|
1
|
Trapani J and Darcy P: Immunotherapy of
cancer. Aust Fam Physician. 46:194–199. 2017.PubMed/NCBI
|
|
2
|
Willimsky G and Blankenstein T: Sporadic
immunogenic tumours avoid destruction by inducing T-cell tolerance.
Nature. 437:141–146. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wang G, Tai R, Wu Y, Yang S, Wang J, Yu X,
Lei L, Shan Z and Li N: The expression and immunoregulation of
immune checkpoint molecule VISTA in autoimmune diseases and
cancers. Cytokine Growth Factor Rev. 52:1–14. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen L and Flies DB: Molecular mechanisms
of T cell co-stimulation and co-inhibition. Nat Rev Immunol.
13:227–242. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zou W, Wolchok JD and Chen L: PD-L1
(B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms,
response biomarkers, and combinations. Sci Transl Med.
8:328rv3242016. View Article : Google Scholar
|
|
6
|
Smyth MJ, Ngiow SF, Ribas A and Teng MWL:
Combination cancer immunotherapies tailored to the tumour
microenvironment. Nat Rev Clin Oncol. 13:143–158. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kruger S, Ilmer M, Kobold S, Cadilha BL,
Endres S, Ormanns S, Schuebbe G, Renz BW, D'Haese JG, Schloesser H,
et al: Advances in cancer immunotherapy 2019-latest trends. J Exp
Clin Cancer Res. 38:2682019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Martins F, Sofiya L, Sykiotis GP, Lamine
F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A,
Guex-Crosier Y, et al: Adverse effects of immune-checkpoint
inhibitors: Epidemiology, management and surveillance. Nat Rev Clin
Oncol. 16:563–580. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Darvin P, Toor SM, Nair VS and Elkord E:
Immune checkpoint inhibitors: Recent progress and potential
biomarkers. Exp Mol Med. 50:1652018. View Article : Google Scholar
|
|
10
|
Sharma P and Allison JP: Immune checkpoint
targeting in cancer therapy: Toward combination strategies with
curative potential. Cell. 161:205–214. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Dougall WC, Kurtulus S, Smyth MJ and
Anderson AC: TIGIT and CD96: New checkpoint receptor targets for
cancer immunotherapy. Immunol Rev. 276:112–120. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kakunaga S, Ikeda W, Itoh S,
Deguchi-Tawarada M, Ohtsuka T, Mizoguchi A and Takai Y: Nectin-Like
molecule-1/TSLL1/SynCAM3: A neural tissue-specific
immunoglobulin-like cell-cell adhesion molecule localizing at
non-junctional contact sites of presynaptic nerve terminals, axons
and glia cell processes. J Cell Sci. 118:1267–1277. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Spiegel I, Adamsky K, Eshed Y, Milo R,
Sabanay H, Sarig-Nadir O, Horresh I, Scherer SS, Rasband MN and
Peles E: A central role for Necl4 (SynCAM4) in Schwann cell-axon
interaction and myelination. Nat Neurosci. 10:861–869. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kuramochi M, Fukuhara H, Nobukuni T, Kanbe
T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura
T, et al: TSLC1 is a tumor-suppressor gene in human non-small-cell
lung cancer. Nat Genet. 27:427–430. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fujito T, Ikeda W, Kakunaga S, Minami Y,
Kajita M, Sakamoto Y, Monden M and Takai Y: Inhibition of cell
movement and proliferation by cell-cell contact-induced interaction
of necl-5 with nectin-3. J Cell Biol. 171:165–173. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Takai Y, Miyoshi J, Ikeda W and Ogita H:
Nectins and nectin-like molecules: Roles in contact inhibition of
cell movement and proliferation. Nat Rev Mol Cell Biol. 9:603–615.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Koike S, Horie H, Ise I, Okitsu A, Yoshida
M, Iizuka N, Takeuchi K, Takegami T and Nomoto A: The poliovirus
receptor protein is produced both as membrane-bound and secreted
forms. EMBO J. 9:3217–3224. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Oda T, Ohka S and Nomoto A: Ligand
stimulation of CD155alpha inhibits cell adhesion and enhances cell
migration in fibroblasts. Biochem Biophys Res Commun.
319:1253–1264. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yusa Si, Catina TL and Campbell KS: SHP-1-
and phosphotyrosine-independent inhibitory signaling by a killer
cell Ig-like receptor cytoplasmic domain in human NK cells. J
Immunol. 168:5047–5057. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lange R, Peng X, Wimmer E, Lipp M and
Bernhardt G: The poliovirus receptor CD155 mediates cell-to-matrix
contacts by specifically binding to vitronectin. Virology.
285:218–227. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Reymond N, Imbert AM, Devilard E, Fabre S,
Chabannon C, Xerri L, Farnarier C, Cantoni C, Bottino C, Moretta A,
et al: DNAM-1 and PVR regulate monocyte migration through
endothelial junctions. J Exp Med. 199:1331–1341. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kakunaga S, Ikeda W, Shingai T, Fujito T,
Yamada A, Minami Y, Imai T and Takai Y: Enhancement of serum- and
platelet-derived growth factor-induced cell proliferation by
necl-5/tage4/poliovirus receptor/CD155 through the ras-raf-MEK-ERK
signaling. J Biol. 27:36419–36425. 2004.
|
|
23
|
Molfetta R, Zitti B, Lecce M, Milito ND,
Stabile H, Fionda C, Cippitelli M, Gismondi A, Santoni A and
Paolini R: CD155: A multi-functional molecule in tumor progression.
Int J Mol Sci. 21:9222020. View Article : Google Scholar
|
|
24
|
Yu X, Harden K, Gonzalez LC, Francesco M,
Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, et al: The
surface protein TIGIT suppresses T cell activation by promoting the
generation of mature immunoregulatory dendritic cells. Nat Immunol.
10:48–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Deuss FA, Watson GM, Fu Z, Rossjohn J and
Berry R: Structural basis for CD96 immune receptor recognition of
nectin-like protein-5, CD155. Structure. 5:219–228. 2019.
View Article : Google Scholar
|
|
26
|
Bevelacqua V, Bevelacqua Y, Candido S,
Skarmoutsou E, Amoroso A, Guarneri C, Strazzanti A, Gangemi P,
Mazzarino MC, D'Amico F, et al: Nectin like-5 overexpression
correlates with the malignant phenotype in cutaneous melanoma.
Oncotarget. 3:882–892. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Nakai R, Maniwa Y, Tanaka Y, Nishio W,
Yoshimura M, Okita Y, Ohbayashi C, Satoh N, Ogita H, Takai Y and
Hayashi Y: Overexpression of necl-5 correlates with unfavorable
prognosis in patients with lung adenocarcinoma. Cancer Sci.
101:1326–1330. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nishiwada S, Sho M, Yasuda S, Shimada K,
Yamato I, Akahori T, Kinoshita S, Nagai M, Konishi N and Nakajima
Y: Clinical significance of CD155 expression in human pancreatic
cancer. Anticancer Res. 35:2287–2297. 2015.PubMed/NCBI
|
|
29
|
Smazynski J, Hamilton PT, Thornton S,
Milne K, Wouters MC, Webb JR and Nelson BH: The immune suppressive
factors CD155 and PD-L1 show contrasting expression patterns and
immune correlates in ovarian and other cancers. Gynecol Oncol.
158:167–177. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pende D, Spaggiari GM, Marcenaro S,
Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I,
Zambello R, et al: Analysis of the receptor-ligand interactions in
the natural killer-mediated lysis of freshly isolated myeloid or
lymphoblastic leukemias: Evidence for the involvement of the
poliovirus receptor (CD155) and nectin-2 (CD112). Blood.
105:2066–2073. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gromeier M, Lachmann S, Rosenfeld MR,
Gutin PH and Wimmer E: Intergeneric poliovirus recombinants for the
treatment of malignant glioma. Proc Natl Acad Sci USA.
97:6803–6808. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Huang DW, Huang M, Lin XS and Huang Q:
CD155 expression and its correlation with clinicopathologic
characteristics, angiogenesis, and prognosis in human
cholangiocarcinoma. Onco Targets Ther. 10:3817–3825. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang
LL, Wu H, Bu LL, Kulkarni AB, Zhang WF and Sun ZJ: Blockade of
TIGIT/CD155 signaling reverses t-cell exhaustion and enhances
antitumor capability in head and neck squamous cell carcinoma.
Cancer Immunol Res. 7:1700–1713. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Iguchi-Manaka A, Okumura G, Kojima H, Cho
Y, Hirochika R, Bando H, Sato T, Yoshikawa H, Hara H and Shibuya A:
Increased soluble CD155 in the serum of cancer patients. PLoS One.
11:e01529822016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Soriani A, Zingoni A, Cerboni C, Iannitto
ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C,
Petrucci MT, Guarini A, et al: ATM-ATR-Dependent up-regulation of
DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic
agents results in enhanced NK-cell susceptibility and is associated
with a senescent phenotype. Blood. 113:3503–3511. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Soriani A, Fionda C, Ricci B, Iannitto ML,
Cippitelli M and Santoni A: Chemotherapy-Elicited upregulation of
NKG2D and DNAM-1 ligands as a therapeutic target in multiple
myeloma. Oncoimmunology. 2:e266632014. View Article : Google Scholar
|
|
37
|
Lee JH and Paull TT: Activation and
regulation of ATM kinase activity in response to DNA double-strand
breaks. Oncogene. 26:7741–7748. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Vauzour D, Vafeiadou K, Rice-Evans C,
Cadenas E and Spencer JP: Inhibition of cellular proliferation by
the genistein metabolite 5,7,3′,4′-tetrahydroxyisoflavone is
mediated by DNA damage and activation of the ATR signalling
pathway. Arch Biochem Biophys. 468:159–166. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hirota T, Irie K, Okamoto R, Ikeda W and
Takai Y: Transcriptional activation of the mouse
necl-5/tage4/PVR/CD155 gene by fibroblast growth factor or
oncogenic ras through the raf-MEK-ERK-AP-1 pathway. Oncogene.
24:2229–2235. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Rimkus TK, Carpenter RL, Qasem S, Chan M
and Lo HW: Targeting the sonic hedgehog signaling pathway: Review
of smoothened and GLI inhibitors. Cancers (Basel). 8:222016.
View Article : Google Scholar
|
|
41
|
Athar M, Li C, Kim AL, Spiegelman VS and
Bickers DR: Sonic hedgehog signaling in basal cell nevus syndrome.
Cancer Res. 74:4967–4975. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Solecki DJ, Gromeier M, Mueller S,
Bernhardt G and Wimmer E: Expression of the human poliovirus
receptor/CD155 gene is activated by sonic hedgehog. J Biol Chem.
277:25697–25702. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Li XY, Das I, Lepletier A, Addala V, Bald
T, Stannard K, Barkauskas D, Liu J, Aguilera AR, Takeda K, et al:
CD155 loss enhances tumor suppression via combined host and
tumor-intrinsic mechanisms. J Clin Invest. 128:2613–2625. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Escalante NK, von Rossum A, Lee M and Choy
JC: CD155 on human vascular endothelial cells attenuates the
acquisition of effector functions in CD8 T cells. Arterioscler
Thromb Vasc Biol. 31:1177–1184. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kamran N, Takai Y, Miyoshi J, Biswas SK,
Wong JSB and Gasser S: Toll-Like receptor ligands induce expression
of the costimulatory molecule CD155 on antigen-presenting cells.
PLoS One. 8:e544062013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Pende D, Castriconi R, Romagnani P,
Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, Lasagni L, Martini
S, Rivera P, et al: Expression of the DNAM-1 ligands, Nectin-2
(CD112) and poliovirus receptor (CD155), on dendritic cells:
Relevance for natural killer-dendritic cell interaction. Blood.
107:2030–2036. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gilfillan S, Chan CJ, Cella M, Haynes NM,
Rapaport AS, Boles KS, Andrews DM, Smyth MJ and Colonna M: DNAM-1
promotes activation of cytotoxic lymphocytes by nonprofessional
antigen-presenting cells and tumors. J Exp Med. 205:2965–2973.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gumbiner BM: Cell adhesion: The molecular
basis of tissue architecture and morphogenesis. Cell. 84:345–357.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Minami Y, Ikeda W, Kajita M, Fujito T,
Amano H, Tamaru Y, Kuramitsu K, Sakamoto Y, Monden M and Takai Y:
Necl-5/Poliovirus receptor interacts in cis with integrin
alphaVbeta3 and regulates its clustering and focal complex
formation. J Biol Chem. 282:18481–18496. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Amano H, Ikeda W, Kawano S, Kajita M,
Tamaru Y, Inoue N, Minami Y, Yamada A and Takai Y: Interaction and
localization of necl-5 and PDGF receptor beta at the leading edges
of moving NIH3T3 cells: Implications for directional cell movement.
Genes Cells. 13:269–284. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Takahashi M, Rikitake Y, Nagamatsu Y, Hara
T, Ikeda W, Hirata Ki and Takai Y: Sequential activation of rap1
and rac1 small G proteins by PDGF locally at leading edges of
NIH3T3 cells. Genes Cells. 13:549–569. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Christofori G: Split personalities: The
agonistic antagonist sprouty. Nat Cell Biol. 5:377–379. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kim HJ and Bar-Sagi D: Modulation of
signalling by sprouty: A developing story. Nat Rev Mol Cell Biol.
5:441–450. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Reich A, Sapir A and Shilo B: Sprouty is a
general inhibitor of receptor tyrosine kinase signaling.
Development. 126:4139–4147. 1999.PubMed/NCBI
|
|
55
|
Zheng Q, Wang B, Gao J, Xin N, Wang W,
Song X, Shao Y and Zhao C: CD155 knockdown promotes apoptosis via
AKT/bcl-2/bax in colon cancer cells. J Cell Mol Med. 22:131–140.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Stanietsky N, Simic H, Arapovic J, Toporik
A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, et al:
The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell
cytotoxicity. Proc Natl Acad Sci USA. 106:17858–17863. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Johnston RJ, Comps-Agrar L, Hackney J, Yu
X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al:
The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T
cell effector function. Cancer Cell. 26:923–937. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kong Y, Zhu L, Schell TD, Zhang J, Claxton
DF, Ehmann WC, Rybka WB, George MR, Zeng H and Zheng H: T-Cell
immunoglobulin and ITIM domain (TIGIT) associates with
CD8+ T-cell exhaustion and poor clinical outcome in AML
patients. Clin Cancer Res. 22:3057–3066. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chauvin JM, Pagliano O, Fourcade J, Sun Z,
Wang H, Sander C, Kirkwood JM, Chen Th, Maurer M, Korman AJ and
Zarour HM: TIGIT and PD-1 impair tumor antigen-specific
CD8+ T cells in melanoma patients. J Clin Invest.
125:2046–2058. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Guillerey C, Harjunpää H, Carrié N, Kassem
S, Teo T, Miles K, Krumeich S, Weulersse M, Cuisinier M and
Stannard K: TIGIT immune checkpoint blockade restores
CD8+ T-cell immunity against multiple myeloma. Blood.
132:1689–1694. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lee WJ, Lee YJ, Choi ME, Yun KA, Won CH,
Lee MW, Choi JH and Chang SE: Expression of lymphocyte-activating
gene 3 and T-cell immunoreceptor with immunoglobulin and ITIM
domains in cutaneous melanoma and their correlation with programmed
cell death 1 expression in tumor-infiltrating lymphocytes. J Am
Acad Dermatol. 81:219–227. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
O'Brien SM, Klampatsa A, Thompson JC,
Martinez MC, Hwang WT, Rao AS, Standalick JE, Kim S, Cantu E,
Litzky LA, et al: Function of human tumor-infiltrating lymphocytes
in early-stage non-small cell lung cancer. Cancer Immunol Res.
7:896–909. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
He W, Zhang H, Han F, Chen X, Lin R, Wang
W, Qiu H, Zhuang Z, Liao Q, Zhang W, et al: CD155T/TIGIT signaling
regulates CD8+ T-cell metabolism and promotes tumor
progression in human gastric cancer. Cancer Res. 77:6375–6388.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang C, Wang Y, Xun X, Wang S, Xiang X,
Hu S, Cheng Q, Guo J, Li Z and Zhu J: TIGIT can exert
immunosuppressive effects on CD8+ T cells by the
CD155/TIGIT signaling pathway for hepatocellular carcinoma in
vitro. J Immunother. 43:236–243. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kurtulus S, Sakuishi K, Ngiow SF, Joller
N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK and Anderson AC: TIGIT
predominantly regulates the immune response via regulatory T cells.
J Clin Invest. 125:4053–4062. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fourcade J, Sun Z, Chauvin JM, Ka M, Davar
D, Pagliano O, Wang H, Saada S, Menna C, Amin R, et al: CD226
opposes TIGIT to disrupt tregs in melanoma. JCI Insight.
26:e1211572018. View Article : Google Scholar
|
|
67
|
Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu
W, Wang Z, Wu Q, Peng H, Wei H, et al: Blockade of the checkpoint
receptor TIGIT prevents NK cell exhaustion and elicits potent
anti-tumor immunity. Nat Immunol. 19:723–732. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Stålhammar G, Seregard S and Grossniklaus
HE: Expression of immune checkpoint receptors Indoleamine
2,3-dioxygenase and T cell Ig and ITIM domain in metastatic versus
nonmetastatic choroidal melanoma. Cancer Med. 8:2784–2792.
2019.PubMed/NCBI
|
|
69
|
Tang W, Pan X, Han D, Rong D, Zhang M,
Yang L, Ying J, Guan H, Chen Z and Wang X: Clinical significance of
CD8+ T cell immunoreceptor with Ig and ITIM
domains+ in locally advanced gastric cancer treated with
SOX regimen after D2 gastrectomy. Oncoimmunology. 8:e15938072019.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Degos C, Heinemann M, Barrou J, Boucherit
N, Lambaudie E, Savina A, Gorvel L and Olive D: Endometrial tumor
microenvironment alters human NK cell recruitment, and resident NK
cell phenotype and function. Front Immunol. 10:8772019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang B, Zhao W, Li H, Chen Y, Tian H, Li
L, Zhang L, Gao C and Zheng J: Immunoreceptor TIGIT inhibits the
cytotoxicity of human cytokine-induced killer cells by interacting
with CD155. Cancer Immunol Immunother. 65:305–314. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Joller N, Hafler JP, Brynedal B, Kassam N,
Spoerl S, Levin SD, Sharpe AH and Kuchroo VK: Cutting edge: TIGIT
has T cell-intrinsic inhibitory functions. J Immunol.
186:1338–1342. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Joller N, Lozano E, Burkett PR, Patel B,
Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, et al: Treg cells
expressing the coinhibitory molecule TIGIT selectively inhibit
proinflammatory Th1 and Th17 cell responses. Immunity. 40:569–581.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lozano E, Dominguez-Villar M, Kuchroo V
and Hafler DA: The TIGIT/CD226 axis regulates human T cell
function. J Immunol. 188:3869–3875. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
De Vlaeminck Y, González-Rascón A,
Goyvaerts C and Breckpot K: Cancer-Associated myeloid regulatory
cells. Front Immunol. 7:1132016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu S, Zhang H, Li M, Hu D, Li C, Ge B,
Jin B and Fan Z: Recruitment of Grb2 and SHIP1 by the ITT-like
motif of TIGIT suppresses granule polarization and cytotoxicity of
NK cells. Cell Death Differ. 20:456–464. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B
and Pei G: Identification of beta-arrestin2 as a G protein-coupled
receptor-stimulated regulator of NF-kappaB pathways. Mol Cell.
14:303–317. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sun L, Deng L, Ea CK, Xia ZP and Chen ZJ:
The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation
by BCL10 and MALT1 in T lymphocytes. Mol Cell. 14:289–301. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen ZJ: Ubiquitination in signaling to
and activation of IKK. Immunol Rev. 246:95–106. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Asaoka Y, Ijichi H and Koike K: PD-1
blockade in tumors with mismatch-repair deficiency. N Engl J Med.
373:19792015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Josefsson SE, Beiske K, Blaker YN, Førsund
MS, Holte H, Østenstad B, Kimby E, Köksal H, Wälchli S, Bai B, et
al: TIGIT and PD-1 mark intratumoral T cells with reduced effector
function in B-cell non-hodgkin lymphoma. Cancer Immunol Res.
7:355–362. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hung AL, Maxwell R, Theodros D, Belcaid Z,
Mathios D, Luksik AS, Kim E, Wu A, Xia Y, Garzon-Muvdi T, et al:
TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity
and survival in GBM. Oncoimmunology. 7:e14667692018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang X, Zhang H, Chen L, Feng Z, Gao L
and Li Q: TIGIT expression is upregulated in T cells and causes T
cell dysfunction independent of PD-1 and Tim-3 in adult B lineage
acute lymphoblastic leukemia. Cell Immunol. 344:1039582019.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Harjunpaa H and Guillerey C: TIGIT as an
emerging immune checkpoint. Clin Exp Immunol. 200:108–119. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Valsecchi ME: Combined nivolumab and
ipilimumab or monotherapy in untreated melanoma. N Engl J Med.
373:12702015. View Article : Google Scholar : PubMed/NCBI
|