Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2021 Volume 45 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 45 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review)

  • Authors:
    • Kaili Luo
    • Lei Zhang
    • Yuan Liao
    • Hongyu Zhou
    • Hongying Yang
    • Min Luo
    • Chen Qing
  • View Affiliations / Copyright

    Affiliations: School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
    Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 824-834
    |
    Published online on: January 7, 2021
       https://doi.org/10.3892/or.2021.7927
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Epidermal growth factor receptor pathway substrate 8 (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which is involved in cell mitosis, differentiation and other physiological functions. Numerous studies over the last decade have demonstrated that Eps8 is overexpressed in most ubiquitous malignant tumours and subsequently binds with its receptor to activate multiple signalling pathways. Eps8 not only participates in the regulation of malignant phenotypes, such as tumour proliferation, invasion, metastasis and drug resistance, but is also related to the clinicopathological characteristics and prognosis of patients. Therefore, Eps8 is a potential tumour diagnosis and prognostic biomarker and even a therapeutic target. This review aimed to describe the structural characteristics, role and related molecular mechanism of Eps8 in malignant tumours. In addition, the prospect of Eps8 as a target for cancer therapy is examined.
View Figures

Figure 1

Figure 2

View References

1 

Correction: Mitochondrial sirtuins in cancer: Emerging roles and therapeutic potential. Cancer Res. 76:36552016. View Article : Google Scholar : PubMed/NCBI

2 

Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT and Di Fiore PP: Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 12:3799–3808. 1993. View Article : Google Scholar : PubMed/NCBI

3 

Wong WT, Carlomagno F, Druck T, Barletta C, Croce CM, Huebner K, Kraus MH and Di Fiore PP: Evolutionary conservation of the EPS8 gene and its mapping to human chromosome 12q23-q24. Oncogene. 9:3057–3061. 1994.PubMed/NCBI

4 

Tocchetti A, Confalonieri S, Scita G, Di Fiore PP and Betsholtz C: In silico analysis of the EPS8 gene family: Genomic organization, expression profile, and protein structure. Genomics. 81:234–244. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Di Fiore PP and Scita G: Eps8 in the midst of GTPases. Int J Biochem Cell Biol. 34:1178–1183. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Offenhäuser N, Borgonovo A, Disanza A, Romano P, Ponzanelli I, Iannolo G, Di Fiore PP and Scita G: The eps8 family of proteins links growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac pathway. Mol Biol Cell. 15:91–98. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Maa MC, Hsieh CY and Leu TH: Overexpression of p97Eps8 leads to cellular transformation: Implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene. 20:106–112. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Avantaggiato V, Torino A, Wong WT, Di Fiore PP and Simeone A: Expression of the receptor tyrosine kinase substrate genes eps8 and eps15 during mouse development. Oncogene. 11:1191–1198. 1995.PubMed/NCBI

9 

Ion A, Crosby AH, Kremer H, Kenmochi N, Van Reen M, Fenske C, Van Der Burgt I, Brunner HG, Montgomery K, Kucherlapati RS, et al: Detailed mapping, mutation analysis, and intragenic polymorphism identification in candidate Noonan syndrome genes MYL2, DCN, EPS8, and RPL6. J Med Genet. 37:884–886. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, et al: Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA. 98:15044–15049. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Hüttelmaier S, Zavadil J, Cermak L, Bottinger EP, Singer RH, White JG, et al: Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 62:6278–6288. 2002.PubMed/NCBI

12 

Maa MC, Lee JC, Chen YJ, Chen YJ, Lee YC, Wang ST, Huang CC, Chow NH and Leu TH: Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem. 282:19399–19409. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Welsch T, Endlich K, Giese T, Büchler MW and Schmidt J: Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. Cancer Lett. 255:205–218. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Chen YJ, Shen MR, Chen YJ, Maa MC and Leu TH: Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol Cancer Ther. 7:1376–1385. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Yap LF, Jenei V, Robinson CM, Moutasim K, Benn TM, Threadgold SP, Lopes V, Wei W, Thomas GJ and Paterson IC: Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene. 28:2524–2534. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Xu M, Shorts-Cary L, Knox AJ, Kleinsmidt-DeMasters B, Lillehei K and Wierman ME: Epidermal growth factor receptor pathway substrate 8 is overexpressed in human pituitary tumors: Role in proliferation and survival. Endocrinology. 150:2064–2671. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Bashir M, Kirmani D, Bhat HF, Baba RA, Hamza R, Naqash S, Wani NA, Andrabi KI, Zargar MA and Khanday FA: P66shc and its downstream Eps8 and Rac1 proteins are upregulated in esophageal cancers. Cell Commun Signal. 8:132010. View Article : Google Scholar : PubMed/NCBI

18 

Chen H, Wu X, Pan ZK and Huang S: Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res. 70:9979–9990. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Chu PY, Liou JH, Lin YM, Chen CJ, Chen MK, Lin SH, Yeh CM, Wang HK, Maa MC, Leu TH, et al: Expression of Eps8 correlates with poor survival in oral squamous cell carcinoma. Asia Pac J Clin Oncol. 8:e77–e81. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Chen C, Liang Z, Huang W, Li X, Zhou F, Hu X, Han M, Ding X and Xiang S: Eps8 regulates cellular proliferation and migration of breast cancer. Int J Oncol. 46:205–214. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Wen Q, Jiao X, Kuang F, Hou B, Zhu Y, Guo W, Sun G, Ba Y, Yu D, Wang D, et al: FoxO3a inhibiting expression of EPS8 to prevent progression of NSCLC: A new negative loop of EGFR signaling. EBioMedicine. 40:198–209. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Yang G, Lu YB and Guan QL: EPS8 is a potential oncogene in glioblastoma. Onco Targets Ther. 12:10523–10534. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Fukuhisa H, Seki N, Idichi T, Kurahara H, Yamada Y, Toda H, Kita Y, Kawasaki Y, Tanoue K, Mataki Y, et al: Gene regulation by antitumor miR-130b-5p in pancreatic ductal adenocarcinoma: The clinical significance of oncogenic EPS8. J Hum Genet. 64:521–534. 2019. View Article : Google Scholar : PubMed/NCBI

24 

He YZ, Liang Z, Wu MR, Wen Q, Deng L, Song CY, Wu BY, Tu SF, Huang R and Li YH: Overexpression of EPS8 is associated with poor prognosis in patients with acute lymphoblastic leukemia. Leuk Res. 39:575–581. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Huang R, Liu H, Chen Y, He Y, Kang Q, Tu S, He Y, Zhou X, Wang L, Yang J, et al: EPS8 regulates proliferation, apoptosis and chemosensitivity in BCR-ABL positive cells via the BCR-ABL/PI3K/AKT/mTOR pathway. Oncol Rep. 39:119–128. 2018.PubMed/NCBI

26 

Chen Y, Xie X, Wu A, Wang L, Hu Y, Zhang H and Li Y: A synthetic cell-penetrating peptide derived from nuclear localization signal of EPS8 exerts anticancer activity against acute myeloid leukemia. J Exp Clin Cancer Res. 37:122018. View Article : Google Scholar : PubMed/NCBI

27 

Zhang H, Zhou L, Zhou W, Xie X, Wu M, Chen Y, Hu Y, Du J, He Y and Li Y: EPS8-mediated regulation of multiple myeloma cell growth and survival. Am J Cancer Res. 9:1622–1634. 2019.PubMed/NCBI

28 

Behlouli A, Bonnet C, Abdi S, Bouaita A, Lelli A, Hardelin JP, Schietroma C, Rous Y, Louha M, Cheknane A, et al: EPS8, encoding an actin-binding protein of cochlear hair cell stereocilia, is a new causal gene for autosomal recessive profound deafness. Orphanet J Rare Dis. 9:552014. View Article : Google Scholar : PubMed/NCBI

29 

Morton CJ, Pugh DJ, Brown EL, Kahmann JD, Renzoni DA and Campbell ID: Solution structure and peptide binding of the SH3 domain from human Fyn. Structure. 4:705–714. 1996. View Article : Google Scholar : PubMed/NCBI

30 

Matoskova B, Wong WT, Salcini AE, Pelicci PG and Di Fiore PP: Constitutive phosphorylation of eps8 in tumor cell lines: Relevance to malignant transformation. Mol Cell Biol. 15:3805–3812. 1995. View Article : Google Scholar : PubMed/NCBI

31 

Shi X, Betzi S, Lugari A, Opi S, Restouin A, Parrot I, Martinez J, Zimmermann P, Lecine P, Huang M, et al: Structural recognition mechanisms between human Src homology domain 3 (SH3) and ALG-2-interacting protein X (Alix). FEBS Lett. 586:1759–1764. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S, Bjarnegård M, Betsholtz C and Di Fiore PP: EPS8 and E3B1 transduce signals from Ras to Rac. Nature. 401:290–293. 1999. View Article : Google Scholar : PubMed/NCBI

33 

Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G, Zerial M and Di Fiore PP: The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature. 408:374–377. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Kishan KV, Newcomer ME, Rhodes TH and Guilliot SD: Effect of pH and salt bridges on structural assembly: Molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Protein Sci. 10:1046–1055. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Inobe M, Ki K, Miyagoe Y, Yi N and Takeda S: Identification of EPS8 as a Dvl1-associated molecule. Biochem Biophys Res Commun. 266:216–221. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Funato Y, Terabayashi T, Suenaga N, Seiki M, Takenawa T and Miki H: IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res. 64:5237–5244. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Disanza A, Mantoani S, Hertzog M, Gerboth S, Frittoli E, Steffen A, Berhoerster K, Kreienkamp HJ, Milanesi F, Di Fiore PP, et al: Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol. 8:1337–1347. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Prieto-Echagüe V, Chan PM, Craddock BP, Manser E and Miller WT: PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis. PLoS One. 6:e192962011. View Article : Google Scholar : PubMed/NCBI

39 

Forman-Kay JD and Pawson T: Diversity in protein recognition by PTB domains. Curr Opin Struct Biol. 9:690–695. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Slupsky CM, Gentile LN, Donaldson LW, Mackereth CD, Seidel JJ, Graves BJ and McIntosh LP: Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc Natl Acad Sci USA. 95:12129–12134. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Castagnino P, Biesova Z, Wong WT, Fazioli F, Gill GN and Di Fiore PP: Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. Oncogene. 10:723–729. 1995.PubMed/NCBI

42 

Disanza A, Carlier MF, Stradal TE, Didry D, Frittoli E, Confalonieri S, Croce A, Wehland J, Di Fiore PP and Scita G: Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol. 6:1180–1188. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Scita G, Tenca P, Areces LB, Tocchetti A, Frittoli E, Giardina G, Ponzanelli I, Sini P, Innocenti M and Di Fiore PP: An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J Cell Biol. 154:1031–1044. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Kirkland G, Paizis K, Wu LL, Katerelos M and Power DA: Heparin-binding EGF-like growth factor mRNA is upregulated in the peri-infarct region of the remnant kidney model: In vitro evidence suggests a regulatory role in myofibroblast transformation. J Am Soc Nephrol. 9:1464–1473. 1998.PubMed/NCBI

45 

Miao H, Wei BR, Peehl DM, Li Q, Alexandrou T, Schelling JR, Rhim JS, Sedor JR, Burnett E and Wang B: Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol. 3:527–530. 2001. View Article : Google Scholar : PubMed/NCBI

46 

Carpenter G and Cohen S: Epidermal growth factor. Annu Rev Biochem. 48:193–216. 1979. View Article : Google Scholar : PubMed/NCBI

47 

Buday L and Downward J: Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell. 73:611–620. 1993. View Article : Google Scholar : PubMed/NCBI

48 

Ozanne B, Richards CS, Hendler F, Burns D and Gusterson B: Over-expression of the EGF receptor is a hallmark of squamous cell carcinomas. J Pathol. 149:9–14. 1986. View Article : Google Scholar : PubMed/NCBI

49 

Rubin Grandis J, Zeng Q and Drenning SD: Epidermal growth factor receptor-mediated stat3 signaling blocks apoptosis in head and neck cancer. Laryngoscope. 110:868–874. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Song JI and Grandis JR: STAT signaling in head and neck cancer. Oncogene. 19:2489–2895. 2000. View Article : Google Scholar : PubMed/NCBI

51 

Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS and Tweardy DJ: Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. J Clin Invest. 102:1385–1392. 1998. View Article : Google Scholar : PubMed/NCBI

52 

Minden A, Lin A, McMahon M, Lange-Carter C, Dérijard B, Davis RJ, Johnson GL and Karin M: Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science. 266:1719–1723. 1994. View Article : Google Scholar : PubMed/NCBI

53 

Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F, Johnson GL and Karin M: Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science. 268:286–290. 1995. View Article : Google Scholar : PubMed/NCBI

54 

Minden A, Lin A, Claret FX, Abo A and Karin M: Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 81:1147–1157. 1995. View Article : Google Scholar : PubMed/NCBI

55 

Schaller MD, Borgman CA and Parsons JT: Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp125FAK. Mol Cell Biol. 13:785–791. 1993. View Article : Google Scholar : PubMed/NCBI

56 

Hanks SK, Calalb MB, Harper MC and Patel SK: Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci USA. 89:8487–8491. 1992. View Article : Google Scholar : PubMed/NCBI

57 

Parsons JT: Focal adhesion kinase: The first ten years. J Cell Sci. 116:1409–1416. 2003. View Article : Google Scholar : PubMed/NCBI

58 

Hanks SK, Ryzhova L, Shin NY and Brábek J: Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci. 8:d982–d996. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J and Jove R: Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science. 269:81–83. 1995. View Article : Google Scholar : PubMed/NCBI

60 

Bromberg JF, Horvath CM, Besser D, Lathem WW and Darnell JE Jr: Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol. 18:2553–2558. 1998. View Article : Google Scholar : PubMed/NCBI

61 

Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP and Jove R: Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol. 18:2545–2552. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Leu TH, Yeh HH, Huang CC, Chuang YC, Su SL and Maa MC: Participation of p97Eps8 in Src-mediated transformation. J Biol Chem. 279:9875–9881. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Maa MC, Lai JR, Lin RW and Leu TH: Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta. 1450:341–351. 1999. View Article : Google Scholar : PubMed/NCBI

64 

Sachdev S, Bu Y and Gelman IH: Paxillin-Y118 phosphorylation contributes to the control of Src-induced anchorage-independent growth by FAK and adhesion. BMC Cancer. 9:122009. View Article : Google Scholar : PubMed/NCBI

65 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY and Yao KM: Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci. 118:795–806. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Koo CY, Muir KW and Lam EW: FOXM1: From cancer initiation to progression and treatment. Biochim Biophys Acta. 1819:28–37. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Laoukili J, Kooistra MR, Brás A, Kauw J, Kerkhoven RM, Morrison A, Clevers H and Medema RH: FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 7:126–136. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Costa RH: FoxM1 dances with mitosis. Nat Cell Biol. 7:108–110. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Kwok CT, Leung MH, Qin J, Qin Y, Wang J, Lee YL and Yao KM: The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells. Stem Cell Res. 16:651–661. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Wang H, The MT, Ji Y, Patel V, Firouzabadian S, Patel AA, Gutkind JS and Yeudall WA: EPS8 upregulates FOXM1 expression, enhancing cell growth and motility. Carcinogenesis. 31:1132–1141. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Ngan AWL, Grace Tsui M, So DHF, Leung WY, Chan DW and Yao KM: Novel nuclear partnering role of EPS8 with FOXM1 in regulating cell proliferation. Front Oncol. 9:1542019. View Article : Google Scholar : PubMed/NCBI

73 

Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Brachmann SM, Di Fiore PP and Scita G: Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol. 160:17–23. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Chiu CF, Chang YW, Kuo KT, Shen YS, Liu CY, Yu YH, Cheng CC, Lee KY, Chen FC, Hsu MK, et al: NF-κB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance. Proc Natl Acad Sci USA. 113:E2526–E2535. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Accili D and Arden KC: FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 117:421–426. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Hall A: Rho GTPases and the actin cytoskeleton. Science. 279:509–514. 1998. View Article : Google Scholar : PubMed/NCBI

77 

Nobes CD and Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 81:53–62. 1995. View Article : Google Scholar : PubMed/NCBI

78 

Hall A and Nobes CD: Rho GTPases: Molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci. 355:965–970. 2000. View Article : Google Scholar : PubMed/NCBI

79 

Bian D, Su S, Mahanivong C, Cheng RK, Han Q, Pan ZK, Sun P and Huang S: Lysophosphatidic acid stimulates ovarian cancer cell migration via a ras-MEK kinase 1 pathway. Cancer Res. 64:4209–4217. 2004. View Article : Google Scholar : PubMed/NCBI

80 

Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG and Der CJ: Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol. 4:621–625. 2002. View Article : Google Scholar : PubMed/NCBI

81 

Shin EY, Shin KS, Lee CS, Woo KN, Quan SH, Soung NK, Kim YG, Cha CI, Kim SR, Park D, et al: Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem. 277:44417–44430. 2002. View Article : Google Scholar : PubMed/NCBI

82 

Nimnual AS, Yatsula BA and Bar-Sagi D: Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 279:560–563. 1998. View Article : Google Scholar : PubMed/NCBI

83 

Tod J, Hanley CJ, Morgan MR, Rucka M, Mellows T, Lopez MA, Kiely P, Moutasim KA, Frampton SJ, Sabnis D, et al: Pro-migratory and TGF-β-activating functions of αvβ6 integrin in pancreatic cancer are differentially regulated via an Eps8-dependent GTPase switch. J Pathol. 243:37–50. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Nasri E, Wiesen LB, Knapik JA and Fredenburg KM: Eps8 expression is significantly lower in p16+ head and neck squamous cell carcinomas (HNSCCs) compared with p16- HNSCCs. Hum Pathol. 72:45–51. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Cattaneo MG, Cappellini E and Vicentini LM: Silencing of Eps8 blocks migration and invasion in human glioblastoma cell lines. Exp Cell Res. 318:1901–1912. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Lengyel E: Ovarian cancer development and metastasis. Am J Pathol. 177:1053–1064. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Jesionowska A, Cecerska-Heryc E, Matoszka N and Dolegowska B: Lysophosphatidic acid signaling in ovarian cancer. J Recept Signal Transduct Res. 35:578–584. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Pua TL, Wang FQ and Fishman DA: Roles of LPA in ovarian cancer development and progression. Future Oncol. 5:1659–1673. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Fang X, Schummer M, Mao M, Yu S, Tabassam FH, Swaby R, Hasegawa Y, Tanyi JL, LaPushin R, Eder A, et al: Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta. 1582:257–264. 2002. View Article : Google Scholar : PubMed/NCBI

90 

Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J, Stephens C, Fang X and Mills GB: Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst. 100:1630–1642. 2008. View Article : Google Scholar : PubMed/NCBI

91 

Wang P, Wu X, Chen W, Liu J and Wang X: The lysophosphatidic acid (LPA) receptors their expression and significance in epithelial ovarian neoplasms. Gynecol Oncol. 104:714–720. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Pierre S, Bats AS and Coumoul X: Understanding SOS (Son of Sevenless). Biochem Pharmacol. 82:1049–1056. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Schmidt A and Hall A: Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16:1587–1609. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Innocenti M, Tenca P, Frittoli E, Faretta M, Tocchetti A, Di Fiore PP and Scita G: Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J Cell Biol. 156:125–136. 2002. View Article : Google Scholar : PubMed/NCBI

95 

Kotula L: Abi1, a critical molecule coordinating actin cytoskeleton reorganization with PI-3 kinase and growth signaling. FEBS Lett. 586:2790–2794. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Fan PD and Goff SP: Abl interactor 1 binds to sos and inhibits epidermal growth factor- and v-Abl-induced activation of extracellular signal-regulated kinases. Mol Cell Biol. 20:7591–7601. 2000. View Article : Google Scholar : PubMed/NCBI

97 

Stone TA and Deber CM: Therapeutic design of peptide modulators of protein-protein interactions in membranes. Biochim Biophys Acta Biomembr. 1859:577–585. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Cunningham AD, Qvit N and Mochly-Rosen D: Peptides and peptidomimetics as regulators of protein-protein interactions. Curr Opin Struct Biol. 44:59–66. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Helmer D and Schmitz K: Peptides and peptide analogs to inhibit protein-protein interactions. Adv Exp Med Biol. 917:147–183. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Fosgerau K and Hoffmann T: Peptide therapeutics: Current status and future directions. Drug Discov Today. 20:122–128. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Ellert-Miklaszewska A, Poleszak K and Kaminska B: Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Med Chem. 9:199–221. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Bae DG, Kim TD, Li G, Yoon WH and Chae CB: Anti-flt1 peptide, a vascular endothelial growth factor receptor 1-specific hexapeptide, inhibits tumor growth and metastasis. Clin Cancer Res. 11:2651–2561. 2005. View Article : Google Scholar : PubMed/NCBI

103 

Yu X, Liang C, Zhang Y, Zhang W and Chen H: Inhibitory short peptides targeting EPS8/ABI1/SOS1 tri-complex suppress invasion and metastasis of ovarian cancer cells. BMC Cancer. 19:8782019. View Article : Google Scholar : PubMed/NCBI

104 

Raftopoulou M and Hall A: Cell migration: Rho GTPases lead the way. Dev Biol. 265:23–32. 2004. View Article : Google Scholar : PubMed/NCBI

105 

Miki H, Yamaguchi H, Suetsugu S and Takenawa T: IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature. 408:732–735. 2000. View Article : Google Scholar : PubMed/NCBI

106 

Liu PS, Jong TH, Maa MC and Leu TH: The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene. 29:3977–3989. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Wang H, Patel V, Miyazaki H, Gutkind JS and Yeudall WA: Role for EPS8 in squamous carcinogenesis. Carcinogenesis. 30:165–174. 2009. View Article : Google Scholar : PubMed/NCBI

108 

McCawley LJ, Li S, Wattenberg EV and Hudson LG: Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J Biol Chem. 274:4347–4353. 1999. View Article : Google Scholar : PubMed/NCBI

109 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Liu WW, Meng J, Cui J and Luan YS: Characterization and Function of MicroRNA*s in Plants. Front Plant Sci. 8:22002017. View Article : Google Scholar : PubMed/NCBI

111 

Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J and Sung JJ: MicroRNA dysregulation in gastric cancer: A new player enters the game. Oncogene. 29:5761–5771. 2010. View Article : Google Scholar : PubMed/NCBI

112 

Yu M, Xue H, Wang Y, Shen Q, Jiang Q, Zhang X, Li K, Jia M, Jia J, Xu J and Tian Y: miR-345 inhibits tumor metastasis and EMT by targeting IRF1-mediated mTOR/STAT3/AKT pathway in hepatocellular carcinoma. Int J Oncol. 50:975–983. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Ying X, Zhang W, Fang M, Zhang W, Wang C and Han L: miR-345-5p regulates proliferation, cell cycle, and apoptosis of acute myeloid leukemia cells by targeting AKT2. J Cell Biochem. 2018:(Epub ahead of print).

114 

Feng A, Yuan X and Li X: MicroRNA-345 inhibits metastasis and epithelial-mesenchymal transition of gastric cancer by targeting FOXQ1. Oncol Rep. 38:2752–2760. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Zhang J, Wang C, Yan S, Yang Y, Zhang X and Guo W: miR-345 inhibits migration and stem-like cell phenotype in gastric cancer via inactivation of Rac1 by targeting EPS8. Acta Biochim Biophys Sin (Shanghai). 52:259–267. 2020. View Article : Google Scholar : PubMed/NCBI

116 

Li Q, Zhang N, Jia Z, Le X, Dai B, Wei D, Huang S, Tan D and Xie K: Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res. 69:3501–3509. 2009. View Article : Google Scholar : PubMed/NCBI

117 

Kedmi M, Ben-Chetrit N, Körner C, Mancini M, Ben-Moshe NB, Lauriola M, Lavi S, Biagioni F, Carvalho S, Cohen-Dvashi H, et al: EGF induces microRNAs that target suppressors of cell migration: miR-15b targets MTSS1 in breast cancer. Sci Signal. 8:ra292015. View Article : Google Scholar : PubMed/NCBI

118 

Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R and Westerhout EM: FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res. 73:2189–2198. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Gorsic LK, Stark AL, Wheeler HE, Wong SS, Im HK and Dolan ME: EPS8 inhibition increases cisplatin sensitivity in lung cancer cells. PLoS One. 8:e822202013. View Article : Google Scholar : PubMed/NCBI

120 

Smolensky D, Rathore K, Bourn J and Cekanova M: Inhibition of the PI3K/AKT Pathway Sensitizes Oral Squamous Cell Carcinoma Cells to Anthracycline-Based Chemotherapy In Vitro. J Cell Biochem. 118:2615–2624. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Li F, Zhao X, Sun R, Ou J, Huang J, Yang N, Xu T, Li J, He X, Li C, et al: EGFR-rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathway-suppressed ROS. J Extracell Vesicles. 10:e120032020. View Article : Google Scholar : PubMed/NCBI

122 

Rotow J and Bivona TG: Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Li H, Zeng J and Shen K: PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet. 290:1067–1078. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Slomovitz BM and Coleman RL: The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res. 18:5856–5864. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Mabuchi S, Kuroda H, Takahashi R and Sasano T: The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol. 137:173–179. 2015. View Article : Google Scholar : PubMed/NCBI

126 

Narayanankutty A: PI3K/Akt/ mTOR Pathway as a therapeutic target for colorectal cancer: A review of preclinical and clinical evidence. Curr Drug Targets. 20:1217–1226. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, et al: The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 39:2042020. View Article : Google Scholar : PubMed/NCBI

128 

Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P and Ferrone S: Immunotherapy of cancer in 2012. CA Cancer J Clin. 62:309–335. 2012. View Article : Google Scholar : PubMed/NCBI

129 

Novellino L, Castelli C and Parmiani G: A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother. 54:187–207. 2005. View Article : Google Scholar : PubMed/NCBI

130 

Xie X, Zhou W, Hu Y, Chen Y, Zhang H and Li Y: A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. Cell Death Dis. 9:3792018. View Article : Google Scholar : PubMed/NCBI

131 

He YJ, Zhou J, Zhao TF, Hu LS, Gan JY, Deng L and Li Y: Eps8 vaccine exerts prophylactic antitumor effects in a murine model: A novel vaccine for breast carcinoma. Mol Med Rep. 8:662–668. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Wang L, Cai SH, Xiong WY, He YJ, Deng L and Li YH: Real-time quantitative polymerase chain reaction assay for detecting the eps8 gene in acute myeloid leukemia. Clin Lab. 59:1261–1269. 2013. View Article : Google Scholar : PubMed/NCBI

133 

Sun P, Zhou X, He Y, Liu H, Wang Y, Chen Y, Li M, He Y, Li G and Li Y: Effect of trichostatin A on Burkitt's lymphoma cells: Inhibition of EPS8 activity through Phospho-Erk1/2 pathway. Biochem Biophys Res Commun. 497:990–996. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Luo K, Zhang L, Liao Y, Zhou H, Yang H, Luo M and Qing C: Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncol Rep 45: 824-834, 2021.
APA
Luo, K., Zhang, L., Liao, Y., Zhou, H., Yang, H., Luo, M., & Qing, C. (2021). Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncology Reports, 45, 824-834. https://doi.org/10.3892/or.2021.7927
MLA
Luo, K., Zhang, L., Liao, Y., Zhou, H., Yang, H., Luo, M., Qing, C."Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review)". Oncology Reports 45.3 (2021): 824-834.
Chicago
Luo, K., Zhang, L., Liao, Y., Zhou, H., Yang, H., Luo, M., Qing, C."Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review)". Oncology Reports 45, no. 3 (2021): 824-834. https://doi.org/10.3892/or.2021.7927
Copy and paste a formatted citation
x
Spandidos Publications style
Luo K, Zhang L, Liao Y, Zhou H, Yang H, Luo M and Qing C: Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncol Rep 45: 824-834, 2021.
APA
Luo, K., Zhang, L., Liao, Y., Zhou, H., Yang, H., Luo, M., & Qing, C. (2021). Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncology Reports, 45, 824-834. https://doi.org/10.3892/or.2021.7927
MLA
Luo, K., Zhang, L., Liao, Y., Zhou, H., Yang, H., Luo, M., Qing, C."Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review)". Oncology Reports 45.3 (2021): 824-834.
Chicago
Luo, K., Zhang, L., Liao, Y., Zhou, H., Yang, H., Luo, M., Qing, C."Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review)". Oncology Reports 45, no. 3 (2021): 824-834. https://doi.org/10.3892/or.2021.7927
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team