Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2021 Volume 45 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 45 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

CD155/TIGIT, a novel immune checkpoint in human cancers (Review)

  • Authors:
    • Lu Liu
    • Xuewu You
    • Sai Han
    • Yu Sun
    • Junhua Zhang
    • Youzhong Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
  • Pages: 835-845
    |
    Published online on: January 19, 2021
       https://doi.org/10.3892/or.2021.7943
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

CD155/T cell immunoreceptor with Ig and ITIM domains (TIGIT) is a novel type of immune checkpoint. CD155 is an adhesion molecule that is upregulated during tumor progression and promotes the proliferative and migratory abilities of tumor cells via various pathways. TIGIT, an inhibitory receptor, is mainly expressed on natural killer (NK), CD8+ T, CD4+ T and T regulatory (Treg) cells. CD155 transmits immune signals via interacting with the inhibitory checkpoint receptor TIGIT, thereby inhibiting the function of T and NK cells. Several preclinical studies have supported the use of TIGIT blockade as a monotherapy or combined with other immune checkpoint inhibitors for the treatment of advanced solid malignant tumors. The present review summarized the current knowledge on CD155/TIGIT and the lymphocyte‑mediated inhibitory mechanism of CD155/TIGIT. An in‑depth understanding of the role of CD155/TIGIT in tumors may aid to improve the application of immune checkpoint inhibitors in tumor therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Trapani J and Darcy P: Immunotherapy of cancer. Aust Fam Physician. 46:194–199. 2017.PubMed/NCBI

2 

Willimsky G and Blankenstein T: Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature. 437:141–146. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Wang G, Tai R, Wu Y, Yang S, Wang J, Yu X, Lei L, Shan Z and Li N: The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers. Cytokine Growth Factor Rev. 52:1–14. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 13:227–242. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Zou W, Wolchok JD and Chen L: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 8:328rv3242016. View Article : Google Scholar

6 

Smyth MJ, Ngiow SF, Ribas A and Teng MWL: Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 13:143–158. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D'Haese JG, Schloesser H, et al: Advances in cancer immunotherapy 2019-latest trends. J Exp Clin Cancer Res. 38:2682019. View Article : Google Scholar : PubMed/NCBI

8 

Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, et al: Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat Rev Clin Oncol. 16:563–580. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Darvin P, Toor SM, Nair VS and Elkord E: Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 50:1652018. View Article : Google Scholar

10 

Sharma P and Allison JP: Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell. 161:205–214. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Dougall WC, Kurtulus S, Smyth MJ and Anderson AC: TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy. Immunol Rev. 276:112–120. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Kakunaga S, Ikeda W, Itoh S, Deguchi-Tawarada M, Ohtsuka T, Mizoguchi A and Takai Y: Nectin-Like molecule-1/TSLL1/SynCAM3: A neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J Cell Sci. 118:1267–1277. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Spiegel I, Adamsky K, Eshed Y, Milo R, Sabanay H, Sarig-Nadir O, Horresh I, Scherer SS, Rasband MN and Peles E: A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat Neurosci. 10:861–869. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura T, et al: TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet. 27:427–430. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Fujito T, Ikeda W, Kakunaga S, Minami Y, Kajita M, Sakamoto Y, Monden M and Takai Y: Inhibition of cell movement and proliferation by cell-cell contact-induced interaction of necl-5 with nectin-3. J Cell Biol. 171:165–173. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Takai Y, Miyoshi J, Ikeda W and Ogita H: Nectins and nectin-like molecules: Roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 9:603–615. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Koike S, Horie H, Ise I, Okitsu A, Yoshida M, Iizuka N, Takeuchi K, Takegami T and Nomoto A: The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 9:3217–3224. 1990. View Article : Google Scholar : PubMed/NCBI

18 

Oda T, Ohka S and Nomoto A: Ligand stimulation of CD155alpha inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem Biophys Res Commun. 319:1253–1264. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Yusa Si, Catina TL and Campbell KS: SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells. J Immunol. 168:5047–5057. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Lange R, Peng X, Wimmer E, Lipp M and Bernhardt G: The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology. 285:218–227. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L, Farnarier C, Cantoni C, Bottino C, Moretta A, et al: DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med. 199:1331–1341. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Kakunaga S, Ikeda W, Shingai T, Fujito T, Yamada A, Minami Y, Imai T and Takai Y: Enhancement of serum- and platelet-derived growth factor-induced cell proliferation by necl-5/tage4/poliovirus receptor/CD155 through the ras-raf-MEK-ERK signaling. J Biol. 27:36419–36425. 2004.

23 

Molfetta R, Zitti B, Lecce M, Milito ND, Stabile H, Fionda C, Cippitelli M, Gismondi A, Santoni A and Paolini R: CD155: A multi-functional molecule in tumor progression. Int J Mol Sci. 21:9222020. View Article : Google Scholar

24 

Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, et al: The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 10:48–57. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Deuss FA, Watson GM, Fu Z, Rossjohn J and Berry R: Structural basis for CD96 immune receptor recognition of nectin-like protein-5, CD155. Structure. 5:219–228. 2019. View Article : Google Scholar

26 

Bevelacqua V, Bevelacqua Y, Candido S, Skarmoutsou E, Amoroso A, Guarneri C, Strazzanti A, Gangemi P, Mazzarino MC, D'Amico F, et al: Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget. 3:882–892. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M, Okita Y, Ohbayashi C, Satoh N, Ogita H, Takai Y and Hayashi Y: Overexpression of necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 101:1326–1330. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Nishiwada S, Sho M, Yasuda S, Shimada K, Yamato I, Akahori T, Kinoshita S, Nagai M, Konishi N and Nakajima Y: Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 35:2287–2297. 2015.PubMed/NCBI

29 

Smazynski J, Hamilton PT, Thornton S, Milne K, Wouters MC, Webb JR and Nelson BH: The immune suppressive factors CD155 and PD-L1 show contrasting expression patterns and immune correlates in ovarian and other cancers. Gynecol Oncol. 158:167–177. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, et al: Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: Evidence for the involvement of the poliovirus receptor (CD155) and nectin-2 (CD112). Blood. 105:2066–2073. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH and Wimmer E: Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA. 97:6803–6808. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Huang DW, Huang M, Lin XS and Huang Q: CD155 expression and its correlation with clinicopathologic characteristics, angiogenesis, and prognosis in human cholangiocarcinoma. Onco Targets Ther. 10:3817–3825. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang LL, Wu H, Bu LL, Kulkarni AB, Zhang WF and Sun ZJ: Blockade of TIGIT/CD155 signaling reverses t-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma. Cancer Immunol Res. 7:1700–1713. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Iguchi-Manaka A, Okumura G, Kojima H, Cho Y, Hirochika R, Bando H, Sato T, Yoshikawa H, Hara H and Shibuya A: Increased soluble CD155 in the serum of cancer patients. PLoS One. 11:e01529822016. View Article : Google Scholar : PubMed/NCBI

35 

Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, et al: ATM-ATR-Dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood. 113:3503–3511. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Soriani A, Fionda C, Ricci B, Iannitto ML, Cippitelli M and Santoni A: Chemotherapy-Elicited upregulation of NKG2D and DNAM-1 ligands as a therapeutic target in multiple myeloma. Oncoimmunology. 2:e266632014. View Article : Google Scholar

37 

Lee JH and Paull TT: Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene. 26:7741–7748. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Vauzour D, Vafeiadou K, Rice-Evans C, Cadenas E and Spencer JP: Inhibition of cellular proliferation by the genistein metabolite 5,7,3′,4′-tetrahydroxyisoflavone is mediated by DNA damage and activation of the ATR signalling pathway. Arch Biochem Biophys. 468:159–166. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Hirota T, Irie K, Okamoto R, Ikeda W and Takai Y: Transcriptional activation of the mouse necl-5/tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic ras through the raf-MEK-ERK-AP-1 pathway. Oncogene. 24:2229–2235. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Rimkus TK, Carpenter RL, Qasem S, Chan M and Lo HW: Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers (Basel). 8:222016. View Article : Google Scholar

41 

Athar M, Li C, Kim AL, Spiegelman VS and Bickers DR: Sonic hedgehog signaling in basal cell nevus syndrome. Cancer Res. 74:4967–4975. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Solecki DJ, Gromeier M, Mueller S, Bernhardt G and Wimmer E: Expression of the human poliovirus receptor/CD155 gene is activated by sonic hedgehog. J Biol Chem. 277:25697–25702. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Li XY, Das I, Lepletier A, Addala V, Bald T, Stannard K, Barkauskas D, Liu J, Aguilera AR, Takeda K, et al: CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J Clin Invest. 128:2613–2625. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Escalante NK, von Rossum A, Lee M and Choy JC: CD155 on human vascular endothelial cells attenuates the acquisition of effector functions in CD8 T cells. Arterioscler Thromb Vasc Biol. 31:1177–1184. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Kamran N, Takai Y, Miyoshi J, Biswas SK, Wong JSB and Gasser S: Toll-Like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS One. 8:e544062013. View Article : Google Scholar : PubMed/NCBI

46 

Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, Lasagni L, Martini S, Rivera P, et al: Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: Relevance for natural killer-dendritic cell interaction. Blood. 107:2030–2036. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM, Smyth MJ and Colonna M: DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med. 205:2965–2973. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Gumbiner BM: Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell. 84:345–357. 1996. View Article : Google Scholar : PubMed/NCBI

49 

Minami Y, Ikeda W, Kajita M, Fujito T, Amano H, Tamaru Y, Kuramitsu K, Sakamoto Y, Monden M and Takai Y: Necl-5/Poliovirus receptor interacts in cis with integrin alphaVbeta3 and regulates its clustering and focal complex formation. J Biol Chem. 282:18481–18496. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Amano H, Ikeda W, Kawano S, Kajita M, Tamaru Y, Inoue N, Minami Y, Yamada A and Takai Y: Interaction and localization of necl-5 and PDGF receptor beta at the leading edges of moving NIH3T3 cells: Implications for directional cell movement. Genes Cells. 13:269–284. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Takahashi M, Rikitake Y, Nagamatsu Y, Hara T, Ikeda W, Hirata Ki and Takai Y: Sequential activation of rap1 and rac1 small G proteins by PDGF locally at leading edges of NIH3T3 cells. Genes Cells. 13:549–569. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Christofori G: Split personalities: The agonistic antagonist sprouty. Nat Cell Biol. 5:377–379. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Kim HJ and Bar-Sagi D: Modulation of signalling by sprouty: A developing story. Nat Rev Mol Cell Biol. 5:441–450. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Reich A, Sapir A and Shilo B: Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development. 126:4139–4147. 1999.PubMed/NCBI

55 

Zheng Q, Wang B, Gao J, Xin N, Wang W, Song X, Shao Y and Zhao C: CD155 knockdown promotes apoptosis via AKT/bcl-2/bax in colon cancer cells. J Cell Mol Med. 22:131–140. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, et al: The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA. 106:17858–17863. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al: The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 26:923–937. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, Rybka WB, George MR, Zeng H and Zheng H: T-Cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res. 22:3057–3066. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen Th, Maurer M, Korman AJ and Zarour HM: TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest. 125:2046–2058. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Guillerey C, Harjunpää H, Carrié N, Kassem S, Teo T, Miles K, Krumeich S, Weulersse M, Cuisinier M and Stannard K: TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood. 132:1689–1694. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Lee WJ, Lee YJ, Choi ME, Yun KA, Won CH, Lee MW, Choi JH and Chang SE: Expression of lymphocyte-activating gene 3 and T-cell immunoreceptor with immunoglobulin and ITIM domains in cutaneous melanoma and their correlation with programmed cell death 1 expression in tumor-infiltrating lymphocytes. J Am Acad Dermatol. 81:219–227. 2019. View Article : Google Scholar : PubMed/NCBI

62 

O'Brien SM, Klampatsa A, Thompson JC, Martinez MC, Hwang WT, Rao AS, Standalick JE, Kim S, Cantu E, Litzky LA, et al: Function of human tumor-infiltrating lymphocytes in early-stage non-small cell lung cancer. Cancer Immunol Res. 7:896–909. 2019. View Article : Google Scholar : PubMed/NCBI

63 

He W, Zhang H, Han F, Chen X, Lin R, Wang W, Qiu H, Zhuang Z, Liao Q, Zhang W, et al: CD155T/TIGIT signaling regulates CD8+ T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res. 77:6375–6388. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Zhang C, Wang Y, Xun X, Wang S, Xiang X, Hu S, Cheng Q, Guo J, Li Z and Zhu J: TIGIT can exert immunosuppressive effects on CD8+ T cells by the CD155/TIGIT signaling pathway for hepatocellular carcinoma in vitro. J Immunother. 43:236–243. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK and Anderson AC: TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 125:4053–4062. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Fourcade J, Sun Z, Chauvin JM, Ka M, Davar D, Pagliano O, Wang H, Saada S, Menna C, Amin R, et al: CD226 opposes TIGIT to disrupt tregs in melanoma. JCI Insight. 26:e1211572018. View Article : Google Scholar

67 

Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, et al: Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 19:723–732. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Stålhammar G, Seregard S and Grossniklaus HE: Expression of immune checkpoint receptors Indoleamine 2,3-dioxygenase and T cell Ig and ITIM domain in metastatic versus nonmetastatic choroidal melanoma. Cancer Med. 8:2784–2792. 2019.PubMed/NCBI

69 

Tang W, Pan X, Han D, Rong D, Zhang M, Yang L, Ying J, Guan H, Chen Z and Wang X: Clinical significance of CD8+ T cell immunoreceptor with Ig and ITIM domains+ in locally advanced gastric cancer treated with SOX regimen after D2 gastrectomy. Oncoimmunology. 8:e15938072019. View Article : Google Scholar : PubMed/NCBI

70 

Degos C, Heinemann M, Barrou J, Boucherit N, Lambaudie E, Savina A, Gorvel L and Olive D: Endometrial tumor microenvironment alters human NK cell recruitment, and resident NK cell phenotype and function. Front Immunol. 10:8772019. View Article : Google Scholar : PubMed/NCBI

71 

Zhang B, Zhao W, Li H, Chen Y, Tian H, Li L, Zhang L, Gao C and Zheng J: Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother. 65:305–314. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH and Kuchroo VK: Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol. 186:1338–1342. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, et al: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 40:569–581. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Lozano E, Dominguez-Villar M, Kuchroo V and Hafler DA: The TIGIT/CD226 axis regulates human T cell function. J Immunol. 188:3869–3875. 2012. View Article : Google Scholar : PubMed/NCBI

75 

De Vlaeminck Y, González-Rascón A, Goyvaerts C and Breckpot K: Cancer-Associated myeloid regulatory cells. Front Immunol. 7:1132016. View Article : Google Scholar : PubMed/NCBI

76 

Liu S, Zhang H, Li M, Hu D, Li C, Ge B, Jin B and Fan Z: Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 20:456–464. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B and Pei G: Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell. 14:303–317. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Sun L, Deng L, Ea CK, Xia ZP and Chen ZJ: The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 14:289–301. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Chen ZJ: Ubiquitination in signaling to and activation of IKK. Immunol Rev. 246:95–106. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Asaoka Y, Ijichi H and Koike K: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 373:19792015. View Article : Google Scholar : PubMed/NCBI

81 

Josefsson SE, Beiske K, Blaker YN, Førsund MS, Holte H, Østenstad B, Kimby E, Köksal H, Wälchli S, Bai B, et al: TIGIT and PD-1 mark intratumoral T cells with reduced effector function in B-cell non-hodgkin lymphoma. Cancer Immunol Res. 7:355–362. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D, Luksik AS, Kim E, Wu A, Xia Y, Garzon-Muvdi T, et al: TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology. 7:e14667692018. View Article : Google Scholar : PubMed/NCBI

83 

Zhang X, Zhang H, Chen L, Feng Z, Gao L and Li Q: TIGIT expression is upregulated in T cells and causes T cell dysfunction independent of PD-1 and Tim-3 in adult B lineage acute lymphoblastic leukemia. Cell Immunol. 344:1039582019. View Article : Google Scholar : PubMed/NCBI

84 

Harjunpaa H and Guillerey C: TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 200:108–119. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Valsecchi ME: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 373:12702015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu L, You X, Han S, Sun Y, Zhang J and Zhang Y: CD155/TIGIT, a novel immune checkpoint in human cancers (Review). Oncol Rep 45: 835-845, 2021.
APA
Liu, L., You, X., Han, S., Sun, Y., Zhang, J., & Zhang, Y. (2021). CD155/TIGIT, a novel immune checkpoint in human cancers (Review). Oncology Reports, 45, 835-845. https://doi.org/10.3892/or.2021.7943
MLA
Liu, L., You, X., Han, S., Sun, Y., Zhang, J., Zhang, Y."CD155/TIGIT, a novel immune checkpoint in human cancers (Review)". Oncology Reports 45.3 (2021): 835-845.
Chicago
Liu, L., You, X., Han, S., Sun, Y., Zhang, J., Zhang, Y."CD155/TIGIT, a novel immune checkpoint in human cancers (Review)". Oncology Reports 45, no. 3 (2021): 835-845. https://doi.org/10.3892/or.2021.7943
Copy and paste a formatted citation
x
Spandidos Publications style
Liu L, You X, Han S, Sun Y, Zhang J and Zhang Y: CD155/TIGIT, a novel immune checkpoint in human cancers (Review). Oncol Rep 45: 835-845, 2021.
APA
Liu, L., You, X., Han, S., Sun, Y., Zhang, J., & Zhang, Y. (2021). CD155/TIGIT, a novel immune checkpoint in human cancers (Review). Oncology Reports, 45, 835-845. https://doi.org/10.3892/or.2021.7943
MLA
Liu, L., You, X., Han, S., Sun, Y., Zhang, J., Zhang, Y."CD155/TIGIT, a novel immune checkpoint in human cancers (Review)". Oncology Reports 45.3 (2021): 835-845.
Chicago
Liu, L., You, X., Han, S., Sun, Y., Zhang, J., Zhang, Y."CD155/TIGIT, a novel immune checkpoint in human cancers (Review)". Oncology Reports 45, no. 3 (2021): 835-845. https://doi.org/10.3892/or.2021.7943
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team