Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
April-2021 Volume 45 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2021 Volume 45 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Mechanisms and functions of long non‑coding RNAs in glioma (Review)

  • Authors:
    • Xingjie Chen
    • Gaochao Guo
    • Yalin Lu
    • Shuaishuai Wang
    • Yu Zhang
    • Qiang Huang
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Department of Neurosurgery, Henan Provincial People's Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
  • Article Number: 9
    |
    Published online on: February 1, 2021
       https://doi.org/10.3892/or.2021.7960
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioma is one of the most common primary malignancies of the adult central nervous system with malignancy grades between I‑IV. Among these four grades, glioblastoma is the most malignant and aggressive type of tumor and is characterized by a poor prognosis, high recurrence rate and short median survival time after initial diagnosis. Existing treatments, such as radiotherapy, chemotherapy and surgical resection, have poor therapeutic effects; therefore, it is necessary to discover novel targeted therapies to enhance the curative effect and improve prognosis. Recently, increasing evidence has shown that long non‑coding RNAs (lncRNAs) participate in the vast majority of key physiological and pathological processes. Moreover, aberrant expression levels of lncRNAs are closely associated with the occurrence and development of glioma and other malignant phenotypes. The present review summarizes new insights into the functions and mechanisms of lncRNAs at the epigenetic, transcriptional and post‑transcriptional levels, describes their ability to encode functional peptides in glioma and discusses their clinical potential as new biomarkers and prospective therapeutic targets.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Reni M, Mazza E, Zanon S, Gatta G and Vecht CJ: Central nervous system gliomas. Crit Rev Oncol Hematol. 113:213–234. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Chen R, Smith-Cohn M, Cohen AL and Colman H: Glioma subclassifications and their clinical significance. Neurotherapeutics. 14:284–297. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Alexander BM and Cloughesy TF: Adult glioblastoma. J Clin Oncol. 35:2402–2409. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Taylor OG, Brzozowski JS and Skelding KA: Glioblastoma multiforme: An overview of emerging therapeutic targets. Front Oncol. 9:9632019. View Article : Google Scholar : PubMed/NCBI

7 

Cheng J, Meng J, Zhu L and Peng Y: Exosomal noncoding RNAs in Glioma: Biological functions and potential clinical applications. Mol Cancer. 19:662020. View Article : Google Scholar : PubMed/NCBI

8 

Ulitsky I and Bartel DP: lincRNAs: Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Lagarde J, Uszczynska-Ratajczak B, Santoyo-Lopez J, Gonzalez JM, Tapanari E, Mudge JM, Steward CA, Wilming L, Tanzer A, Howald C, et al: Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nat Commun. 7:123392016. View Article : Google Scholar : PubMed/NCBI

10 

Deveson IW, Hardwick SA, Mercer TR and Mattick JS: The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends Genet. 33:464–478. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Bonasio R and Shiekhattar R: Regulation of transcription by long noncoding RNAs. Annu Rev Genet. 48:433–455. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Yan Y, Xu Z, Li Z, Sun L and Gong Z: An insight into the increasing role of lncRNAs in the pathogenesis of gliomas. Front Mol Neurosci. 10:532017. View Article : Google Scholar : PubMed/NCBI

13 

Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, McDonel PE, Guttman M and Lander ES: Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 539:452–455. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Huang CK, Kafert-Kasting S and Thum T: Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res. 126:663–678. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Kato M and Natarajan R: Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 15:327–345. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Atianand MK, Caffrey DR and Fitzgerald KA: Immunobiology of long noncoding RNAs. Annu Rev Immunol. 35:177–198. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Cheng Z, Li Z, Ma K, Li X, Tian N, Duan J, Xiao X and Wang Y: Long non-coding RNA XIST promotes glioma tumorigenicity and angiogenesis by acting as a molecular sponge of miR-429. J Cancer. 8:4106–4116. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Qian X, Zhao J, Yeung PY, Zhang QC and Kwok CK: Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci. 44:33–52. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Mercer TR and Mattick JS: Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 20:300–307. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Rinn JL and Chang HY: Genome regulation by long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012. View Article : Google Scholar : PubMed/NCBI

23 

St Laurent G, Wahlestedt C and Kapranov P: The Landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Sigova AA, Mullen AC, Molinie B, Gupta S, Orlando DA, Guenther MG, Almada AE, Lin C, Sharp PA, Giallourakis CC and Young RA: Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc Natl Acad Sci USA. 110:2876–2881. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al: Long noncoding RNAs with enhancer-like function in human cells. Cell. 143:46–58. 2010. View Article : Google Scholar : PubMed/NCBI

26 

de Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL and Natoli G: A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8:e10003842010. View Article : Google Scholar : PubMed/NCBI

27 

Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, et al: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 458:223–227. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Ulitsky I, Shkumatava A, Jan CH, Sive H and Bartel DP: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 147:1537–1550. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Fitz J, Neumann T, Steininger M, Wiedemann EM, Garcia AC, Athanasiadis A, Schoeberl UE and Pavri R: Spt5-mediated enhancer transcription directly couples enhancer activation with physical promoter interaction. Nat Genet. 52:505–515. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A and Rinn JL: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25:1915–1927. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Peng Z, Liu C and Wu M: New insights into long noncoding RNAs and their roles in glioma. Mol Cancer. 17:612018. View Article : Google Scholar : PubMed/NCBI

32 

Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang A, Jia Z, Wang G, Yu S, et al: lncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol. 40:2004–2012. 2012.PubMed/NCBI

33 

Chen G, Cao Y, Zhang L, Ma H, Shen C and Zhao J: Analysis of long non-coding RNA expression profiles identifies novel lncRNA biomarkers in the tumorigenesis and malignant progression of gliomas. Oncotarget. 8:67744–67753. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Li Q, Jia H, Li H, Dong C, Wang Y and Zou Z: lncRNA and mRNA expression profiles of glioblastoma multiforme (GBM) reveal the potential roles of lncRNAs in GBM pathogenesis. Tumour Biol. 37:14537–14552. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Xi J, Sun Q, Ma L and Kang J: Long non-coding RNAs in glioma progression. Cancer Lett. 419:203–209. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Malissovas N, Ninou E, Michail A and Politis PK: Targeting long non-coding RNAs in nervous system cancers: New insights in prognosis, diagnosis and therapy. Curr Med Chem. 26:5649–5663. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M and Jiang C: Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/β-catenin pathway by scaffolding EZH2. Clin Cancer Res. 24:684–695. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, Kovac M, Moretti F, Makowska Z, Boldanova T, et al: Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology. 59:911–923. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Wu P, Cai J, Chen Q, Han B, Meng X, Li Y, Li Z, Wang R, Lin L, Duan C, et al: lnc-TALC promotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun. 10:20452019. View Article : Google Scholar : PubMed/NCBI

40 

Ghafouri-Fard S and Taheri M: Nuclear enriched abundant transcript 1 (NEAT1): A long non-coding RNA with diverse functions in tumorigenesis. Biomed Pharmacother. 111:51–59. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Zhao W, Li W, Jin X, Niu T, Cao Y, Zhou P and Zheng M: Silencing long non-coding RNA NEAT1 enhances the suppression of cell growth, invasion, and apoptosis of bladder cancer cells under cisplatin chemotherapy. Int J Clin Exp Pathol. 12:549–558. 2019.PubMed/NCBI

42 

Wu Y, Yang L, Zhao J, Li C, Nie J, Liu F, Zhuo C, Zheng Y, Li B, Wang Z and Xu Y: Nuclear-enriched abundant transcript 1 as a diagnostic and prognostic biomarker in colorectal cancer. Mol Cancer. 14:1912015. View Article : Google Scholar : PubMed/NCBI

43 

Fujimoto A, Furuta M, Totoki Y, Tsunoda T, Kato M, Shiraishi Y, Tanaka H, Taniguchi H, Kawakami Y, Ueno M, et al: Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 48:500–509. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Jiang X, Zhou Y, Sun AJ and Xue JL: NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. J Cell Physiol. 233:8558–8566. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Jho EH, Zhang T, Domon C, Joo CK, Freund JN and Costantini F: Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 22:1172–1183. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H and Akiyama T: Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev. 14:1741–1749. 2000.PubMed/NCBI

47 

Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K, Fransson S, Ganeshram A, Mondal T, Bandaru S, et al: The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell. 26:722–737. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Zhang F, Ruan X, Ma J, Liu X, Zheng J, Liu Y, Liu L, Shen S, Shao L, Wang D, et al: DGCR8/ZFAT-AS1 promotes CDX2 transcription in a PRC2 complex-dependent manner to facilitate the malignant biological behavior of glioma cells. Mol Ther. 28:613–630. 2020. View Article : Google Scholar : PubMed/NCBI

49 

de Klerk E and t Hoen PA: Alternative mRNA transcription, processing, and translation: Insights from RNA sequencing. Trends Genet. 31:128–139. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Ong CT and Corces VG: Enhancer function: New insights into the regulation of tissue-specific gene expression. Nat Rev Genet. 12:283–293. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Field A and Adelman K: Evaluating enhancer function and transcription. Annu Rev Biochem. 89:213–234. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, et al: Widespread transcription at neuronal activity-regulated enhancers. Nature. 465:182–187. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Mousavi K, Zare H, Dell'orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, Hager GL and Sartorelli V: eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell. 51:606–617. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, et al: Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 498:516–520. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Ørom UA, Derrien T, Guigo R and Shiekhattar R: Long noncoding RNAs as enhancers of gene expression. Cold Spring Harb Symp Quant Biol. 75:325–331. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Dykes IM and Emanueli C: Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics. 15:177–186. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Long Y, Wang X, Youmans DT and Cech TR: How do lncRNAs regulate transcription? Sci Adv. 3:eaao21102017. View Article : Google Scholar : PubMed/NCBI

58 

Zovoilis A, Cifuentes-Rojas C, Chu HP, Hernandez AJ and Lee JT: Destabilization of B2 RNA by EZH2 activates the stress response. Cell. 167:1788–1802.e13. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Hernandez AJ, Zovoilis A, Cifuentes-Rojas C, Han L, Bujisic B and Lee JT: B2 and ALU retrotransposons are self-cleaving ribozymes whose activity is enhanced by EZH2. Proc Natl Acad Sci USA. 117:415–425. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Espinoza CA, Allen TA, Hieb AR, Kugel JF and Goodrich JA: B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol. 11:822–829. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT: The human transcription factors. Cell. 172:650–665. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Hudson WH and Ortlund EA: The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol. 15:749–760. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, et al: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 43:621–629. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D, Yu H and Qi L: Long non-coding RNA PAXIP1-AS1 facilitates cell invasion and angiogenesis of glioma by recruiting transcription factor ETS1 to upregulate KIF14 expression. J Exp Clin Cancer Res. 38:4862019. View Article : Google Scholar : PubMed/NCBI

65 

Schneider C, King RM and Philipson L: Genes specifically expressed at growth arrest of mammalian cells. Cell. 54:787–793. 1988. View Article : Google Scholar : PubMed/NCBI

66 

Yuan J, Zhang N, Zheng Y, Chen YD, Liu J and Yang M: lncRNA GAS5 indel genetic polymorphism contributes to glioma risk through interfering binding of transcriptional factor TFAP2A. DNA Cell Biol. 37:750–757. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Amirkhah R, Naderi-Meshkin H, Shah JS, Dunne PD and Schmitz U: The intricate interplay between epigenetic events, alternative splicing and noncoding RNA deregulation in colorectal cancer. Cells. 8:9292019. View Article : Google Scholar

69 

Zhang XZ, Liu H and Chen SR: Mechanisms of long non-coding RNAs in cancers and their dynamic regulations. Cancers (Basel). 12:12452020. View Article : Google Scholar

70 

Li Y, Yin Z, Fan J, Zhang S and Yang W: The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct Target Ther. 4:472019. View Article : Google Scholar : PubMed/NCBI

71 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A and Bozzoni I: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 147:358–369. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Sa L, Li Y, Zhao L, Liu Y, Wang P, Liu L, Li Z, Ma J, Cai H and Xue Y: The Role of HOTAIR/miR-148b-3p/USF1 on regulating the permeability of BTB. Front Mol Neurosci. 10:1942017. View Article : Google Scholar : PubMed/NCBI

74 

Qin N, Tong GF, Sun LW and Xu XL: Long noncoding RNA MEG3 suppresses glioma cell proliferation, migration, and invasion by acting as a competing endogenous RNA of miR-19a. Oncol Res. 25:1471–1478. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Li DX, Fei XR, Dong YF, Cheng CD, Yang Y, Deng XF, Huang HL, Niu WX, Zhou CX, Xia CY and Niu CS: The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2. Oncotarget. 8:88163–88178. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST and Leung GK: Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis. 48:1–8. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Zheng J, Li XD, Wang P, Liu XB, Xue YX, Hu Y, Li Z, Li ZQ, Wang ZH and Liu YH: CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget. 6:25339–25355. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C and Liu Y: CRNDE promotes malignant progression of glioma by attenuating miR-384/PIWIL4/STAT3 axis. Mol Ther. 24:1199–1215. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Brockdorff N, Bowness JS and Wei G: Progress toward understanding chromosome silencing by Xist RNA. Genes Dev. 34:733–744. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Cheng Z, Luo C and Guo Z: lncRNA-XIST/microRNA-126 sponge mediates cell proliferation and glucose metabolism through the IRS1/PI3K/Akt pathway in glioma. J Cell Biochem. 121:2170–2183. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Ule J and Blencowe BJ: Alternative splicing regulatory networks: Functions, mechanisms, and evolution. Mol Cell. 76:329–345. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Shepard PJ and Hertel KJ: The SR protein family. Genome Biol. 10:2422009. View Article : Google Scholar : PubMed/NCBI

83 

Blencowe BJ: Alternative splicing: New insights from global analyses. Cell. 126:37–47. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Sun Y and Ma L: New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers (Basel). 11:2162019. View Article : Google Scholar

85 

Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, et al: MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 22:8031–8041. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Arun G and Spector DL: MALAT1 long non-coding RNA and breast cancer. RNA Biol. 16:860–863. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Chang J, Xu W, Du X and Hou J: MALAT1 silencing suppresses prostate cancer progression by upregulating miR-1 and downregulating KRAS. Onco Targets Ther. 11:3461–3473. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Le L, Chen H, Gao Y, Wang YW, Zhang GQ, Pan SH, Ji L, Kong R, Wang G, Jia YH, et al: Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol Cancer Ther. 15:2232–2243. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Liao K, Lin Y, Gao W, Xiao Z, Medina R, Dmitriev P, Cui J, Zhuang Z, Zhao X, Qiu Y, et al: Blocking lncRNA MALAT1/miR-199a/ZHX1 axis inhibits glioblastoma proliferation and progression. Mol Ther Nucleic Acids. 18:388–399. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Wen F, Cao YX, Luo ZY, Liao P and Lu ZW: lncRNA MALAT1 promotes cell proliferation and imatinib resistance by sponging miR-328 in chronic myelogenous leukemia. Biochem Biophys Res Commun. 507:1–8. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Long JC and Caceres JF: The SR protein family of splicing factors: Master regulators of gene expression. Biochem J. 417:15–27. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Stamm S: Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem. 283:1223–1227. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Huang B, Song JH, Cheng Y, Abraham JM, Ibrahim S, Sun Z, Ke X and Meltzer SJ: Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene. 35:4927–4936. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Zhang L, Yang Z, Trottier J, Barbier O and Wang L: Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology. 65:604–615. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Zhu L, Wei Q, Qi Y, Ruan X, Wu F, Li L, Zhou J, Liu W, Jiang T, Zhang J, et al: PTB-AS, a novel natural antisense transcript, promotes glioma progression by improving PTBP1 mRNA stability with SND1. Mol Ther. 27:1621–1637. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Cao S, Zheng J, Liu X, Liu Y, Ruan X, Ma J, Liu L, Wang D, Yang C, Cai H, et al: FXR1 promotes the malignant biological behavior of glioma cells via stabilizing MIR17HG. J Exp Clin Cancer Res. 38:372019. View Article : Google Scholar : PubMed/NCBI

98 

Wang Y, Wang Y, Li J, Zhang Y, Yin H and Han B: CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett. 367:122–128. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Barile L and Vassalli G: Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 174:63–78. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Jiang L, Gu Y, Du Y and Liu J: Exosomes: Diagnostic biomarkers and therapeutic delivery vehicles for cancer. Mol Pharm. 16:3333–3349. 2019. View Article : Google Scholar : PubMed/NCBI

101 

D'Asti E, Chennakrishnaiah S, Lee TH and Rak J: Extracellular vesicles in brain tumor progression. Cell Mol Neurobiol. 36:383–407. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Katsuda T, Kosaka N and Ochiya T: The roles of extracellular vesicles in cancer biology: Toward the development of novel cancer biomarkers. Proteomics. 14:412–425. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Vader P, Breakefield XO and Wood MJ: Extracellular vesicles: Emerging targets for cancer therapy. Trends Mol Med. 20:385–393. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Jabbari N, Akbariazar E, Feqhhi M, Rahbarghazi R and Rezaie J: Breast cancer-derived exosomes: Tumor progression and therapeutic agents. J Cell Physiol. 235:6345–6356. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Lorenc T, Klimczyk K, Michalczewska I, Słomka M, Kubiak-Tomaszewska G and Olejarz W: Exosomes in prostate cancer diagnosis, prognosis and therapy. Int J Mol Sci. 21:21182020. View Article : Google Scholar

106 

Sun W, Ren Y, Lu Z and Zhao X: The potential roles of exosomes in pancreatic cancer initiation and metastasis. Mol Cancer. 19:1352020. View Article : Google Scholar : PubMed/NCBI

107 

Zhu L, Li J, Gong Y, Wu Q, Tan S, Sun D, Xu X, Zuo Y, Zhao Y, Wei YQ, et al: Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer. 18:742019. View Article : Google Scholar : PubMed/NCBI

108 

Shah S, Wittmann S, Kilchert C and Vasiljeva L: lncRNA recruits RNAi and the exosome to dynamically regulate pho1 expression in response to phosphate levels in fission yeast. Genes Dev. 28:231–244. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Han M, Gu Y, Lu P, Li J, Cao H, Li X, Qian X, Yu C, Yang Y, Yang X, et al: Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol Cancer. 19:262020. View Article : Google Scholar : PubMed/NCBI

110 

Zhang Z, Yin J, Lu C, Wei Y, Zeng A and You Y: Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 38:1662019. View Article : Google Scholar : PubMed/NCBI

111 

Yuan Z, Yang Z, Li W, Wu A, Su Z and Jiang B: Exosome-mediated transfer of long noncoding RNA HOTAIR regulates temozolomide resistance by miR-519a-3p/RRM1 axis in glioblastoma. Cancer Biother Radiopharm. Jul 24–2020.(Epub ahead of print). doi: 10.1089/cbr.2019.3499. View Article : Google Scholar

112 

Li LJ, Leng RX, Fan YG, Pan HF and Ye DQ: Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and circRNAs. Exp Cell Res. 361:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 19:222020. View Article : Google Scholar : PubMed/NCBI

114 

Wang Y, Wu S, Zhu X, Zhang L, Deng J, Li F, Guo B, Zhang S, Wu R, Zhang Z, et al: lncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med. 217:jem.20190950. 2020. View Article : Google Scholar

115 

Begum S, Yiu A, Stebbing J and Castellano L: Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas. Oncogene. 37:4055–4057. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37:1805–1814. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 9:44752018. View Article : Google Scholar : PubMed/NCBI

118 

Matsui M and Corey DR: Non-coding RNAs as drug targets. Nat Rev Drug Discov. 16:167–179. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Özeş AR, Wang Y, Zong X, Fang F, Pilrose J and Nephew KP: Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer. Sci Rep. 7:8942017. View Article : Google Scholar : PubMed/NCBI

120 

Bullock MD, Silva AM, Kanlikilicer-Unaldi P, Filant J, Rashed MH, Sood AK, Lopez-Berestein G and Calin GA: Exosomal non-coding RNAs: Diagnostic, prognostic and therapeutic applications in cancer. Noncoding RNA. 1:53–68. 2015.PubMed/NCBI

121 

H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A and Rodriguez-Aguayo C: Exosomes: From garbage bins to promising therapeutic targets. Int J Mol Sci. 18:5382017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen X, Guo G, Lu Y, Wang S, Zhang Y and Huang Q: Mechanisms and functions of long non‑coding RNAs in glioma (Review). Oncol Rep 45: 9, 2021.
APA
Chen, X., Guo, G., Lu, Y., Wang, S., Zhang, Y., & Huang, Q. (2021). Mechanisms and functions of long non‑coding RNAs in glioma (Review). Oncology Reports, 45, 9. https://doi.org/10.3892/or.2021.7960
MLA
Chen, X., Guo, G., Lu, Y., Wang, S., Zhang, Y., Huang, Q."Mechanisms and functions of long non‑coding RNAs in glioma (Review)". Oncology Reports 45.4 (2021): 9.
Chicago
Chen, X., Guo, G., Lu, Y., Wang, S., Zhang, Y., Huang, Q."Mechanisms and functions of long non‑coding RNAs in glioma (Review)". Oncology Reports 45, no. 4 (2021): 9. https://doi.org/10.3892/or.2021.7960
Copy and paste a formatted citation
x
Spandidos Publications style
Chen X, Guo G, Lu Y, Wang S, Zhang Y and Huang Q: Mechanisms and functions of long non‑coding RNAs in glioma (Review). Oncol Rep 45: 9, 2021.
APA
Chen, X., Guo, G., Lu, Y., Wang, S., Zhang, Y., & Huang, Q. (2021). Mechanisms and functions of long non‑coding RNAs in glioma (Review). Oncology Reports, 45, 9. https://doi.org/10.3892/or.2021.7960
MLA
Chen, X., Guo, G., Lu, Y., Wang, S., Zhang, Y., Huang, Q."Mechanisms and functions of long non‑coding RNAs in glioma (Review)". Oncology Reports 45.4 (2021): 9.
Chicago
Chen, X., Guo, G., Lu, Y., Wang, S., Zhang, Y., Huang, Q."Mechanisms and functions of long non‑coding RNAs in glioma (Review)". Oncology Reports 45, no. 4 (2021): 9. https://doi.org/10.3892/or.2021.7960
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team