|
1
|
Ferlay J, Steliarova-Foucher E,
Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D and
Bray F: Cancer incidence and mortality patterns in Europe:
Estimates for 40 countries in 2012. Eur J Cancer. 49:1374–403.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gridelli C, Rossi A, Carbone DP, Guarize
J, Karachaliou N, Mok T, Petrella F, Spaggiari L and Rosell R:
Non-small-cell lung cancer. Nat Rev Dis Primers. 1:150092015.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sgambato A, Casaluce F, Maione P and
Gridelli C: Targeted therapies in non-small cell lung cancer: A
focus on ALK/ROS1 tyrosine kinase inhibitors. Expert Rev Anticancer
Ther. 18:71–80. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lee DH: Treatments for EGFR-mutant
non-small cell lung cancer (NSCLC): The road to a success, paved
with failures. Pharmacol Ther. 174:1–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ettinger DS, Wood DE, Aggarwal C, Aisner
DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac
LR, et al: NCCN guidelines insights: Non-small cell lung cancer,
version 1.2020. J Natl Compr Canc Netw. 17:1464–1472. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Planchard D, Popat S, Kerr K, Novello S,
Smit EF, Faivre-Finn C, Mok TS, Reck M, Van Schil PE, Hellmann MD,
et al: Metastatic non-small cell lung cancer: ESMO clinical
practice guidelines for diagnosis, treatment and follow-up. Ann
Oncol. 29 (Suppl 4):iv192–iv237. 2018. View Article : Google Scholar
|
|
7
|
Holleman MS, van Tinteren H, Groen HJ, Al
MJ and Uyl-de Groot CA: First-line Tyrosine Kinase inhibitors in
EGFR mutation-positive non-small-cell lung cancer: A network
meta-analysis. Onco Targets Ther. 12:1413–1421. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Verbeeck RK: Pharmacokinetics and dosage
adjustment in patients with hepatic dysfunction. Eur J Clin
Pharmacol. 64:1147–1161. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Verbeeck RK and Musuamba FT:
Pharmacokinetics and dosage adjustment in patients with renal
dysfunction. Eur J Clin Pharmacol. 65:757–773. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2019/201292s015lbl.pdfFeb
2–2020
|
|
11
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/giotrif-epar-product-information_en.pdfFeb
2–2020
|
|
12
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208434s004lbl.pdfFeb
2–2020
|
|
13
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/alecensa-epar-product-information_en.pdfFeb
2–2020
|
|
14
|
Morcos PN, Cleary Y, Sturm-Pellanda C,
Guerini E, Abt M, Donzelli M, Vazvaei F, Balas B, Parrott N and Yu
L: Effect of hepatic impairment on the pharmacokinetics of
alectinib. J Clin Pharmacol. 58:1618–1628. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208772s004lbl.pdfFeb
2–2020
|
|
16
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/alunbrig-epar-product-information_en.pdfFeb
2–2020
|
|
17
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2020/203756s008lbl.pdfFeb
2–2020
|
|
18
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208692s007lbl.pdfFeb
2–2020
|
|
19
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/cometriq-epar-product-information_en-0.pdfFeb
2–2020
|
|
20
|
Nguyen L, Chapel S, Tran BD and Lacy S:
Updated population pharmacokinetic model of cabozantinib
integrating various cancer types including hepatocellular
carcinoma. J Clin Pharmacol. 59:1551–1561. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nguyen L, Holland J, Ramies D, Mamelok R,
Benrimoh N, Ciric S, Marbury T, Preston RA, Heuman DM, Gavis E and
Lacy S: Effect of renal and hepatic impairment on the
pharmacokinetics of cabozantinib. J Clin Pharmacol. 56:1130–1140.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2019/205755s016lbl.pdfFeb
2–2020
|
|
23
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/zykadia-epar-product-information_en.pdfFeb
2–2020
|
|
24
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202570s000lbl.pdfFeb
2–2020
|
|
25
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/xalkori-epar-product-information_en.pdfFeb
2–2020
|
|
26
|
El-Khoueiry AB, Sarantopoulos J, O'Bryant
CL, Ciombor KK, Xu H, O'Gorman M, Chakrabarti J, Usari T and
El-Rayes BF: Evaluation of hepatic impairment on pharmacokinetics
and safety of crizotinib in patients with advanced cancer. Cancer
Chemother Pharmacol. 81:659–670. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2020/202806s015lbl.pdfFeb
2–2020
|
|
28
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/tafinlar-epar-product-information_en.pdfFeb
2–2020
|
|
29
|
Ouellet D, Gibiansky E, Leonowens C,
O'Hagan A, Haney P, Switzky J and Goodman VL: Population
pharmacokinetics of dabrafenib, a BRAF inhibitor: Effect of dose,
time, covariates, and relationship with its metabolites. J Clin
Pharmacol. 54:696–706. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211288s000lbl.pdfFeb
2–2020
|
|
31
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/vizimpro-epar-product-information_en.pdfFeb
2–2020
|
|
32
|
Giri N, Masters JC, Plotka A, Liang Y,
Boutros T, Pardo P, O'Connell J and Bello C: Investigation of the
impact of hepatic impairment on the pharmacokinetics of
dacomitinib. Invest New Drugs. 33:931–941. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212725s000lbl.pdfMay
3–2020
|
|
34
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdfFeb
2–2020
|
|
35
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/tarceva-epar-product-information_en.pdfFeb
2–2020
|
|
36
|
O'Bryant CL, Haluska P, Rosen L,
Ramanathan RK, Venugopal B, Leong S, Boinpally R, Franke A, Witt K,
Evans J, et al: An open-label study to describe pharmacokinetic
parameters of erlotinib in patients with advanced solid tumors with
adequate and moderately impaired hepatic function. Cancer Chemother
Pharmacol. 69:605–612. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Miller AA, Murry DJ, Owzar K, Hollis DR,
Lewis LD, Kindler HL, Marshall JL, Villalona-Calero MA, Edelman MJ,
Hohl RJ, et al: Phase I and pharmacokinetic study of erlotinib for
solid tumors in patients with hepatic or renal dysfunction: CALGB
60101. J Clin Oncol. 25:3055–3060. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2005/021399s008lbl.pdfFeb
2–2020
|
|
39
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/gefitinib-mylan-epar-product-information_en.pdfFeb
2–2020
|
|
40
|
Horak J, White J, Harris AL, Verrill M,
Carmichael J, Holt A, Cantarini M, Macpherson M, Swaisland A,
Swaisland H and Twelves C: The effect of different etiologies of
hepatic impairment on the pharmacokinetics of gefitinib. Cancer
Chemother Pharmacol. 68:1485–1495. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210861s000lbl.pdfFeb
2–2020
|
|
42
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/vitrakvi-epar-product-information_en.pdfFeb
2–2020
|
|
43
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210868s000lbl.pdfFeb
2–2020
|
|
44
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/lorviqua-epar-product-information_en.pdfFeb
2–2020
|
|
45
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208065s013lbl.pdfFeb
2–2020
|
|
46
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdfFeb
2–2020
|
|
47
|
Grande E, Harvey RD, You B, Batlle JF,
Galbraith H, Sarantopoulos J, Ramalingam SS, Mann H, So K, Johnson
M and Vishwanathan K: Pharmacokinetic study of osimertinib in
cancer patients with mild or moderate hepatic impairment. J
Pharmacol Exp Ther. 369:291–299. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2020/204114s014lbl.pdfFeb
2–2020
|
|
49
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/mekinist-epar-product-information_en.pdfFeb
2–2020
|
|
50
|
Ouellet D, Kassir N, Chiu J, Mouksassi MS,
Leonowens C, Cox D, DeMarini DJ, Gardner O, Crist W and Patel K:
Population pharmacokinetics and exposure-response of trametinib, a
MEK inhibitor, in patients with BRAF V600 mutation-positive
melanoma. Cancer Chemother Pharmacol. 77:807–817. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022405s014lbl.pdfFeb
2–2020
|
|
52
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/caprelsa-epar-product-information_en.pdfFeb
2–2020
|
|
53
|
Weil A, Martin P, Smith R, Oliver S,
Langmuir P, Read J and Molz KH: Pharmacokinetics of vandetanib in
subjects with renal or hepatic impairment. Clin Pharmacokinet.
49:607–618. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
US Food and Drug Administration. Label, .
simplehttps://www.accessdata.fda.gov/drugsatfda_docs/label/2017/202429s016lbl.pdfFeb
2–2020
|
|
55
|
European Medicines Agency. Product
information, . simplehttps://www.ema.europa.eu/en/documents/product-information/zelboraf-epar-product-information_en.pdfFeb
2–2020
|
|
56
|
Zhang W, Heinzmann D and Grippo JF:
Clinical pharmacokinetics of vemurafenib. Clin Pharmacokinet.
56:1033–1043. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Field KM and Michael M: Part II: Liver
function in oncology: Towards safer chemotherapy use. Lancet Oncol.
9:1181–1190. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Krens SD, Lassche G, Jansman FG, Desar IM,
Lankheet NA, Burger DM, van Herpen CM and van Erp NP: Dose
recommendations for anticancer drugs in patients with renal or
hepatic impairment. Lancet Oncol. 20:e200–e207. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pond SM and Tozer TN: First-pass
elimination: Basic concepts and clinical consequences. Clin
Pharmacokinet. 9:1–25. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chtioui H and Buclin T: Pharmacokinetics
in hepatic impairment: Mind the protein binding. J Hepatol.
63:1539–1540. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Villeneuve JP and Pichette V: Cytochrome
P450 and liver diseases. Curr Drug Metab. 5:273–282. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zollner G, Fickert P, Silbert D,
Fuchsbichler A, Marschall HU, Zatloukal K, Denk H and Trauner M:
Adaptive changes in hepatobiliary transporter expression in primary
biliary cirrhosis. J Hepatol. 38:717–727. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Proulx NL, Akbari A, Garg AX, Rostom A,
Jaffey J and Clark HD: Measured creatinine clearance from timed
urine collections substantially overestimates glomerular filtration
rate in patients with liver cirrhosis: A Systematic review and
individual patient Meta-analysis. Nephrol Dial Transplant.
20:1617–1622. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
European Medicines Agency, . Guideline on
the evalution of the pharmacokinetics of medicinal products in
patients with impaired hepatic function. simplehttps://www.ema.europa.eu/documents/scientific-guideline/guideline-evaluation-pharmacokineticsmedicinal-products-patients-impaired-hepatic-function_en.pdfJan
20–2020
|
|
65
|
US Food and Drug Administration, .
Guidance for industry: Pharmacokinetics in patients with impaired
hepatic function: Study design, data analysis, and impact on dosing
and labeling. simplehttps://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm072123.pdfJan
20–2020
|
|
66
|
Mansfield AS, Rudek MA, Vulih D, Smith GL,
Harris PJ and Ivy SP; NCI Organ Dysfunction Working Group, : The
effect of hepatic impairment on outcomes in phase I clinical trials
in cancer subjects. Clin Cancer Res. 22:5472–5479. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fujita K, Matsumoto N, Ishida H, Kubota Y,
Iwai S, Shibanuma M and Kato Yo: Decreased disposition of
anticancer drugs predominantly eliminated via the liver in patients
with renal failure. Curr Drug Metab. 20:361–376. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kim AH, Yoon S, Lee Y, Lee J, Bae E, Lee
H, Kim DK, Lee S, Yu KS, Jang IJ and Cho JY: Assessment of Hepatic
Cytochrome P450 3A activity using metabolic markers in patients
with renal impairment. J Korean Med Sci. 33:e2982018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Matzke GR, Dowling TC, Marks SA and Murphy
JE: Influence of kidney disease on drug disposition: An assessment
of industry studies submitted to the FDA for new chemical entities
1999-2010. J Clin Pharmacol. 56:390–398. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wiebe S, Schnell D, Külzer R, Gansser D,
Weber A, Wallenstein G, Halabi A, Conrad A and Wind S: Influence of
renal impairment on the pharmacokinetics of afatinib: An
Open-Label, Single-Dose Study. Eur J Drug Metab Pharmacokinet.
42:461–469. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Inker LA, Astor BC, Fox CH, Isakova T,
Lash JP, Peralta CA, Kurella Tamura M and Feldman HI: KDOQI US
commentary on the 2012 KDIGO clinical practice guideline for the
evaluation and management of CKD. Am J Kidney Dis. 63:713–735.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Shah RR and Shah DR: Safety and
tolerability of epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitors in oncology. Drug Saf. 42:181–198. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Imai H, Kaira K, Naruse I, Hayashi H,
Iihara H, Kita Y, Mizusaki N, Asao T, Itoh Y, Sugiyama T, et al:
Successful afatinib treatment of advanced non-small-cell lung
cancer patients undergoing hemodialysis. Cancer Chemother
Pharmacol. 79:209–213. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bersanelli M, Tiseo M, Artioli F, Lucchi L
and Ardizzoni A: Gefitinib and Afatinib treatment in an advanced
Non-small cell lung cancer (NSCLC) Patient Undergoing Hemodialysis.
Anticancer Res. 34:3185–3188. 2014.PubMed/NCBI
|
|
75
|
Suzuki S, Haratani K, Takahama T, Watanabe
S, Takegawa N, Hayashi H, Takeda M, Yonesaka K and Nakagawa K:
Safety and Efficacy of alectinib in a patient with advanced NSCLC
Undergoing Hemodialysis. J Thorac Oncol. 14:e50–e52. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hong Y, Passos VQ, Huang PH and Lau YY:
Population pharmacokinetics of ceritinib in adult patients with
tumors characterized by genetic abnormalities in anaplastic
lymphoma kinase. J Clin Pharmacol. 57:652–662. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Tan W, Yamazaki S, Johnson TR, Wang R,
O'Gorman MT, Kirkovsky L, Boutros T, Brega NM and Bello A: Effects
of renal function on crizotinib pharmacokinetics: Dose
recommendations for patients with ALK-Positive Non-Small cell lung
cancer. Clin Drug Investig. 37:363–373. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang E, Nickens DJ, Bello A, Khosravan R,
Amantea M, Wilner KD, Parivar K and Tan W: Clinical implications of
the pharmacokinetics of crizotinib in populations of patients with
non-small cell lung cancer. Clin Cancer Res. 22:5722–5728. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kothari S, Ud-Din N, Lisi M and Coyle T:
Crizotinib in anaplastic lymphoma kinasepositive anaplastic large
cell lymphoma in the setting of renal insufficiency: A case report.
J Med Case Rep. 10:1762016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Song SH, Ryu JW, Jwa HY, Ha CW, Kim H, Jo
JM and Han SH: ALK-positive lung cancer diagnosed with abdominal
lymph nodes in a patient receiving hemodialysis. Thorac Cancer.
10:2188–2191. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Park JJ, Boddy AV, Liu X, Harris D, Lee V,
Kefford RF and Carlino MS: Pharmacokinetics of dabrafenib in a
patient with metastatic melanoma undergoing haemodialysis. Pigment
Cell Melanoma Res. 30:68–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Togashi Y, Masago K, Fukudo M, Terada T,
Ikemi Y, Kim YH, Fujita S, Irisa K, Sakamori Y, Mio T, et al:
Pharmacokinetics of Erlotinib and its active metabolite OSI-420 in
patients with non-small cell lung cancer and chronic renal failure
who are undergoing hemodialysis. J Thorac Oncol. 5:601–605. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gridelli C, Maione P, Galetta D and Rossi
A: Safety profile of Erlotinib in patients with advanced non-small
cell lung cancer with chronic renal failure. J Thorac Oncol.
2:96–98. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rossi A, Maione P, Del Gaizo F, Guerriero
C, Castaldo V and Gridelli C: Safety profile of gefitinib in
advanced non-small cell lung cancer elderly patients with chronic
renal failure: Two clinical cases. Lung Cancer. 47:421–423. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yamaguchi T, Isogai S, Okamura T, Uozu S,
Mieno Y, Hoshino T, Goto Y, Hayashi M, Nakanishi T and Imaizumi K:
Pharmacokinetics of Gefitinib in a patient with non-small cell lung
cancer undergoing continuous ambulatory peritoneal dialysis. Case
Rep Oncol. 8:78–82. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Luo J, Ni L, Wang M, Zhong W, Xiao Y,
Zheng K and Hu P: Pharmacokinetic analysis of gefitinib in a
patient with advanced non-small cell lung cancer undergoing
hemodialysis. Thorac Cancer. 7:251–253. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Shinagawa N, Yamazaki K, Asahina H, Agata
J, Itoh T and Nishimura M: Gefitinib administration in a patient
with lung cancer undergoing hemodialysis. Lung Cancer. 58:422–424.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Del Conte A, Minatel E, Schinella D,
Baresic T, Basso SM and Lumachi F: Complete metabolic remission
with gefitinib in a hemodialysis patient with bone metastases from
non-small cell lung cancer. Anticancer Res. 34:319–322.
2014.PubMed/NCBI
|
|
89
|
Yamada H, Satoh H, Hida N, Nakaizumi T,
Terashima H and Hizawa N: Osimertinib for an older de novo T790M
patient with chronic kidney disease. Geriatr Gerontol Int.
18:503–504. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tamura T, Takagi Y, Okubo H, Yamaguchi S,
Kikkawa Y, Hashimoto I, Kaburagi T, Miura M, Satoh H and Hizawa N:
Plasma concentration of osimertinib in a non-small cell lung cancer
patient with chronic renal failure undergoing hemodialysis. Lung
Cancer. 112:225–226. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Iwafuchi Y, Saito I and Narita I: Efficacy
and safety of osimertinib in a hemodialysis patient with advanced
non-small cell lung cancer. Ther Apher Dial. 21:416–417. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Matsunashi A, Fujimoto D, Hosoya K, Irie
K, Fukushima S and Tomii K: Osimertinib in a patient with non-small
cell lung cancer and renal failure undergoing hemodialysis: a case
report. Invest New Drugs. 38:1192–1195. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Iddawela M, Crook S, George L, Lakkaraju
A, Nanayakkara N, Hunt R and Adam WR: Safety and efficacy of
Vemurafenib in end stage renal failure. BMC Cancer. 13:5812013.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Porta C, Cosmai L, Gallieni M, Pedrazzoli
P and Malberti F: Renal effects of targeted anticancer therapies.
Nat Rev Nephrol. 11:354–370. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Qian J, Zhang X, Zhang B, Yan B, Wang L,
Gu P, Wang W, Wang H and Han B: Tyrosine kinase inhibitor-related
hepatotoxicity in patients with advanced lung adenocarcinoma: A
real-world retrospective study. Cancer Manag Res. 12:3293–3299.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Jhaveri KD, Wanchoo R, Sakhiya V, Ross DW
and Fishbane SL: Adverse renal effects of novel molecular oncologic
targeted therapies: A narrative review. Kidney Int Rep. 2:108–123.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
González J, Quiroga M, Escudero-Vilaplana
V, Collado-Borrell R, Herranz-Alonso A and Sanjurjo Sáez M:
Posology adjustments of oral antineoplastic agents for special
populations: Patients with renal impairment, hepatic impairment and
hematologic toxicities. Expert Opin Drug Saf. 17:553–572. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Park K, Tan EH, O'Byrne K, Zhang L, Boyer
M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, et al: Afatinib versus
gefitinib as first-line treatment of patients with EGFR
mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase
2B, open-label, randomised controlled trial. Lancet Oncol.
17:577–589. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Camidge DR, Dziadziuszko R, Peters S, Mok
T, Noe J, Nowicka M, Gadgeel SM, Cheema P, Pavlakis N, de Marinis
F, et al: Updated efficacy and safety data and impact of the
EML4-ALK fusion variant on the efficacy of Alectinib in untreated
Alk-positive advanced non-small cell lung cancer in the global
phase III ALEX Study. J Thorac Oncol. 14:1233–1243. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhu V and Ou SH: Safety of alectinib for
the treatment of metastatic ALK-rearranged non-small cell lung
cancer. Expert Opin Drug Saf. 16:509–514. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Camidge DR, Kim HR, Ahn MJ, Yang JC, Han
JY, Lee JS, Hochmair MJ, Li JY, Chang GC, Lee KH, et al: Brigatinib
versus Crizotinib in ALK-positive Non-small-cell lung cancer. N
Engl J Med. 379:2027–2039. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Choueiri TK, Halabi S, Sanford BL, Hahn O,
Michaelson MD, Walsh MK, Feldman DR, Olencki T, Picus J, Small EJ,
et al: Cabozantinib versus Sunitinib as initial targeted therapy
for patients with metastatic renal cell carcinoma of poor or
intermediate risk: The alliance A031203 CABOSUN trial. J Clin
Oncol. 35:591–597. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kim DW, Mehra R, Tan DSW, Felip E, Chow
LQM, Camidge DR, Vansteenkiste J, Sharma S, De Pas T, Riely GJ, et
al: Intracranial and whole-body response of ceritinib in ALK
inhibitor-naïve and previously ALK inhibitor-treated patients with
ALK-rearranged non-small-cell lung cancer (NSCLC): Updated results
from the phase 1, multicentre, open-label ASCEND-1 trial. Lancet
Oncol. 17:452–463. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Knispel S, Zimmer L, Kanaki T, Ugurel S,
Schadendorf D and Livingstone E: The safety and efficacy of
dabrafenib and trametinib for the treatment of melanoma. Expert
Opin Drug Saf. 17:73–87. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Planchard D, Smit EF, Groen HJM, Mazieres
J, Besse B, Helland Å, Giannone V, D'Amelio AM Jr, Zhang P,
Mookerjee B and Johnson BE: Dabrafenib plus trametinib in patients
with previously untreated BRAFV600E-mutant metastatic
non-small-cell lung cancer: An open-label, phase 2 trial. Lancet
Oncol. 18:1307–1316. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa
K, Niho S, Tsuji F, Linke R, Rosell R, Corral J, et al: Dacomitinib
versus gefitinib as first-line treatment for patients with
EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A
randomised, open-label, phase 3 trial. Lancet Oncol. 18:1454–1466.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Doebele RC, Drilon A, Paz-Ares L, Siena S,
Shaw AT, Farago AF, Blakely CM, Seto T, Cho BC, Tosi D, et al:
Entrectinib in patients with advanced or metastatic NTRK
fusionpositive solid tumours: Integrated analysis of three phase
1-2 trials. Lancet Oncol. 21:271–282. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Choi HD and Chang MJ: Eye, hepatobiliary,
and renal disorders of erlotinib in patients with non-small-cell
lung cancer: A meta-analysis. PLoS One. 15:e02348182020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Schacher-Kaufmann S and Pless M: Acute
fatal liver toxicity under Erlotinib. Case Rep Oncol. 3:182–188.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hsiue EH, Lee JH, Lin CC and Yang JC:
Safety of gefitinib in non-small cell lung cancer treatment. Expert
Opin Drug Saf. 15:993–1000. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Laetsch TW, DuBois SG, Mascarenhas L,
Turpin B, Federman N, Albert CM, Nagasubramanian R, Davis JL,
Rudzinski E, Feraco AM, et al: Larotrectinib for paediatric solid
tumours harbouring NTRK gene fusions: Phase 1 results from a
multicentre, open-label, phase 1/2 study. Lancet Oncol. 19:705–714.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Shaw AT, Solomon BJ, Chiari R, Riely GJ,
Besse B, Soo RA, Kao S, Lin CC, Bauer TM, Clancy JS, et al:
Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: A
multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol.
20:1691–1701. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Cao Y, Qiu X, Xiao G, Hu H and Lin T:
Effectiveness and safety of osimertinib in patients with metastatic
EGFR T790M-positive NSCLC: An observational real-world study. PLoS
One. 14:e02215752019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Tsang VH, Robinson BG and Learoyd DL: The
safety of vandetanib for the treatment of thyroid cancer. Expert
Opin Drug Saf. 15:1107–1113. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Brose MS, Cabanillas ME, Cohen EE, Wirth
LJ, Riehl T, Yue H, Sherman SI and Sherman EJ: Vemurafenib in
patients with BRAF(V600E)-positive metastatic or unresectable
papillary thyroid cancer refractory to radioactive iodine: A
non-randomised, multicentre, open-label, phase 2 trial. Lancet
Onco. 17:1272–1282. 2016. View Article : Google Scholar
|
|
116
|
Borella E, Poggesi I and Magni P:
Prediction of the effect of renal impairment on the
pharmacokinetics of new drugs. Clin Pharmacokinet. 57:505–514.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Hsueh CH, Hsu V, Zhao P, Zhang L,
Giacomini KM and Huang SM: PBPK modeling of the effect of reduced
kidney function on the pharmacokinetics of drugs excreted renally
by organic anion transporters. Clin Pharmacol Ther. 103:485–492.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Solassol I, Pinguet F and Quantin X: FDA-
and EMA-approved tyrosine kinase inhibitors in advanced
EGFR-mutated non-small cell lung cancer: Safety, tolerability,
plasma concentration monitoring, and management. Biomolecules.
9:6682019. View Article : Google Scholar
|