whereas Res259 cells were sensitive (IC50≤1 µM) to MEK inhibition. Despite the different levels of sensitivity, Selumetinib mediated the phosphorylation of AKT and MEK in both cell lines and suppressed the phosphorylated MAPK cascades. In addition, Selumetinib induced cell cycle arrest at the G0/G1 phase by downregulating the expression levels of cyclin D1 and p21 and upregulating those of p27 compared with those in the control cells. A Res259 cell line with acquired resistance to Selumetinib (Res259/R) was next established and biologically and molecularly characterized, and it was demonstrated that addition of a selective cAMP‑dependent protein kinase A inhibitor to Selumetinib overcame drug resistance in Res 259/R cells. In conclusion, the results of the present study provided three low‑grade glioma cell line models characterized by sensitivity, intrinsic and acquired resistance to Selumetinib, which may be usuful tools to study new mechanisms of chemoresistance to MEK inhibitors and to explore alternative therapeutic strategies in low‑grade gliomas for personalization of treatment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol. 17 (Suppl 4):iv1–iv62. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Johnson KJ, Cullen J, Barnholtz-Sloan JS, Ostrom QT, Langer CE, Turner MC, McKean-Cowdin R, Fisher JL, Lupo PJ, Partap S, et al: Childhood brain tumor epidemiology: A brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev. 23:2716–2736. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–82. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Sievert AJ and Fisher MJ: Pediatric low-grade gliomas. J Child Neurol. 24:1397–1408. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Bergthold G, Bandopadhayay P, Bi WL, Ramkissoon L, Stiles C, Segal RA, Beroukhim R, Ligon KL, Grill J and Kieran MW: Pediatric low-grade gliomas: How modern biology reshapes the clinical field. Biochim Biophys Acta. 1845:294–307. 2014.PubMed/NCBI

6 

Chalil A and Ramaswamy V: Low grade gliomas in children. J Child Neurol. 31:517–522. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Dasgupta T, Olow AK, Yang X, Hashizume R, Nicolaides TP, Tom M, Aoki Y, Berger MS, Weiss WA, Stalpers LJ, et al: Survival advantage combining a BRAF inhibitor and radiation in BRAF V600E-mutant glioma. Neurooncol. 126:385–393. 2016. View Article : Google Scholar

8 

Ater Jl, Zhou T, Holmes E, Mazewski CM, Booth TN, Freyer DR, Lazarus KH, Packer RJ, Prados M, Sposto R, et al: Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: A report from the children's oncology group. J Clin Oncol. 30:2641–2647. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus KJ, Guo D, Ullrich NJ, Robison NJ, Chi SN, et al: Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: An analysis of the surveillance epidemiology and end results (SEER) database. Pediatr Blood Cancer. 61:1173–1179. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Weuken JW and Wesseling P: MAPK pathway activation through BRAF gene fusion in pilocytic astrocytomas; a novel oncogenic fusion gene with diagnostic, prognostic, and therapeutic potential. J Pathol. 222:324–328. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2019.

12 

Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, Toedt G, Wittmann A, Kratz C, Olbrich H, et al: BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 118:1739–1749. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Tateishi K, Nakamura T and Yamamoto T: Molecular genetics and therapeutic targets of pediatric low-grade gliomas. Brain Tumor Pathol. 36:74–83. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Roskoski R Jr: MEK1/2 dual-specificity protein kinases: Structure and regulation. Biochem Biophys Res Commun. 417:5–10. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Roskoski R Jr: ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 66:105–143. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Roskoski R Jr: Allosteric MEK1/2 inhibitors including cobimetanib and trametinib in the treatment of cutaneous melanomas. Pharmacol Res. 117:20–31. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, Parry J, Smith D, Brandhuber BJ, Gross S, et al: Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res. 13:1576–1583. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, Cockerill M, Cartlidge S and Smith PD: AZD6244 (ARRY- 142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 kinases: Mechanism of action in vivo, pharmacokinetic/pharmacodynamics relationship, and potential for combination in preclinical models. Mol Cancer Ther. 6:2209–2219. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Deming DA, Cavalcante LL, Lubner SJ, Mulkerin DL, Conte L, Eickhoff JC, Kolesar JM, Fioravanti S, Greten TF, Compton K, et al: A phase I study of selumetinib (AZD6244/ARRY-142866), a MEK1/2 inhibitor, in combination with cetuximab in refractory solid tumors and KRAS mutant colorectal cancer. Invest New Drugs. 34:168–175. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Greystoke A, Steele N, Arkenau HT, Blackhall F, Haris N, Lindsay CR, Califano R, Voskoboynik M, Summers Y, So K, et al: SELECT-3: A phase I study of selumetinib in combination with platinum-doublet chemotherapy for advanced NSCLC in the first-line setting. Br J Cancer. 117:938–946. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Melosky B, Bradbury P, Tu D, Florescu M, Reiman A, Nicholas G, Basappa N, Rothenstein J, Goffin JR, Laurie SA, et al: Selumetinib in patients receiving standard pemetrexed and platinum-based chemotherapy for advanced or metastatic KRAS wildtype or unknown non-squamous non-small cell lung cancer: A randomized, multicenter, phase II study. Canadian cancer trials group (CCTG) IND.219. Lung Cancer. 133:48–55. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Torii S, Yamamoto T, Tsuchiya Y and Nishida E: ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci. 97:697–702. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Bax DA, Little SE, Gaspar N, Perryman L, Marshall L, Viana-Pereira M, Jones TA, Williams RD, Grigoriadis A, Vassal G, et al: Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS One. 4:e52092009. View Article : Google Scholar : PubMed/NCBI

24 

Chou TC: Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 15:440–446. 2011.

25 

Adjei AA, Cohen RB, Franklin WB, Morris C, Wilson D, Molina JR, Hanson LJ, Gore L, Chow L, Leong S, et al: Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol. 26:2139–2146. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Chen YH and Gutmann DH: The molecular and cell biology of pediatric low-grade gliomas. Oncogene. 33:2019–2026. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Khatua S, Gutmann DH and Packer RJ: Neurofibromatosis type 1 and optic pathway glioma: Molecular interplay and therapeutic insights. Pediatr Blood Cancer. 65:2018. View Article : Google Scholar : PubMed/NCBI

28 

Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D and Rubin JB: Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res. 67:651–658. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Warriton NM, Gianino SM, Jackson E, Goldhoff P, Garbow JR, Piwnica-Worms D, Gutmann DH and Rubin JB: Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 70:5717–5727. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Xing F, Luan Y, Cai J, Wu S, Mai J, Gu J, Zhang H, Li K, Lin Y, Xiao X, et al: The anti-Warburg effect elicited by the cAMP-PGC1α pathway drives differentiation of glioblastoma cells into astrocytes. Cell Rep. 23:2832–2833. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Goldhoff P, Warrington NM, Limbrick DD Jr, Hope A, Woerner BM, Jackson E, Perry A, Piwnica-Worms D and Rubin JR: Targeted inhibition of cyclic AMP phosphodiesterase-4 promotes brain tumor regression. Clin Cancer Res. 14:7717–7725. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Lucchi S, Calebiro D, de Filippis T, Grassi ES, Borghi MO and Persani L: 8-Chloro-cyclic AMP and protein kinase A I-selective cyclic AMP analogs inhibit cancer cell growth through different mechanisms. PLoS One. 6:e207852011. View Article : Google Scholar : PubMed/NCBI

33 

Cheng YM, Zhu Q, Yao YY, Tang Y, Wang MM and Zou LF: 8-Chloroadenosine 3′,5′-monophosphate induces cell cycle arrest and apoptosis in multiple myeloma cells through multiple mechanisms. Oncol Lett. 4:1384–1388. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Grassi ES, Dicitore A, Negri I, Borghi MO, Vitale G and Persani L: 8-Cl-cAMP and PKA I-selective cAMP analogs effectively inhibit undifferentiated thyroid cancer cell growth. Endocrine. 56:388–398. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Garcia MA, Solomon DA and Haas-Kogan DA: Exploiting molecular biology for diagnosis and targeted management of pediatric low-grade gliomas. Future Oncol. 12:1493–506. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Banerjee RI, Jakacki A, Onar-Thomas S, Wu T, Nicolaides T, Young Poussaint J, Fangusaro J, Phillips A, Perry A, Turner D, et al: A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: A pediatric brain tumor consortium (PBTC) study. Neuro Oncol. 19:1135–1144. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Smith AM, Zhang CRZ, Cristino AS, Grady JP, Fink JL and Moore AS: PTEN deletion drives acute myeloid leukemia resistance to MEK inhibitors. Oncotarget. 10:5755–5767. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Hur EH, Goo BK, Moon J, Choi Y, Hwang JJ, Kim CS, Bae KS, Choi J, Cho SY, Yang SH, et al: Induction of immunoglobulin transcription factor 2 and resistance to MEK inhibitor in melanoma cells. Oncotarget. 20:41387–41400. 2017. View Article : Google Scholar

39 

Lim SY, Menzies AM and Rizos H: Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer. 123:21–29. 2017. View Article : Google Scholar

40 

Nörz D, Grottke A, Bach J, Herzberger C, Hofmann BT, Nashan B, Jücker M and Ewald F: Discontinuing MEK inhibitors in tumor cells with an acquired resistance increases migration and invasion. Cell Signal. 27:2191–2200. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Simeone E, Grimaldi AM, Festino L, Vanella V, Palla M and Ascierto PA: Combination treatment of patients with BRAF-mutant melanoma: A new standard of care. BioDrugs. 31:51–61. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Welsh SJ, Rizos H, Scolyer RA and Long GV: Resistance to combination BRAF and MEK inhibition in metastatic melanoma: Where to next? Eur J Cancer. 62:76–85. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, et al: BRAF mutation predicts sensitivity to MEK inhibition. Nature. 439:358–362. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Dizdar L, Werner TA, Drusenheimer JC, Möhlendick B, Raba K, Boeck I, Anlauf M, Schott M, Göring W, Esposito I, et al: BRAFV600E mutation: A promising target in colorectal neuroendocrine carcinoma. Int J Cancer. 144:1379–1390. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, Kulkarni SG, Rominger CM, Erskine S, Fisher KE, Yang J, et al: GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 17:989–1000. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Catalanotti F, Solit DB, Pulitzer MP, Berger MF, Scott SN, Iyriboz T, Lacouture ME, Panageas KS, Wolchok JD, Carvajal RD, et al: Phase II trial of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with BRAFV600E/K-mutated melanoma. Clin Cancer Res. 19:2257–2264. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Burger MC, Ronellenfitsch W, Lorenz NI, Wagner M, Voss M, Capper D, Tzaridis T, Herrlinger U, Steinbach JP, Stoffels G, et al: Dabrafenib in patients with recurrent, BRAF V600E mutated malignant glioma and leptomeningeal disease. Oncol Rep. 38:3291–3296. 2017.PubMed/NCBI

48 

Ranzani M, Alifrangis C, Perna D, Dutton-Regester K, Pritchard A, Wong K, Rashid M, Robles-Espinoza CD, Hayward NK, McDemott U, et al: BRAF/NRAS wild-type melanoma, NF1 status and sensitivity to trametinib. Pigment Cell Melanoma Res. 28:117–119. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Ming Z, Lim SY, Kefford RF and Rizos H: Mitogen-activated protein kinase dependency in BRAF/RAS wild-type melanoma: A rationale for combination inhibitors. Pigment Cell Melanoma Res. 33:345–357. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Fangusaro J, Onar-Thomas A, Pussaint TY, Wu S, Ligon AH, Lindman N, Banerjee A, Pacher RJ, Kilburn LB, Goldman S, Polack IF, et al: Selumetinb in paedriatic patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrant, refractory, or progressive low-grade glioma: A multicenter, phases 2 trial. Lancet Oncol. 20:1011–1022. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Grasso S, Tristante E, Saceda M, Carbonell P, Mayor-López L, Carballo-Santana M, Carrasco-García E, Rocamora-Reverte L, García-Morales P, Carballo F, et al: Resistance to Selumetinib (AZD6244) in colorectal cancer cell lines is mediated by p70S6K and RPS6 activation. Neoplasia. 16:845–860. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Tentler JJ, Nallapareddy S, Tan AC, Spreafico A, Pitts TM, Morelli MP, Selby HM, Kachaeva MI, Flanigan SA, Kulikowski GN, et al: Identification of predictive markers of response to the MEK1/2 inhibitor selumetinib (AZD6244) in K-ras-mutated colorectal cancer. Mol Cancer Ther. 9:3351–3362. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Kerstjens M, Driessen EM, Willekes M, Pinhanços SS, Schneider P, Pieters R and Stam RW: MEK inhibition is a promising therapeutic strategy for MLL-rearranged infant acute lymphoblastic leukemia patients carrying RAS mutations. Oncotarget. 8:14835–14846. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Meng J, Peng H, Dai B, Guo W, Wang L, Ji L, Minna JD, Chresta CM, Smith PD, Fang B and Roth JA: High level of AKT activity is associated with resistance to MEK inhibitor AZD6244 (ARRY-142886). Cancer Biol Ther. 8:2073–2080. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Sweetlove M, Wrightson E, Kolekar S, Rewcastle GW, Baguley BC, Shepherd PR and Jamieson SM: Inhibitors of pan-PI3K signaling synergize with BRAF or MEK inhibitors to prevent BRAF-mutant melanoma cell growth. Front Oncol. 5:1352015. View Article : Google Scholar : PubMed/NCBI

56 

Tsubaki M, Takeda T, Noguchi M, Jinushi M, Seki S, Morii Y, Shimomura K, Imano M, Satou T and Nishida S: Overactivation of Akt contributes to MEK inhibitor primary and acquired resistance in colorectal cancer cells. Cancers (Basel). 25:11–12. 2019.

57 

Balmanno K, Chell SD, Gillings AS, Hayat S and Cook SJ: Intrinsic resistance to the MEK1/2 inhibitor AZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and /or strong PI3K signalilling in colorectal cancer cell lines. Int J Cancer. 125:2332–2341. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, Liu Y, Tupper T, Ouyang J, Li J, et al: A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature. 483:613–617. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Chang T, Krisman K, Theobald EH, Xu J, Akutagawa J, Lauchle JO, Kogan S, Braun BS and Shannon K: Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest. 123:335–339. 2013. View Article : Google Scholar : PubMed/NCBI

60 

See WL, Tan IL, Mukherjee J, Nicolaides T and Pieper RO: Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Res. 72:3350–3359. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Nissan MH, Pratilas CA, Jones AM, Ramirez R, Won H, Liu C, Tiwari S, Kong L, Hanrahan AJ, Yao Z, et al: Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res. 74:2340–2350. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Whittaker SR, Theurillat JP, Van Allen E, Wagle N, Hsiao J, Cowley GS, Schadendorf D, Root DE and Garraway LA: A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 3:350–362. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Li Y, Dong Q and Cui Q: Synergistic inhibition of MEK and reciprocal feedback networks for targeted intervention in malignancy. Cancer Biol Med. 16:415–434. 2019.PubMed/NCBI

64 

Chen CH, Hsia TC, Yeh MH, Chen TW, Chen YJ, Wei YL, Tu CY and Huang WC: MEK inhibitors induce Akt activation and drug resistance by suppressing negative feedback ERK-mediated HER2 phosphorylation at Thr701. Mol Oncol. 11:1273–1287. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Iizuka-Ohashi M, Watanabe M, Sukeno M, Morita M, Hoang NTH, Kuchimaru T, Kizaka-Kondoh S, Sowa Y, Sakaguchi K, Taguchi T, et al: Blockage of the mevalonate pathway overcomes the apoptotic resistance to MEK inhibitors with suppressing the activation of Akt in cancer cells. Oncotarget. 9:19597–19612. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Coussy F, El Botty R, Lavigne M, Gu C, Fuhrmann L, Briaux A, de Koning L, Dahmani A, Montaudon E, Morisset L, et al: Combination of PI3K and MEK inhibitors yields durable remission in PDX models of PIK3CA-mutated metaplastic breast cancers. J Hematol Oncol. 13:132020. View Article : Google Scholar : PubMed/NCBI

67 

Liu X, Hu J, Song X, Utpatel K, Zhang Y, Wang P, Lu X, Zhang J, Xu M, Su T, et al: Combined treatment with MEK and mTOR inhibitors is effective in in vitro and in vivo models of hepatocellular carcinoma. Cancers (Basel). 3:9302019. View Article : Google Scholar

68 

Ewald F, Nörz D, Grottke A, Bach J, Herzberger C, Hofmann BT, Nashan B and Jücker M: Vertical targeting of AKT and mTOR as well as dual targeting of AKT and MEK signaling is synergistic in hepatocellular carcinoma. J Cancer. 16:1195–1205. 2015. View Article : Google Scholar

69 

Meng J, Dai B, Fang B, Bekele BN, Bornmann WG, Sun D, Peng Z, Herbst RS, Papadimitrakopoulou V, Minna JD, et al: Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PLoS One. 29:e141242010. View Article : Google Scholar

70 

Arnold A, Yuan M, Price A, Harris L, Eberhart CG and Raabe EH: Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity. Neuro Oncol. 22:563–574. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Choi KY, Cho YJ, Kim JS, Ahn YH and Hong SH: SHC1 sensitizes cancer cells to the 8-Cl-cAMP treatment. Biochem Biophys Res Commun. 463:673–678. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Grbovic O, Jovic V, Ruzdijic S, Pejanovic V, Rakic L and Kanazir S: 8-Cl-cAMP affects glioma cell-cycle kinetics and selectively induces apoptosis. Cancer Invest. 20:972–982. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Langeveld CH, Jongenelen CA, Heimans JJ and Stoof JC: Growth inhibition of human glioma cells induced by 8-chloroadenosine, an active metabolite of 8-chloro cyclic adenosine 3′:5′-monophosphate. Cancer Res. 52:3994–3999. 1992.PubMed/NCBI

74 

Xing F, Luan Y, Cai J, Wu S, Mai J, Gu J, Zhang H, Li K, Lin Y, Xiao X, et al: The anti-Warburg effect elicited by the cAMP-PGC1α pathway drives differentiation of glioblastoma cells into astrocytes. Cell Rep. 18:468–481. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Melotti L, Meco D, Battaglia A, Buzzonetti A, Martini M, Ruggiero A, Scambia G and Riccardi R: Targeting the mitogen‑activated protein kinase kinase and protein kinase A pathways overcomes acquired resistance to Selumetinib in low‑grade glioma cells. Oncol Rep 45: 752-763, 2021.
APA
Melotti, L., Meco, D., Battaglia, A., Buzzonetti, A., Martini, M., Ruggiero, A. ... Riccardi, R. (2021). Targeting the mitogen‑activated protein kinase kinase and protein kinase A pathways overcomes acquired resistance to Selumetinib in low‑grade glioma cells. Oncology Reports, 45, 752-763. https://doi.org/10.3892/or.2020.7867
MLA
Melotti, L., Meco, D., Battaglia, A., Buzzonetti, A., Martini, M., Ruggiero, A., Scambia, G., Riccardi, R."Targeting the mitogen‑activated protein kinase kinase and protein kinase A pathways overcomes acquired resistance to Selumetinib in low‑grade glioma cells". Oncology Reports 45.2 (2021): 752-763.
Chicago
Melotti, L., Meco, D., Battaglia, A., Buzzonetti, A., Martini, M., Ruggiero, A., Scambia, G., Riccardi, R."Targeting the mitogen‑activated protein kinase kinase and protein kinase A pathways overcomes acquired resistance to Selumetinib in low‑grade glioma cells". Oncology Reports 45, no. 2 (2021): 752-763. https://doi.org/10.3892/or.2020.7867
Copy and paste a formatted citation
x
Spandidos Publications style
Melotti L, Meco D, Battaglia A, Buzzonetti A, Martini M, Ruggiero A, Scambia G and Riccardi R: Targeting the mitogen‑activated protein kinase kinase and protein kinase A pathways overcomes acquired resistance to Selumetinib in low‑grade glioma cells. Oncol Rep 45: 752-763, 2021.
APA
Melotti, L., Meco, D., Battaglia, A., Buzzonetti, A., Martini, M., Ruggiero, A. ... Riccardi, R. (2021). Targeting the mitogen‑activated protein kinase kinase and protein kinase A pathways overcomes acquired resistance to Selumetinib in low‑grade glioma cells. Oncology Reports, 45, 752-763. https://doi.org/10.3892/or.2020.7867
MLA
Melotti, L., Meco, D., Battaglia, A., Buzzonetti, A., Martini, M., Ruggiero, A., Scambia, G., Riccardi, R."Targeting the mitogen‑activated protein kinase kinase and protein kinase A pathways overcomes acquired resistance to Selumetinib in low‑grade glioma cells". Oncology Reports 45.2 (2021): 752-763.
Chicago
Melotti, L., Meco, D., Battaglia, A., Buzzonetti, A., Martini, M., Ruggiero, A., Scambia, G., Riccardi, R."Targeting the mitogen‑activated protein kinase kinase and protein kinase A pathways overcomes acquired resistance to Selumetinib in low‑grade glioma cells". Oncology Reports 45, no. 2 (2021): 752-763. https://doi.org/10.3892/or.2020.7867
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team