Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2021 Volume 45 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 45 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review)

  • Authors:
    • Hongdan Chen
    • Yizeng Sun
    • Zeyu Yang
    • Supeng Yin
    • Yao Li
    • Mi Tang
    • Junping Zhu
    • Fan Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 846-856
    |
    Published online on: January 22, 2021
       https://doi.org/10.3892/or.2021.7946
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer is one of the most common malignancies in women and is characterized by active immunogenicity. Immune cell infiltration plays an important role in the development of breast cancer. The degree of infiltration influences both the response to and effect of treatment. However, immune infiltration is a complex process. Differences in oxygen partial pressure, blood perfusion and nutrients in the tumor microenvironment (TME) suggest that infiltrating immune cells in different sites experience different microenvironments with corresponding changes in the metabolic mode, that is, immune cell metabolism is heterogenous in the TME. Furthermore, the present review found that lipid metabolism can support the immunosuppressive microenvironment in breast cancer based on a review of published literature. Research in this field is still ongoing; however, it is vital to understand the metabolic patterns and effects of different microenvironments for antitumor therapy. Therefore, this review discusses the metabolic responses of various immune cells to different microenvironments in breast cancer and provides potentially meaningful insights for tumor immunotherapy.
View Figures

Figure 1

Figure 2

View References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Vranic S, Cyprian FS, Gatalica Z and Palazzo J: PD-L1 status in breast cancer: Current view and perspectives. Semin Cancer Biol. Dec 26–2019.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

3 

Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD and Slingluff CL Jr: Immune Cell Infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol. 200:432–442. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, Salgado R, Byrne DJ, Teo ZL, Dushyanthen S, et al: Publisher correction: Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med. 24:19412018. View Article : Google Scholar : PubMed/NCBI

5 

Zhang SC, Hu ZQ, Long JH, Zhu GM, Wang Y, Jia Y, Zhou J, Ouyang Y and Zeng Z: Clinical implications of tumor-infiltrating immune cells in breast cancer. J Cancer. 10:6175–6184. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Wu D: Innate and adaptive immune cell metabolism in tumor microenvironment. Adv Exp Med Biol. 1011:211–223. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Kishton RJ, Sukumar M and Restifo NP: Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26:94–109. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Hobson-Gutierrez SA and Carmona-Fontaine C: The metabolic axis of macrophage and immune cell polarization. Dis Model Mech. 11:dmm0344622018. View Article : Google Scholar : PubMed/NCBI

9 

Warburg O: Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften. 12:1131–1137. 1924. View Article : Google Scholar

10 

Lane AN, Higashi RM and Fan TW: Metabolic reprogramming in tumors: Contributions of the tumor microenvironment. Genes Dis. 7:185–198. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Kim J and DeBerardinis RJ: Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30:434–446. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Mehla K and Singh PK: Metabolic regulation of macrophage polarization in cancer. Trends Cancer. 5:822–834. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Basit F, Mathan T, Sancho D and de Vries IJM: Human dendritic cell subsets undergo distinct metabolic reprogramming for immune response. Front Immunol. 9:24892018. View Article : Google Scholar : PubMed/NCBI

14 

Zhang L and Romero P: Metabolic control of CD8(+) T cell fate decisions and antitumor immunity. Trends Mol Med. 24:30–48. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Poznanski SM, Barra NG, Ashkar AA and Schertzer JD: Immunometabolism of T cells and NK cells: Metabolic control of effector and regulatory function. Inflamm Res. 67:813–828. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Norton KA, Jin K and Popel AS: Modeling triple-negative breast cancer heterogeneity: Effects of stromal macrophages, fibroblasts and tumor vasculature. J Theor Biol. 452:56–68. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Skala MC, Fontanella A, Lan L, Izatt JA and Dewhirst MW: Longitudinal optical imaging of tumor metabolism and hemodynamics. J Biomed Opt. 15:0111122010. View Article : Google Scholar : PubMed/NCBI

18 

Roulot A, Héquet D, Guinebretière JM, Vincent-Salomon A, Lerebours F, Dubot C and Rouzier R: Tumoral heterogeneity of breast cancer. Ann Biol Clin (Paris). 74:653–660. 2016.PubMed/NCBI

19 

Carmona-Fontaine C, Deforet M, Akkari L, Thompson CB, Joyce JA and Xavier JB: Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci USA. 114:2934–2939. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Montcourrier P, Silver I, Farnoud R, Bird I and Rochefort H: Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin Exp Metastasis. 15:382–392. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Logozzi M, Spugnini E, Mizzoni D, Di Raimo R and Fais S: Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev. 38:93–101. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Gao T, Li JZ, Lu Y, Zhang CY, Li Q, Mao J and Li LH: The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomed Pharmacother. 80:393–405. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Liu ZJ, Semenza GL and Zhang HF: Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B. 16:32–43. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Daşu A, Toma-Daşu I and Karlsson M: Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol. 48:2829–2842. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Byrne A, Savas P, Sant S, Li R, Virassamy B, Luen SJ, Beavis PA, Mackay LK, Neeson PJ and Loi S: Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nat Rev Clin Oncol. 17:341–348. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH and Thompson CB: The CD28 signaling pathway regulates glucose metabolism. Immunity. 16:769–777. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Kamiński MM, Sauer SW, Kamiński M, Opp S, Ruppert T, Grigaravičius P, Grudnik P, Gröne HJ, Krammer PH and Gülow K: T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. Cell Rep. 2:1300–1315. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Gentric G, Mieulet V and Mechta-Grigoriou F: Heterogeneity in cancer metabolism: New concepts in an old field. Antioxid Redox Signal. 26:462–485. 2017. View Article : Google Scholar : PubMed/NCBI

30 

MacPherson S, Kilgour M and Lum JJ: Understanding lymphocyte metabolism for use in cancer immunotherapy. FEBS J. 285:2567–2578. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG and Rathmell JC: Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 186:3299–3303. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, Sandouk A, Hesse C, Castro CN, Bähre H, et al: De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 20:1327–1333. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Phan AT and Goldrath AW: Hypoxia-inducible factors regulate T cell metabolism and function. Mol Immunol. 68:527–535. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Westendorf AM, Skibbe K, Adamczyk A, Buer J, Geffers R, Hansen W, Pastille E and Jendrossek V: Hypoxia enhances immunosuppression by inhibiting CD4+ effector T cell function and promoting treg activity. Cell Physiol Biochem. 41:1271–1284. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Molon B, Calì B and Viola A: T cells and cancer: How metabolism shapes immunity. Front Immunol. 7:202016. View Article : Google Scholar : PubMed/NCBI

37 

Mack N, Mazzio EA, Bauer D, Flores-Rozas H and Soliman KF: Stable shRNA silencing of lactate dehydrogenase A (LDHA) in human MDA-MB-231 breast cancer cells fails to alter lactic acid production, glycolytic activity, ATP or survival. Anticancer Res. 37:1205–1212. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Siska PJ and Rathmell JC: T cell metabolic fitness in antitumor immunity. Trends Immunol. 36:257–264. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Peppicelli S, Toti A, Giannoni E, Bianchini F, Margheri F, Del Rosso M and Calorini L: Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation. Cell Cycle. 15:1908–1918. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, et al: Phosphoenolpyruvate Is a metabolic checkpoint of anti-tumor t cell responses. Cell. 162:1217–1228. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Beckermann KE, Dudzinski SO and Rathmell JC: Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor Rev. 35:7–14. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Neugent ML, Goodwin J, Sankaranarayanan I, Yetkin CE, Hsieh MH and Kim JW: A new perspective on the heterogeneity of cancer glycolysis. Biomol Ther (Seoul). 26:10–18. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, Wang Z, Quinn WJ III, Kopinski PK, Wang L, et al: Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25:1282–1293.e7. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Hao Y, Li D, Xu Y, Ouyang J, Wang Y, Zhang Y, Li B, Xie L and Qin G: Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics. 20 (Suppl 7):S1952019. View Article : Google Scholar

46 

Saleh R and Elkord E: FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett. 490:174–185. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Iranparast S, Tayebi S, Ahmadpour F and Yousefi B: Tumor-Induced metabolism and T cells located in tumor environment. Curr Cancer Drug Targets. 20:741–756. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Shang W, Xu R, Xu T, Wu M, Xu J and Wang F: Ovarian cancer cells promote glycolysis metabolism and TLR8-mediated metabolic control of human CD4+ T cells. Front Oncol. 10:5708992020. View Article : Google Scholar : PubMed/NCBI

49 

Vardhana SA, Hwee MA, Berisa M, Wells DK, Yost KE, King B, Smith M, Herrera PS, Chang HY, Satpathy AT, et al: Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat Immunol. 21:1022–1033. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, et al: Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. FASEB J. 29:2315–2326. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, Winter PS, Liu X, Priyadharshini B, Slawinska ME, et al: Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest. 125:194–207. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Duan W, Ding Y, Yu X, Ma D, Yang B, Li Y, Huang L, Chen Z, Zheng J and Yang C: Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production. Am J Transl Res. 11:2393–2402. 2019.PubMed/NCBI

53 

Lu L, Barbi J and Pan F: The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 17:703–717. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Georgiev P, Charbonnier LM and Chatila TA: Regulatory T cells: The many faces of Foxp3. J Clin Immunol. 39:623–640. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG, Warmoes MO, de Cubas AA, MacIver NJ, Locasale JW, et al: Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 17:1459–1466. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Chen X, Feng L, Li S, Long D, Shan J and Li Y: TGF-β1 maintains Foxp3 expression and inhibits glycolysis in natural regulatory T cells via PP2A-mediated suppression of mTOR signaling. Immunol Lett. 226:31–37. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Choi J, Gyamfi J, Jang H and Koo JS: The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol. 33:133–145. 2018.PubMed/NCBI

58 

Su S, Liu Q, Chen J, Chen J, Chen F, He C, Huang D, Wu W, Lin L, Huang W, et al: A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 25:605–620. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Klingen TA, Chen Y, Aas H, Wik E and Akslen LA: Tumor-associated macrophages are strongly related to vascular invasion, non-luminal subtypes, and interval breast cancer. Hum Pathol. 69:72–80. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Tarique AA, Logan J, Thomas E, Holt PG, Sly PD and Fantino E: Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol. 53:676–688. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Geeraerts X, Bolli E, Fendt SM and Van Ginderachter JA: Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front Immunol. 8:2892017. View Article : Google Scholar : PubMed/NCBI

62 

Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar : PubMed/NCBI

63 

De Santa F, Vitiello L, Torcinaro A and Ferraro E: The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration. Antioxid Redox Signal. 30:1553–1598. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, Luque-Martin R, Chen HJ, Boshuizen MC, Ahmed M, et al: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 17:684–696. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Kim J: Regulation of immune cell functions by metabolic reprogramming. J Immuno Res. 2018:86054712018.

66 

Rodríguez-Prados JC, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, Cascante M and Boscá L: Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. J Immunol. 185:605–614. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ and Chawla A: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4:13–24. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Feng R, Morine Y, Ikemoto T, Imura S, Iwahashi S, Saito Y and Shimada M: Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Commun Signal. 16:542018. View Article : Google Scholar : PubMed/NCBI

70 

Maftouh M, Avan A, Sciarrillo R, Granchi C, Leon LG, Rani R, Funel N, Smid K, Honeywell R, Boggi U, et al: Synergistic interaction of novel lactate dehydrogenase inhibitors with gemcitabine against pancreatic cancer cells in hypoxia. Br J Cancer. 110:172–182. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Mediani L, Gibellini F, Bertacchini J, Frasson C, Bosco R, Accordi B, Basso G, Bonora M, Calabrò ML, Mattiolo A, et al: Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/mTOR signaling. Oncotarget. 7:5521–5537. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Lin S, Sun L, Lyu X, Ai X, Du D, Su N, Li H, Zhang L, Yu J and Yuan S: Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: A positive metabolic feedback loop. Oncotarget. 8:110426–110443. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T and Castegna A: The metabolic signature of macrophage responses. Front Immunol. 10:14622019. View Article : Google Scholar : PubMed/NCBI

74 

Zhang Q, Wang H, Mao C, Sun M, Dominah G, Chen L and Zhuang Z: Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol. 94:27–35. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Wu H, Han Y, Rodriguez Sillke Y, Deng H, Siddiqui S, Treese C, Schmidt F, Friedrich M, Keye J, Wan J, et al: Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 11:e106982019. View Article : Google Scholar : PubMed/NCBI

76 

Rombaldova M, Janovska P, Kopecky J and Kuda O: Omega-3 fatty acids promote fatty acid utilization and production of pro-resolving lipid mediators in alternatively activated adipose tissue macrophages. Biochem Biophys Res Commun. 490:1080–1085. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O'Neill CM, et al: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 15:846–855. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Jin H, He Y, Zhao P, Hu Y, Tao J, Chen J and Huang Y: Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics. 9:265–278. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Chiossone L, Dumas PY, Vienne M and Vivier E: Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 18:671–688. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O and Borrego F: NK cell metabolism and tumor microenvironment. Front Immunol. 10:22782019. View Article : Google Scholar : PubMed/NCBI

81 

Gardiner CM: NK cell metabolism. J Leukoc Biol. 105:1235–1242. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK and Gardiner CM: Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J Immunol. 196:2552–2560. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Keppel MP, Saucier N, Mah AY, Vogel TP and Cooper MA: Activation-specific metabolic requirements for NK Cell IFN-γ production. J Immunol. 194:1954–1962. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Assmann N, O'Brien KL, Donnelly RP, Dyck L, Zaiatz-Bittencourt V, Loftus RM, Heinrich P, Oefner PJ, Lynch L, Gardiner CM, et al: Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol. 18:1197–1206. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Cooper MA, Fehniger TA and Caligiuri MA: The biology of human natural killer-cell subsets. Trends Immunol. 22:633–640. 2001. View Article : Google Scholar : PubMed/NCBI

86 

Schafer JR, Salzillo TC, Chakravarti N, Kararoudi MN, Trikha P, Foltz JA, Wang R, Li S and Lee DA: Education-dependent activation of glycolysis promotes the cytolytic potency of licensed human natural killer cells. J Allergy Clin Immunol. 143:346–358.e6. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, Eva A, Varesio L, Pietra G, Moretta L, et al: Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration. Front Immunol. 9:23582018. View Article : Google Scholar : PubMed/NCBI

88 

Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, Varesio L, Moretta L, Bosco MC and Vitale M: Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol. 43:2756–2764. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Dengler VL, Galbraith M and Espinosa JM: Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 49:1–15. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Yang C, Tsaih SW, Lemke A, Flister MJ, Thakar MS and Malarkannan S: mTORC1 and mTORC2 differentially promote natural killer cell development. Elife. 7:e356192018. View Article : Google Scholar : PubMed/NCBI

91 

Chambers AM, Wang J, Lupo KB, Yu H, Atallah Lanman NM and Matosevic S: Adenosinergic signaling alters natural killer cell functional responses. Front Immunol. 9:25332018. View Article : Google Scholar : PubMed/NCBI

92 

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et al: LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Stiff A, Trikha P, Mundy-Bosse B, McMichael E, Mace TA, Benner B, Kendra K, Campbell A, Gautam S, Abood D, et al: Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin Cancer Res. 24:1891–1904. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Piñeiro Fernández J, Luddy KA, Harmon C and O'Farrelly C: Hepatic tumor microenvironments and effects on NK cell phenotype and function. Int J Mol Sci. 20:41312019. View Article : Google Scholar

95 

Vitale M, Cantoni C, Pietra G, Mingari MC and Moretta L: Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 44:1582–1592. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Wang Z, Guan D, Wang S, Chai LYA, Xu S and Lam KP: Glycolysis and oxidative phosphorylation play critical roles in natural killer cell receptor-mediated natural killer cell functions. Front Immunol. 11:2022020. View Article : Google Scholar : PubMed/NCBI

97 

Terrén I, Orrantia A, Vitallé J, Astarloa-Pando G, Zenarruzabeitia O and Borrego F: Modulating NK cell metabolism for cancer immunotherapy. Semin Hematol. 57:213–224. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Kobayashi T, Lam PY, Jiang H, Bednarska K, Gloury RE, Murigneux V, Tay J, Jacquelot N, Li R, Tuong ZK, et al: Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood. Aug 20–2020.(Epub ahead of print). View Article : Google Scholar

99 

Inoue H, Miyaji M, Kosugi A, Nagafuku M, Okazaki T, Mimori T, Amakawa R, Fukuhara S, Domae N, Bloom ET and Umehara H: Lipid rafts as the signaling scaffold for NK cell activation: Tyrosine phosphorylation and association of LAT with phosphatidylinositol 3-kinase and phospholipase C-gamma following CD2 stimulation. Eur J Immunol. 32:2188–2198. 2002. View Article : Google Scholar : PubMed/NCBI

100 

Niavarani SR, Lawson C, Bakos O, Boudaud M, Batenchuk C, Rouleau S and Tai LH: Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer. 19:8232019. View Article : Google Scholar : PubMed/NCBI

101 

Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K, Beyaz S, Tavakkoli A, Foley C, Donnelly R, et al: Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol. 19:1330–1340. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, et al: Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 16:880–886. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Gao F, Liu C, Guo J, Sun W, Xian L, Bai D, Liu H, Cheng Y, Li B, Cui J, et al: Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer. Sci Rep. 5:96132015. View Article : Google Scholar : PubMed/NCBI

104 

Dong H and Bullock TN: Metabolic influences that regulate dendritic cell function in tumors. Front Immunol. 5:242014. View Article : Google Scholar : PubMed/NCBI

105 

Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF and Ganapathy V: The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene. 39:3292–3304. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Ibrahim J, Nguyen AH, Rehman A, Ochi A, Jamal M, Graffeo CS, Henning JR, Zambirinis CP, Fallon NC, Barilla R, et al: Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology. 143:1061–1072. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Mellor AL and Munn DH: Creating immune privilege: Active local suppression that benefits friends, but protects foes. Nat Rev Immunol. 8:74–80. 2008. View Article : Google Scholar : PubMed/NCBI

108 

Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJ, et al: TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat Immunol. 15:323–332. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Guak H, Al Habyan S, Ma EH, Aldossary H, Al-Masri M, Won SY, Ying T, Fixman ED, Jones RG, McCaffrey LM and Krawczyk CM: Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell migration. Nat Commun. 9:24632018. View Article : Google Scholar : PubMed/NCBI

110 

Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG and Pearce EJ: Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 115:4742–4749. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Nasi A, Fekete T, Krishnamurthy A, Snowden S, Rajnavölgyi E, Catrina AI, Wheelock CE, Vivar N and Rethi B: Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol. 191:3090–3099. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A and Kreutz M: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 107:2013–2021. 2006. View Article : Google Scholar : PubMed/NCBI

113 

Naldini A, Morena E, Pucci A, Miglietta D, Riboldi E, Sozzani S and Carraro F: Hypoxia affects dendritic cell survival: Role of the hypoxia-inducible factor-1α and lipopolysaccharide. J Cell Physiol. 227:587–595. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Lawless SJ, Kedia-Mehta N, Walls JF, McGarrigle R, Convery O, Sinclair LV, Navarro MN, Murray J and Finlay DK: Glucose represses dendritic cell-induced T cell responses. Nat Commun. 8:156202017. View Article : Google Scholar : PubMed/NCBI

115 

Ramakrishnan R, Tyurin VA, Veglia F, Condamine T, Amoscato A, Mohammadyani D, Johnson JJ, Zhang LM, Klein-Seetharaman J, Celis E, et al: Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 192:2920–2931. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Menendez JA and Lupu R: Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Thera Targets. 21:1001–1016. 2017. View Article : Google Scholar

117 

Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, Buckley D, Kemble G and Heuer TS: Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2:808–824. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Jiang L, Fang X, Wang H, Li D and Wang X: Ovarian cancer-intrinsic fatty acid synthase prevents anti-tumor immunity by disrupting tumor-infiltrating dendritic cells. Front Immunol. 9:29272018. View Article : Google Scholar : PubMed/NCBI

119 

Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, Zhang S, Bettigole SE, Gupta D, Holcomb K, et al: ER Stress Sensor XBP1 controls Anti-tumor immunity by disrupting dendritic cell homeostasis. Cell. 161:1527–1538. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Xiong Y, Liu L, Xia Y, Qi Y, Chen Y, Chen L, Zhang P, Kong Y, Qu Y, Wang Z, et al: Tumor infiltrating mast cells determine oncogenic HIF-2α-conferred immune evasion in clear cell renal cell carcinoma. Cancer Immunol Immunother. 68:731–741. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Schwartz M, Zhang Y and Rosenblatt JD: B cell regulation of the anti-tumor response and role in carcinogenesis. J Immunother Cancer. 4:402016. View Article : Google Scholar : PubMed/NCBI

122 

Aponte-López A, Fuentes-Pananá EM, Cortes-Muñoz D and Muñoz-Cruz S: Mast cell, the neglected member of the tumor microenvironment: Role in breast cancer. J Immunol Res. 2018:25842432018. View Article : Google Scholar : PubMed/NCBI

123 

Okano M, Oshi M, Butash AL, Katsuta E, Tachibana K, Saito K, Okayama H, Peng X, Yan L, Kono K, Ohtake T and Takabe K: Triple-negative breast cancer with high levels of Annexin A1 expression is associated with mast cell infiltration, inflammation, and angiogenesis. Int J Mol Sci. 20:41972019. View Article : Google Scholar

124 

Glajcar A, Szpor J, Pacek A, Tyrak KE, Chan F, Streb J, Hodorowicz-Zaniewska D and Okoń K: The relationship between breast cancer molecular subtypes and mast cell populations in tumor microenvironment. Virchows Arch. 470:505–515. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Spector AA: The importance of free fatty acid in tumor nutrition. Cancer Res. 27:1580–1586. 1967.PubMed/NCBI

126 

Li Z and Zhang H: Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 73:377–392. 2016. View Article : Google Scholar : PubMed/NCBI

127 

Al-Khami AA, Zheng L, Del Valle L, Hossain F, Wyczechowska D, Zabaleta J, Sanchez MD, Dean MJ, Rodriguez PC and Ochoa AC: Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology. 6:e13448042017. View Article : Google Scholar : PubMed/NCBI

128 

Cao W and Gabrilovich D: Abstract 3649: Contribution of fatty acid accumulation to myeloid-derived suppressor cell function in cancer. Cancer Res. 71:3649. 2011.PubMed/NCBI

129 

Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, et al: Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 569:73–78. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen H, Sun Y, Yang Z, Yin S, Li Y, Tang M, Zhu J and Zhang F: Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncol Rep 45: 846-856, 2021.
APA
Chen, H., Sun, Y., Yang, Z., Yin, S., Li, Y., Tang, M. ... Zhang, F. (2021). Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncology Reports, 45, 846-856. https://doi.org/10.3892/or.2021.7946
MLA
Chen, H., Sun, Y., Yang, Z., Yin, S., Li, Y., Tang, M., Zhu, J., Zhang, F."Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review)". Oncology Reports 45.3 (2021): 846-856.
Chicago
Chen, H., Sun, Y., Yang, Z., Yin, S., Li, Y., Tang, M., Zhu, J., Zhang, F."Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review)". Oncology Reports 45, no. 3 (2021): 846-856. https://doi.org/10.3892/or.2021.7946
Copy and paste a formatted citation
x
Spandidos Publications style
Chen H, Sun Y, Yang Z, Yin S, Li Y, Tang M, Zhu J and Zhang F: Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncol Rep 45: 846-856, 2021.
APA
Chen, H., Sun, Y., Yang, Z., Yin, S., Li, Y., Tang, M. ... Zhang, F. (2021). Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncology Reports, 45, 846-856. https://doi.org/10.3892/or.2021.7946
MLA
Chen, H., Sun, Y., Yang, Z., Yin, S., Li, Y., Tang, M., Zhu, J., Zhang, F."Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review)". Oncology Reports 45.3 (2021): 846-856.
Chicago
Chen, H., Sun, Y., Yang, Z., Yin, S., Li, Y., Tang, M., Zhu, J., Zhang, F."Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review)". Oncology Reports 45, no. 3 (2021): 846-856. https://doi.org/10.3892/or.2021.7946
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team