|
1
|
Heinrich S and Lang H: Neoadjuvant therapy
of pancreatic cancer: Definitions and benefits. Int J Mol Sci.
18:16222017. View Article : Google Scholar
|
|
2
|
Cassinotto C, Sa-Cunha A and Trillaud H:
Radiological evaluation of response to neoadjuvant treatment in
pancreatic cancer. Diagn Interv Imaging. 97:1225–1232. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tsai S, George B, Wittmann D, Ritch PS,
Krepline AN, Aldakkak M, Barnes CA, Christians KK, Dua K, Griffin
M, et al: Importance of Normalization of CA19-9 levels following
neoadjuvant therapy in patients with localized pancreatic cancer.
Ann surg. 27:740–747. 2020. View Article : Google Scholar
|
|
4
|
Boone BA, Steve J, Zenati MS, Hogg ME,
Singhi AD, Bartlett DL, Zureikat AH, Bahary N and Zeh HJ III: Serum
CA 19-9 response to neoadjuvant therapy is associated with outcome
in pancreatic adenocarcinoma. Ann Surg Oncol. 21:4351–4358. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ferrone CR, Marchegiani G, Hong TS, Ryan
DP, Deshpande V, McDonnell EI, Sabbatino F, Santos DD, Allen JN,
Blaszkowsky LS, et al: Radiological and surgical implications of
neoadjuvant treatment with FOLFIRINOX for locally advanced and
borderline resectable pancreatic cancer. Ann Surg. 261:12–17. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Katz MH, Fleming JB, Bhosale P,
Varadhachary G, Lee JE, Wolff R, Wang H, Abbruzzese J, Pisters PW,
Vauthey JN, et al: Response of borderline resectable pancreatic
cancer to neoadjuvant therapy is not reflected by radiographic
indicators. Cancer. 118:5749–5756. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xia BT, Fu B, Wang J, Kim Y, Ahmad SA,
Dhar VK, Levinsky NC, Hanseman DJ, Habib DA, Wilson GC, et al: Does
radiologic response correlate to pathologic response in patients
undergoing neoadjuvant therapy for borderline resectable pancreatic
malignancy? J Surg Oncol. 115:376–383. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Katz MH, Shi Q, Ahmad SA, Herman JM, Marsh
Rde W, Collisson E, Schwartz L, Frankel W, Martin R, Conway W, et
al: Preoperative modified FOLFIRINOX treatment followed by
capecitabine-based chemoradiation for borderline resectable
pancreatic cancer: Alliance for clinical trials in oncology trial
A021101. JAMA Surg. 151:e1611372016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Raman SP, Horton KM and Fishman EK:
Multimodality imaging of pancreatic cancer-computed tomography,
magnetic resonance imaging, and positron emission tomography.
Cancer J. 18:511–522. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Donahue TR, Isacoff WH, Hines OJ,
Tomlinson JS, Farrell JJ, Bhat YM, Garon E, Clerkin B and Reber HA:
Downstaging chemotherapy and alteration in the classic computed
tomography/magnetic resonance imaging signs of vascular involvement
in patients with pancreaticobiliary malignant tumors: Influence on
patient selection for surgery. Arch Surg. 146:836–843. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hartman DJ and Krasinskas AM: Assessing
treatment effect in pancreatic cancer. Arch Pathol Lab Med.
136:100–109. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dholakia AS, Hacker-Prietz A, Wild AT,
Raman SP, Wood LD, Huang P, Laheru DA, Zheng L, De Jesus-Acosta A,
Le DT, et al: Resection of borderline resectable pancreatic cancer
after neoadjuvant chemoradiation does not depend on improved
radiographic appearance of tumor-vessel relationships. J Radiat
Oncol. 2:413–425. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hackert T, Strobel O, Michalski CW,
Mihaljevic AL, Mehrabi A, Müller-Stich B, Berchtold C, Ulrich A and
Büchler MW: The TRIANGLE operation-radical surgery after
neoadjuvant treatment for advanced pancreatic cancer: A single arm
observational study. HPB (Oxford). 19:1001–1007. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Klaiber U, Mihaljevic A and Hackert T:
Radical pancreatic cancer surgery-with arterial resection. Transl
Gastroenterol Hepatol. 4:82019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Murakami Y, Uemura K, Sudo T, Hashimoto Y,
Kondo N, Nakagawa N, Okada K, Takahashi S and Sueda T: Prognostic
impact of normalization of serum tumor markers following
neoadjuvant chemotherapy in patients with borderline resectable
pancreatic carcinoma with arterial contact. Cancer Chemother
Pharmacol. 79:801–811. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Reni M, Zanon S, Balzano G, Nobile S,
Pircher CC, Chiaravalli M, Passoni P, Arcidiacono PG, Nicoletti R,
Crippa S, et al: Selecting patients for resection after primary
chemotherapy for non-metastatic pancreatic adenocarcinoma. Ann
Oncol. 28:2786–2792. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Combs SE, Habermehl D, Kessel KA, Bergmann
F, Werner J, Naumann P, Jäger D, Büchler MW and Debus J: Prognostic
impact of CA 19-9 on outcome after neoadjuvant chemoradiation in
patients with locally advanced pancreatic cancer. Ann Surg Oncol.
21:2801–2807. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Luo G, Fan Z, Cheng H, Jin K, Guo M, Lu Y,
Yang C, Fan K, Huang Q, Long J, et al: New observations on the
utility of CA19-9 as a biomarker in Lewis negative patients with
pancreatic cancer. Pancreatology. 18:971–976. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nasief H, Hall W, Zheng C, Tsai S, Wang L,
Erickson B and Li XA: Improving treatment response prediction for
chemoradiation therapy of pancreatic cancer using a combination of
delta-radiomics and the clinical biomarker CA19-9. Front Oncol.
9:14642019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Payen T, Oberstein PE, Saharkhiz N,
Palermo CF, Sastra SA, Han Y, Nabavizadeh A, Sagalovskiy IR, Orelli
B, Rosario V, et al: Harmonic motion imaging of pancreatic tumor
stiffness indicates disease state and treatment response. Clin
Cancer Res. 26:1297–1308. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Farren MR, Sayegh L, Ware MB, Chen HR,
Gong J, Liang Y, Krasinskas A, Maithel SK, Zaidi M, Sarmiento JM,
et al: Immunologic alterations in the pancreatic cancer
microenvironment of patients treated with neoadjuvant chemotherapy
and radiotherapy. JCI Insight. 5:e1303622020. View Article : Google Scholar
|
|
22
|
Ehrlich D, Ather N, Rahal H, Donahue TR,
Hines OJ, Kim S, Sedarat A, Muthusamy VR and Watson R: The Utility
of EUS-FNA to determine surgical candidacy in patients with
pancreatic cancer after neoadjuvant therapy. J Gastrointest Surg.
24:2807–2813. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Borhani AA, Dewan R, Furlan A, Seiser N,
Zureikat AH, Singhi AD, Boone B, Bahary N, Hogg ME, Lotze M, et al:
Assessment of response to neoadjuvant therapy using CT texture
analysis in patients with resectable and borderline resectable
pancreatic ductal adenocarcinoma. AJR Am J Roentgenol. 214:362–369.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Murthy P, Zenati MS, Al Abbas AI, Rieser
CJ, Bahary N, Lotze MT, Zeh HJ III, Zureikat AH and Boone BA:
Prognostic value of the systemic immune-inflammation index (SII)
after neoadjuvant therapy for patients with resected pancreatic
cancer. Ann Surg Oncol. 27:898–906. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mota Reyes C, Teller S, Muckenhuber A,
Konukiewitz B, Safak O, Weichert W, Friess H, Ceyhan GO and Demir
IE: Neoadjuvant therapy remodels the pancreatic cancer
microenvironment via depletion of protumorigenic immune cells. Clin
Cancer Res. 26:220–231. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Heger U, Sun H, Hinz U, Klaiber U, Tanaka
M, Liu B, Sachsenmaier M, Springfeld C, Michalski CW, Büchler MW
and Hackert T: Induction chemotherapy in pancreatic cancer: CA 19-9
may predict resectability and survival. HPB (Oxford). 22:224–232.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kuwabara S, Tsuchikawa T, Nakamura T,
Hatanaka Y, Hatanaka KC, Sasaki K, Ono M, Umemoto K, Suzuki T, Sato
O, et al: Prognostic relevance of tertiary lymphoid organs
following neoadjuvant chemoradiotherapy in pancreatic ductal
adenocarcinoma. Cancer Sci. 110:1853–1862. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Truty MJ, Kendrick ML, Nagorney DM, Smoot
RL, Cleary SP, Graham RP, Goenka AH, Hallemeier CL, Haddock MG,
Harmsen WS, et al: Factors predicting response, perioperative
outcomes, and survival following total neoadjuvant therapy for
borderline/locally advanced pancreatic cancer. Ann Surg.
273:341–349. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Aoki S, Motoi F, Murakami Y, Sho M, Satoi
S, Honda G, Uemura K, Okada KI, Matsumoto I, Nagai M, et al:
Decreased serum carbohydrate antigen 19-9 levels after neoadjuvant
therapy predict a better prognosis for patients with pancreatic
adenocarcinoma: A multicenter case-control study of 240 patients.
BMC Cancer. 19:2522019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kawai M, Hirono S, Okada KI, Miyazawa M,
Shimizu A, Kitahata Y, Kobayashi R, Ueno M, Hayami S, Tanioka K and
Yamaue H: Low lymphocyte monocyte ratio after neoadjuvant therapy
predicts poor survival after pancreatectomy in patients with
borderline resectable pancreatic cancer. Surgery. 165:1151–1160.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bernard V, Kim DU, San Lucas FA, Castillo
J, Allenson K, Mulu FC, Stephens BM, Huang J, Semaan A, Guerrero
PA, et al: Circulating nucleic acids are associated with outcomes
of patients with pancreatic cancer. Gastroenterology.
156:108–118.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gemenetzis G, Groot VP, Yu J, Ding D,
Teinor JA, Javed AA, Wood LD, Burkhart RA, Cameron JL, Makary MA,
et al: Circulating tumor cells dynamics in pancreatic
adenocarcinoma correlate with disease status: Results of the
prospective CLUSTER Study. Ann Surg. 268:408–420. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tsai S, Christians KK, George B, Ritch PS,
Dua K, Khan A, Mackinnon AC, Tolat P, Ahmad SA, Hall WA, et al: A
phase ii clinical trial of molecular profiled neoadjuvant therapy
for localized pancreatic ductal adenocarcinoma. Ann Surg.
268:610–619. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kim BR, Kim JH, Ahn SJ, Joo I, Choi SY,
Park SJ and Han JK: CT prediction of resectability and prognosis in
patients with pancreatic ductal adenocarcinoma after neoadjuvant
treatment using image findings and texture analysis. Eur Radiol.
29:362–372. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Klaassen R, Gurney-Champion OJ,
Engelbrecht MRW, Stoker J, Wilmink JW, Besselink MG, Bel A, van
Tienhoven G, van Laarhoven HWM and Nederveen AJ: Evaluation of six
diffusion-weighted MRI models for assessing effects of neoadjuvant
chemoradiation in pancreatic cancer patients. Int J Radiat Oncol
Biol Phys. 102:1052–1062. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
van Veldhuisen E, Vogel JA, Klompmaker S,
Busch OR, van Laarhoven HWM, van Lienden KP, Wilmink JW, Marsman HA
and Besselink MG: Added value of CA19-9 response in predicting
resectability of locally advanced pancreatic cancer following
induction chemotherapy. HPB (Oxford). 20:605–611. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Dalah E, Erickson B, Oshima K, Schott D,
Hall WA, Paulson E, Tai A, Knechtges P and Li XA: Correlation of
ADC with pathological treatment response for radiation therapy of
pancreatic cancer. Transl Oncol. 11:391–398. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Amer AM, Zaid M, Chaudhury B, Elganainy D,
Lee Y, Wilke CT, Cloyd J, Wang H, Maitra A, Wolff RA, et al:
Imaging-based biomarkers: Changes in the tumor interface of
pancreatic ductal adenocarcinoma on computed tomography scans
indicate response to cytotoxic therapy. Cancer. 124:1701–1709.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kurahara H, Maemura K, Mataki Y, Sakoda M,
Iino S, Kawasaki Y, Arigami T, Mori S, Kijima Y, Ueno S, et al:
Significance of glucose transporter type 1 (GLUT-1) expression in
the therapeutic strategy for pancreatic ductal adenocarcinoma. Ann
Surg Oncol. 25:1432–1439. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Michelakos T, Pergolini I, Castillo CF,
Honselmann KC, Cai L, Deshpande V, Wo JY, Ryan DP, Allen JN,
Blaszkowsky LS, et al: Predictors of resectability and survival in
patients with borderline and locally advanced pancreatic cancer who
underwent neoadjuvant treatment with FOLFIRINOX. Ann Sur.
269:733–740. 2019. View Article : Google Scholar
|
|
41
|
Trajkovic-Arsic M, Heid I, Steiger K,
Gupta A, Fingerle A, Wörner C, Teichmann N, Sengkwawoh-Lueong S,
Wenzel P, Beer AJ, et al: Apparent Diffusion Coefficient (ADC)
predicts therapy response in pancreatic ductal adenocarcinoma. Sci
Rep. 7:170382017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sherman WH, Hecht E, Leung D and Chu K:
Predictors of response and survival in locally advanced
adenocarcinoma of the pancreas following neoadjuvant GTX with or
without radiation therapy. Oncologist. 23:4–e10. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Felix K, Hinz U, Dobiasch S, Hackert T,
Bergmann F, Neumüller M, Gronowitz S, Bergqvist M and Strobel O:
Preoperative serum thymidine kinase activity as novel monitoring,
prognostic, and predictive biomarker in pancreatic cancer.
Pancreas. 47:72–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liang K, Liu F, Fan J, Sun D, Liu C, Lyon
CJ, Bernard DW, Li Y, Yokoi K, Katz MH, et al: Nanoplasmonic
quantification of tumor-derived extracellular vesicles in plasma
microsamples for diagnosis and treatment monitoring. Nat Biomed
Eng. 1:00212017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sakane M, Tatsumi M, Hori M, Onishi H,
Tsuboyama T, Nakamoto A, Ota T, Eguchi H, Wakasa K, Hatazawa J and
Tomiyama N: Volumetric parameters of
2-deoxy-2-[18F]fluoro-d-glucose positron emission
tomography/computed tomography can predict histopathologic
treatment response after neoadjuvant chemoradiotherapy in
pancreatic adenocarcinoma. Eur J Radiol. 94:64–69. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yabushita Y, Mori R, Taniguchi K,
Matsuyama R, Kumamoto T, Sakamaki K, Kubota K and Endo I: Combined
analyses of hENT1, TS, and DPD predict outcomes of
borderline-resectable pancreatic cancer. Anticancer Res.
37:2465–2476. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Akita H, Takahashi H, Ohigashi H, Tomokuni
A, Kobayashi S, Sugimura K, Miyoshi N, Moon JH, Yasui M, Omori T,
et al: FDG-PET predicts treatment efficacy and surgical outcome of
pre-operative chemoradiation therapy for resectable and borderline
resectable pancreatic cancer. Eur J Surg Oncol. 43:1061–1067. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Okada KI, Hirono S, Kawai M, Miyazawa M,
Shimizu A, Kitahata Y, Ueno M, Hayami S, Kojima F and Yamaue H:
Value of apparent diffusion coefficient prior to neoadjuvant
therapy is a predictor of histologic response in patients with
borderline resectable pancreatic carcinoma. J Hepatobiliary
Pancreat Sci. 24:161–168. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wagner M, Antunes C, Pietrasz D,
Cassinotto C, Zappa M, Sa Cunha A, Lucidarme O and Bachet JB: CT
evaluation after neoadjuvant FOLFIRINOX chemotherapy for borderline
and locally advanced pancreatic adenocarcinoma. Eur Radiol.
27:3104–3116. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mellon EA, Jin WH, Frakes JM, Centeno BA,
Strom TJ, Springett GM, Malafa MP, Shridhar R, Hodul PJ and Hoffe
SE: Predictors and survival for pathologic tumor response grade in
borderline resectable and locally advanced pancreatic cancer
treated with induction chemotherapy and neoadjuvant stereotactic
body radiotherapy. Acta Oncol. 56:391–397. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Capello M, Lee M, Wang H, Babel I, Katz
MH, Fleming JB, Maitra A, Wang H, Tian W, Taguchi A and Hanash SM:
Carboxylesterase 2 as a determinant of response to irinotecan and
neoadjuvant FOLFIRINOX therapy in pancreatic ductal adenocarcinoma.
J Natl Cancer Inst. 107:djv1322015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Aldakkak M, Christians KK, Krepline AN,
George B, Ritch PS, Erickson BA, Johnston FM, Evans DB and Tsai S:
Pre-treatment carbohydrate antigen 19-9 does not predict the
response to neoadjuvant therapy in patients with localized
pancreatic cancer. HPB (Oxford). 17:942–952. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hasegawa S, Eguchi H, Tomokuni A, Tomimaru
Y, Asaoka T, Wada H, Hama N, Kawamoto K, Kobayashi S, Marubashi S,
et al: Pre-treatment neutrophil to lymphocyte ratio as a predictive
marker for pathological response to preoperative chemoradiotherapy
in pancreatic cancer. Oncol Lett. 11:1560–1566. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Williams JL, Kadera BE, Nguyen AH,
Muthusamy VR, Wainberg ZA, Hines OJ, Reber HA and Donahue TR:
CA19-9 normalization during pre-operative treatment predicts longer
survival for patients with locally progressed pancreatic cancer. J
Gastrointest Surg. 20:1331–1342. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Delbeke D and Martin WH: PET and PET/CT
for pancreatic malignancies. Surg Oncol Clin N Am. 19:235–254.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kukar M, Alnaji RM, Jabi F, Platz TA,
Attwood K, Nava H, Ben-David K, Mattson D, Salerno K, Malhotra U,
et al: Role of repeat 18F-fluorodeoxyglucose positron emission
tomography examination in predicting pathologic response following
neoadjuvant chemoradiotherapy for esophageal adenocarcinoma. JAMA
Surg. 150:555–562. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Humbert O, Riedinger JM, Charon-Barra C,
Berriolo-Riedinger A, Desmoulins I, Lorgis V, Kanoun S, Coutant C,
Fumoleau P, Cochet A and Brunotte F: Identification of biomarkers
including 18FDG-PET/CT for early prediction of response to
neoadjuvant chemotherapy in triple-negative breast cancer. Clin
Cancer Res. 21:5460–5468. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ramanathan RK, Goldstein D, Korn RL, Arena
F, Moore M, Siena S, Teixeira L, Tabernero J, Van Laethem JL, Liu
H, et al: Positron emission tomography response evaluation from a
randomized phase III trial of weekly nab-paclitaxel plus
gemcitabine versus gemcitabine alone for patients with metastatic
adenocarcinoma of the pancreas. Ann Oncol. 27:648–653. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Evans DB, Rich TA, Byrd DR, Cleary KR,
Connelly JH, Levin B, Charnsangavej C, Fenoglio CJ and Ames FC:
Preoperative chemoradiation and pancreaticoduodenectomy for
adenocarcinoma of the pancreas. Arch Surg. 127:1335–1339. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Miyata T, Kamata K and Takenaka M:
Endoscopic ultrasonography-guided transenteric pancreatic duct
drainage without cautery for obstructive pancreatitis as a result
of ampullary carcinoma. Dig Endosc. 30:403–404. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Rosenthal MH, Lee A and Jajoo K: Imaging
and endoscopic approaches to pancreatic cancer. Hematol Oncol Clin
North Am. 29:675–699. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Barreto SG, Loveday B, Windsor JA and
Pandanaboyana S: Detecting tumour response and predicting
resectability after neoadjuvant therapy for borderline resectable
and locally advanced pancreatic cancer. ANZ J Surg. 89:481–487.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shi S, Liang C, Xu J, Meng Q, Hua J, Yang
X, Ni Q and Yu X: The strain ratio as obtained by endoscopic
ultrasonography elastography correlates with the stroma proportion
and the prognosis of local pancreatic cancer. Ann Surg.
271:559–565. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Alvarez R, Musteanu M, Garcia-Garcia E,
Lopez-Casas PP, Megias D, Guerra C, Muñoz M, Quijano Y, Cubillo A,
Rodriguez-Pascual J, et al: Stromal disrupting effects of
nab-paclitaxel in pancreatic cancer. Br J Cancer. 109:926–933.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bettini N, Moutardier V, Turrini O, Bories
E, Monges G, Giovannini M and Delpero JR: Preoperative locoregional
re-evaluation by endoscopic ultrasound in pancreatic ductal
adenocarcinoma after neoadjuvant chemoradiation. Gastroenterol Clin
Biol. 29:659–663. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Baliyan V, Kordbacheh H, Parakh A and
Kambadakone A: Response assessment in pancreatic ductal
adenocarcinoma: Role of imaging. Abdom Radiol (NY). 43:435–444.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cuneo KC, Chenevert TL, Ben-Josef E, Feng
MU, Greenson JK, Hussain HK, Simeone DM, Schipper MJ, Anderson MA,
Zalupski MM, et al: A pilot study of diffusion-weighted MRI in
patients undergoing neoadjuvant chemoradiation for pancreatic
cancer. Transl Oncol. 7:644–649. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Granata V, Fusco R, Setola SV, Piccirillo
M, Leongito M, Palaia R, Granata F, Lastoria S, Izzo F and Petrillo
A: Early radiological assessment of locally advanced pancreatic
cancer treated with electrochemotherapy. World J Gastroenterol.
23:4767–4778. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bi WL, Hosny A, Schabath MB, Giger ML,
Birkbak NJ, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn IF, et
al: Artificial intelligence in cancer imaging: Clinical challenges
and applications. CA Cancer J Clin. 69:127–157. 2019.PubMed/NCBI
|
|
70
|
Fazal MI, Patel ME, Tye J and Gupta Y: The
past, present and future role of artificial intelligence in
imaging. Eur J Radiol. 105:246–250. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rajkomar A, Dean J and Kohane I: Machine
learning in medicine. N Engl J Med. 380:1347–1358. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kantarjian H and Yu PP: Artificial
intelligence, big data, and cancer. JAMA Oncology. 1:573–574. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chu LC, Goggins MG and Fishman EK:
Diagnosis and detection of pancreatic cancer. Cancer J. 23:333–342.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou
X, Sun K, Li L, Li B, Wang M and Tian J: The applications of
radiomics in precision diagnosis and treatment of oncology:
Opportunities and challenges. Theranostics. 9:1303–1322. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Parekh VS and Jacobs MA: Deep learning and
radiomics in precision medicine. Expert Rev Precis Med Drug Dev.
4:59–72. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Trebeschi S, Drago SG, Birkbak NJ,
Kurilova I, Cǎlin AM, Delli Pizzi A, Lalezari F, Lambregts DMJ,
Rohaan MW, Parmar C, et al: Predicting response to cancer
immunotherapy using non-invasive radiomic biomarkers. Ann Oncol.
30:998–1004. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Juiz NA, Iovanna J and Dusetti N:
Pancreatic cancer heterogeneity can be explained beyond the genome.
Front Oncol. 9:2462019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Neesse A, Algul H, Tuveson DA and Gress
TM: Stromal biology and therapy in pancreatic cancer: A changing
paradigm. Gut. 64:1476–1484. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Dougan SK: The pancreatic cancer
microenvironment. Cancer J. 23:321–325. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Braman NM, Etesami M, Prasanna P, Dubchuk
C, Gilmore H, Tiwari P, Plecha D and Madabhushi A: Intratumoral and
peritumoral radiomics for the pretreatment prediction of
pathological complete response to neoadjuvant chemotherapy based on
breast DCE-MRI. Breast Cancer Res. 19:572017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Shu Z, Fang S, Ye Q, Mao D, Cao H, Pang P
and Gong X: Prediction of efficacy of neoadjuvant chemoradiotherapy
for rectal cancer: The value of texture analysis of magnetic
resonance images. Abdom Radiol (NY). 44:3755–3784. 2019.PubMed/NCBI
|
|
82
|
Ypsilantis PP, Siddique M, Sohn HM, Davies
A, Cook G, Goh V and Montana G: Predicting response to neoadjuvant
chemotherapy with PET imaging using convolutional neural networks.
PLoS One. 10:e01370362015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chakraborty J, Langdon-Embry L, Cunanan
KM, Escalon JG, Allen PJ, Lowery MA, O'Reilly EM, Gönen M, Do RG
and Simpson AL: Preliminary study of tumor heterogeneity in imaging
predicts two year survival in pancreatic cancer patients. PLoS One.
12:e01880222017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Al-Najami I, Drue HC, Steele R and Baatrup
G: Dual energy CT-a possible new method to assess regression of
rectal cancers after neoadjuvant treatment. J Surg Oncol.
116:984–988. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yang L, Li Y, Shi GF, Zhou T and Tan BB:
The concentration of iodine in perigastric adipose tissue: A novel
index for the assessment of serosal invasion in patients with
gastric cancer after neoadjuvant chemotherapy. Digestion. 98:87–94.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yin Q, Zou X, Zai X, Wu Z, Wu Q, Jiang X,
Chen H and Miao F: Pancreatic ductal adenocarcinoma and chronic
mass-forming pancreatitis: Differentiation with dual-energy MDCT in
spectral imaging mode. Eur J Radiol. 84:2470–2476. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kawamoto S, Fuld MK, Laheru D, Huang P and
Fishman EK: Assessment of iodine uptake by pancreatic cancer
following chemotherapy using dual-energy CT. Abdom Radiol (NY).
43:445–456. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Noda Y, Goshima S, Miyoshi T, Kawada H,
Kawai N, Tanahashi Y and Matsuo M: Assessing chemotherapeutic
response in pancreatic ductal adenocarcinoma: Histogram analysis of
iodine concentration and CT number in single-source dual-energy CT.
AJR Am J Roentgenol. 211:1221–1226. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Noid G, Tai A, Schott D, Mistry N, Liu Y,
Gilat-Schmidt T, Robbins JR and Li XA: Technical Note: Enhancing
soft tissue contrast and radiation-induced image changes with
dual-energy CT for radiation therapy. Med Phys. Jul 4–2018.(Epub
ahead of print). doi: 10.1002/mp.13083. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Luo G, Liu C, Guo M, Cheng H, Lu Y, Jin K,
Liu L, Long J, Xu J, Lu R, et al: Potential biomarkers in lewis
negative patients with pancreatic cancer. Ann Surg. 265:800–805.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhou B, Xu JW, Cheng YG, Gao JY, Hu SY,
Wang L and Zhan HX: Early detection of pancreatic cancer: Where are
we now and where are we going? Int J Cancer. 141:231–241. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Rajamanickam ES, Christians KK, Aldakkak
M, Krepline AN, Ritch PS, George B, Erickson BA, Foley WD, Aburajab
M, Evans DB and Tsai S: Poor Glycemic control is associated with
failure to complete neoadjuvant therapy and surgery in patients
with localized pancreatic cancer. J Gastrointest Surg. 21:496–505.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Glazer ES, Rashid OM, Pimiento JM, Hodul
PJ and Malafa MP: Increased neutrophil-to-lymphocyte ratio after
neoadjuvant therapy is associated with worse survival after
resection of borderline resectable pancreatic ductal
adenocarcinoma. Surgery. 160:1288–1293. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Preis M, Gardner TB, Gordon SR, Pipas JM,
Mackenzie TA, Klein EE, Longnecker DS, Gutmann EJ, Sempere LF and
Korc M: MicroRNA-10b expression correlates with response to
neoadjuvant therapy and survival in pancreatic ductal
adenocarcinoma. Clin Cancer Res. 17:5812–5821. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Battini S, Faitot F, Imperiale A, Cicek
AE, Heimburger C, Averous G, Bachellier P and Namer IJ:
Metabolomics approaches in pancreatic adenocarcinoma: Tumor
metabolism profiling predicts clinical outcome of patients. BMC
Med. 15:562017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Jia H, Shen X, Guan Y, Xu M, Tu J, Mo M,
Xie L, Yuan J, Zhang Z, Cai S, et al: Predicting the pathological
response to neoadjuvant chemoradiation using untargeted
metabolomics in locally advanced rectal cancer. Radiother Oncol.
128:548–556. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wei S, Liu L, Zhang J, Bowers J, Gowda GA,
Seeger H, Fehm T, Neubauer HJ, Vogel U, Clare SE and Raftery D:
Metabolomics approach for predicting response to neoadjuvant
chemotherapy for breast cancer. Mol Oncol. 7:297–307. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Allen VB, Gurusamy KS, Takwoingi Y, Kalia
A and Davidson BR: Diagnostic accuracy of laparoscopy following
computed tomography (CT) scanning for assessing the resectability
with curative intent in pancreatic and periampullary cancer.
Cochrane Database Syst Rev. 7:Cd0093232016.PubMed/NCBI
|
|
99
|
Ta R, O'Connor DB, Sulistijo A, Chung B
and Conlon KC: The role of staging laparoscopy in resectable and
borderline resectable pancreatic cancer: A systematic review and
meta-analysis. Dig Surg. 36:251–260. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Peng JS, Mino J, Monteiro R, Morris-Stiff
G, Ali NS, Wey J, El-Hayek KM, Walsh RM and Chalikonda S:
Diagnostic laparoscopy prior to neoadjuvant therapy in pancreatic
cancer is high yield: An analysis of outcomes and costs. J
Gastrointest Surg. 21:1420–1427. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Slaar A, Eshuis WJ, van der Gaag NA, Nio
CY, Busch OR, van Gulik TM, Reitsma JB and Gouma DJ: Predicting
distant metastasis in patients with suspected pancreatic and
periampullary tumors for selective use of staging laparoscopy.
World J Surg. 35:2528–2534. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
NCCN, . NCCN Clinical Practice Guidelines
in Oncology: Pancreatic Adenocarcinoma (version 1.2019). http://www.nccn.org
|
|
103
|
Schnelldorfer T, Gagnon AI, Birkett RT,
Reynolds G, Murphy KM and Jenkins RL: Staging laparoscopy in
pancreatic cancer: A potential role for advanced laparoscopic
techniques. J Am Coll Surg. 218:1201–1206. 2014. View Article : Google Scholar : PubMed/NCBI
|