Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
May-2021 Volume 45 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 45 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells

  • Authors:
    • Gisella Pérez
    • Fernanda López‑Moncada
    • Sebastián Indo
    • María José Torres
    • Enrique A. Castellón
    • Héctor R. Contreras
  • View Affiliations / Copyright

    Affiliations: Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, Laboratory of Endocrinology and Reproductive Biology, University of Chile Clinical Hospital, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
  • Article Number: 58
    |
    Published online on: March 10, 2021
       https://doi.org/10.3892/or.2021.8009
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Prostate cancer (PCa) is the second most diagnosed type of cancer in men worldwide. Advanced PCa is resistant to conventional therapies and high recurrence has been associated with high rates of metastasis. Cancer stem cells (CSCs) have been proposed to be responsible for this, due to their ability of self‑renewal and differentiation into other cell types. Zinc finger E‑box‑binding homeobox 1 (ZEB1), a transcription factor involved in the regulation of epithelial‑mesenchymal transition (EMT), has been associated with the activation of several mechanisms that lead to resistance to treatment. As recent evidence has shown that CSCs may originate from non‑CSCs during EMT, it was hypothesized that knocking down ZEB1 expression in PCa cell lines could revert some properties associated with CSCs. Using lentiviraltransduction, ZEB1 expression was silenced in the PCa DU145 and LNCaP cell lines. The mRNA and protein expression levels of key canonical CSC markers (Krüppel‑like factor 4, SOX2, CD44 and CD133) were determined using reverse transcription‑­quantitative PCR and western blot analysis, respectively. In addition, the colony forming ability of the ZEB1‑knockdown cells was evaluated, and the type of colonies formed (holoclones, paraclones and meroclones) was also characterized. Finally, the ability to form prostatospheres was evaluated in vitro. It was found that in ZEB1‑knockdown DU145 cells, the expression levels of CSC phenotype markers (CD44, CD133 and SOX2) were decreased compared with those in the control group. Furthermore, ZEB1‑knockdown cells exhibited a lower ability to form prostatospheres and to generate colonies. In conclusion, stable silencing of ZEB1 reversed CSC properties in PCa cell lines. Since ZEB1 is associated with malignancy, therapy resistance and a CSC phenotype in PCa cell lines, targeting ZEB1 may be a key factor to eradicate CSCs and improve the prognosis of patients with advanced PCa.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Fakhrejahani F, Madan RA and Dahut WL: Management options for biochemically recurrent prostate cancer. Curr Treat Options Oncol. 18:262017. View Article : Google Scholar : PubMed/NCBI

3 

Wang K, Ruan H, Xu T, Liu L, Liu D, Yang H, Zhang X and Chen K: Recent advances on the progressive mechanism and therapy in castration-resistant prostate cancer. Onco Targets Ther. 11:3167–3178. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, Fossati N, Gross T, Henry AM, Joniau S, et al: EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent. Eur Urol. 71:618–629. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, et al: EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 71:630–642. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Chandrasekar T, Yang J, Gao A and Evans CP: Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 4:365–380. 2015.PubMed/NCBI

7 

Yun EJ, Lo UG and Hsieh JT: The evolving landscape of prostate cancer stem cell: Therapeutic implications and future challenges. Asian J Urol. 3:203–210. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Chen X, Li Q, Liu X, Liu C, Liu R, Rycaj K, Zhang D, Liu B, Jeter C, Calhoun-Davis T, et al: Defining a population of stem-like human prostate cancer cells that can generate and propagate castration-resistant prostate cancer. Clin Cancer Res. 22:4505–4516. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Deng Q and Tang DG: Androgen receptor and prostate cancer stem cells: Biological mechanisms and clinical implications. Endocr Relat Cancer. 22:T209–T220. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Di Zazzo E, Galasso G, Giovannelli P, Di Donato M, Di Santi A, Cernera G, Rossi V, Abbondanza C, Moncharmont B, Sinisi AA, et al: Prostate cancer stem cells: The role of androgen and estrogen receptors. Oncotarget. 7:193–208. 2015. View Article : Google Scholar

11 

Ojo D, Lin X, Wong N, Gu Y and Tang D: Prostate cancer stem-like cells contribute to the development of castration-resistant prostate cancer. Cancers (Basel). 7:2290–2308. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Peitzsch C, Tyutyunnykova A, Pantel K and Dubrovska A: Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol. 44:10–24. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Tsao T, Beretov J, Ni J, Bai X, Bucci J, Graham P and Li Y: Cancer stem cells in prostate cancer radioresistance. Cancer Lett. 465:94–104. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Contreras HR, López-Moncada F and Castellón EA: Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin-releasing hormone receptors. Int J Oncol. 56:1075–1082. 2020.PubMed/NCBI

15 

Castellón EA, Valenzuela R, Lillo J, Castillo V, Contreras HR, Gallegos I, Mercado A and Huidobro C: Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different Gleason grades and metastasis. Biol Res. 45:294–305. 2012. View Article : Google Scholar

16 

Castillo V, Valenzuela R, Huidobro C, Contreras HR and Castellon EA: Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. Int J Oncol. 45:985–994. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT and LLeonart ME: The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev. 49:25–36. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Najafi M, Mortezaee K and Majidpoor J: Cancer stem cell (CSC) resistance drivers. Life Sci. 234:1167812019. View Article : Google Scholar : PubMed/NCBI

19 

Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H and Skvortsova II: Therapy resistance mediated by cancer stem cells. Semin Cancer Biol. 53:156–167. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Mitra A, Mishra L and Li S: EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget. 6:10699–10710. 2015. View Article : Google Scholar

21 

Leão R, Domingos C, Figueiredo A, Hamilton R, Tabori U and Castelo-Branco P: Cancer stem cells in prostate cancer: Implications for targeted therapy. Urol Int. 99:125–136. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Packer JR and Maitland NJ: The molecular and cellular origin of human prostate cancer. Biochim Biophys Acta. 1863:1238–1260. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, Chen D, Seo K, Modrusan Z, Gao WQ, et al: Androgen deprivation causes epithelial-mesenchymal transition in the prostate: Implications for androgen-deprivation therapy. Cancer Res. 72:527–36. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Kuşoğlu A and Biray Avcı Ç: Cancer stem cells: A brief review of the current status. Gene. 681:80–85. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Adamowicz J, Pakravan K, Bakhshinejad B, Drewa T and Babashah S: Prostate cancer stem cells: From theory to practice. Scand J Urol. 51:95–106. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Lan L, Luo Y, Cui D, Shi BY, Deng W, Huo LL, Chen HL, Zhang GY and Deng LL: Epithelial-mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. Int J Oncol. 43:113–120. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Eun K, Ham SW and Kim H: Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep. 50:117–125. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Nieto MA, Huang RYYJ, Jackson RAA and Thiery JPP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI

30 

Zhang J, Tian XJ and Xing J: Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks. J Clin Med. 5:412016. View Article : Google Scholar

31 

Sánchez-Tilló E, Liu Y, De Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A and Postigo A: EMT-activating transcription factors in cancer: Beyond EMT and tumor invasiveness. Cell Mol Life Sci. 69:3429–3456. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Goossens S, Vandamme N, Van Vlierberghe P and Berx G: EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim Biophys Acta Rev Cancer. 1868:584–591. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Zhang P, Sun Y and Ma L: ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 14:481–487. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Lazarova D and Bordonaro M: ZEB1 mediates drug resistance and EMT in p300-deficient CRC. J Cancer. 8:1453–1459. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y, Zhang J, Yuan J, Wang M, Chen D, Sun Y, et al: ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 16:864–875. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Guo C, Ma J, Deng G, Qu Y, Yin L, Li Y, Han Y, Cai C, Shen H and Zeng S: ZEB1 promotes oxaliplatin resistance through the induction of epithelial-mesenchymal transition in colon cancer cells. J Cancer. 8:3555–3566. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Orellana-serradell O, Herrera D, Castellón EA and Contreras HR: The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J Androl. 21:460–467. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Orellana-Serradell O, Herrera D, Castellón EA and Contreras HR: The transcription factor ZEB1 promotes an aggressive phenotype in prostate cancer cell lines. Asian J Androl. 20:294–299. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Farfán N, Ocarez N, Castellón EA, Mejía N, de Herreros AG and Contreras HR: The transcriptional factor ZEB1 represses Syndecan 1 expression in prostate cancer. Sci Rep. 8:114672018. View Article : Google Scholar : PubMed/NCBI

40 

Stone KR, Mickey DD, Wunderli H, Mickey GH and Paulson DF: Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 21:274–281. 1978. View Article : Google Scholar : PubMed/NCBI

41 

Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA and Murphy GP: LNCaP model of human prostatic carcinoma. Cancer Res. 43:1809–1818. 1983.PubMed/NCBI

42 

Krasnov GS, Kudryavtseva AV, Snezhkina AV, Lakunina VA, Beniaminov AD, Melnikova NV and Dmitriev AA: Pan-cancer analysis of TCGA data revealed promising reference genes for qPCR normalization. Front Genet. 10:972019. View Article : Google Scholar : PubMed/NCBI

43 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Barrandon Y and Green H: Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA. 84:2302–2306. 1987. View Article : Google Scholar : PubMed/NCBI

45 

Acikgoz E, Guven U, Duzagac F, Uslu R, Kara M, Soner BC and Oktem G: Enhanced G2/M arrest, caspase related apoptosis and reduced E-cadherin dependent intercellular adhesion by trabectedin in prostate cancer stem cells. PLoS One. 10:e01410902015. View Article : Google Scholar : PubMed/NCBI

46 

Wang S: Anchorage-independent growth of prostate cancer stem cells. Methods Mol Biol. 568:151–160. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Sobel RE and Sadar MD: Cell lines used in prostate cancer research: A compendium of old and new lines-Part 1. J Urol. 173:342–359. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Yu Z, Pestellc TG, Lisantic MP and Pestell RG: Cancer Stem Cells. Int J Biochem Cell Biol. 44:2144–2151. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Johnston MD, Maini PK, Jonathan Chapman S, Edwards CM and Bodmer WF: On the proportion of cancer stem cells in a tumour. J Theor Biol. 266:708–711. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI

51 

Ajani JA, Song S, Hochster HS and Steinberg IB: Cancer stem cells: The promise and the potential. Semin Oncol. 42 (Suppl 1):S3–S17. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Jolly MK and Celià-Terrassa T: Dynamics of phenotypic heterogeneity during EMT and stemness in cancer progression. J Clin Med. 8:15422019. View Article : Google Scholar

53 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Hanrahan K, O'Neill A, Prencipe M, Bugler J, Murphy L, Fabre A, Puhr M, Culig Z, Murphy K and Watson RW: The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol Oncol. 11:251–265. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P, et al: The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 19:518–529. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Zhang S and Cui W: Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells. 6:305–311. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Adachi K, Suemori H, Yasuda SY, Nakatsuji N and Kawase E: Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells. 15:455–470. 2010.PubMed/NCBI

58 

Ghaleb AM and Yang VW: Krüppel-like factor 4 (KLF4): What we currently know. Gene. 611:27–137. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Zhang P, Andrianakos R, Yang Y, Liu C and Lu W: Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem. 285:9180–9189. 2010. View Article : Google Scholar : PubMed/NCBI

60 

An Z, Liu P, Zheng J, Si C, Li T, Chen Y, Ma T, Zhang MQ, Zhou Q and Ding S: Sox2 and Klf4 as the functional core in pluripotency induction without exogenous Oct4. Cell Rep. 29:1986–2000,e8. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Mamun MA, Mannoor K, Cao J, Qadri F and Song X: SOX2 in cancer stemness: Tumor malignancy and therapeutic potentials. J Mol Cell Biol. 12:85–98. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Russo MV, Esposito S, Tupone MG, Manzoli L, Airoldi I, Pompa P, Cindolo L, Schips L, Sorrentino C and Di Carlo E: SOX2 boosts major tumor progression genes in prostate cancer and is a functional biomarker of lymph node metastasis. Oncotarget. 7:12372–12385. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, Wongvipat J, Ku SY, Gao D, Cao Z, et al: SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-and RB1-deficient prostate cancer. Science. 355:84–88. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Liu X, Qiao B, Zhao T, Hu F, Lam AK and Tao Q: Sox2 promotes tumor aggressiveness and epithelial-mesenchymal transition in tongue squamous cell carcinoma. Int J Mol Med. 42:1418–1426. 2018.PubMed/NCBI

65 

Gao H, Teng C, Huang W, Peng J and Wang C: SOX2 promotes the epithelial to mesenchymal transition of esophageal squamous cells by modulating slug expression through the activation of STAT3/HIF-α signaling. Int J Mol Sci. 16:21643–21657. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Herreros-Villanueva M, Zhang JS, Koenig A, Abel EV, Smyrk TC, Bamlet WR, de Narvajas AA, Gomez TS, Simeone DM, Bujanda L, et al: SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis. 2:e612013. View Article : Google Scholar : PubMed/NCBI

67 

Srinivasan D, Senbanjo L, Majumdar S, Franklin RB and Chellaiah MA: Androgen receptor expression reduces stemness characteristics of prostate cancer cells (PC3) by repression of CD44 and SOX2. J Cell Biochem. 120:2413–2428. 2019. View Article : Google Scholar

68 

Zhou W, Lv R, Qi W, Wu D, Xu Y, Liu W, Mou Y and Wang L: Snail contributes to the maintenance of stem cell-like phenotype cells in human pancreatic cancer. PLoS One. 9:e874092014. View Article : Google Scholar : PubMed/NCBI

69 

Deep G, Jain AK, Ramteke A, Ting H, Vijendra KC, Gangar SC, Agarwal C and Agarwal R: SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol Cancer. 13:372014. View Article : Google Scholar : PubMed/NCBI

70 

Celià-terrassa T, Meca-cortés Ó, Mateo F, Martínez de Paz A, Rubio N, Arnal-Estapé A, Ell BJ, Bermudo R, Díaz A, Guerra-Rebollo M, et al: Epithelial-mesenchymal transition can suppress major attributes of human epithelial. J Clin Invest. 122:1849–1868. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Anose BM and Sanders MM: Androgen receptor regulates transcription of the ZEB1 transcription factor. Int J Endocrinol. 2011:9039182011. View Article : Google Scholar : PubMed/NCBI

72 

Mooney SM, Parsana P, Hernandez JR, Liu X, Verdone JE, Torga G, Harberg CA and Pienta KJ: The presence of androgen receptor elements regulates ZEB1 expression in the absence of androgen receptor. J Cell Biochem. 116:115–23. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D'Alessio AC, Young RA and Weinberg RA: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 154:61–74. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Zhou C, Jiang H, Zhang Z, Zhang G, Wang H, Zhang Q, Sun P, Xiang R and Yang S: ZEB1 confers stem cell-like properties in breast cancer by targeting neurogenin-3. Oncotarget. 8:54388–54401. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Yu Z and Pestell RG: MicroRNAs and Cancer Stem Cells. MicroRNAs in Cancer Translational Research. William C.S.C: Springer; pp. 373–398. 2011, View Article : Google Scholar

76 

Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J and Brabletz T: The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30:770–782. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Tan L, Sui X, Deng H and Ding M: Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One. 6:e233832011. View Article : Google Scholar : PubMed/NCBI

78 

Zhang L, Jiao M, Li L, Wu D, Wu K, Li X, Zhu G, Dang Q, Wang X, Hsieh JT and He D: Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties. J Cancer Res Clin Oncol. 138:675–686. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Knaack H, Lenk L, Philipp LM, Miarka L, Rahn S, Viol F, Hauser C, Egberts JH, Gundlach JP, Will O, et al: Liver metastasis of pancreatic cancer: The hepatic microenvironment impacts differentiation and self-renewal capacity of pancreatic ductal epithelial cells. Oncotarget. 9:31771–31786. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Sohn HM, Kim B, Park M, Ko YJ, Moon YH, Sun JM, Jeong BC, Kim YW and Lim W: Effect of CD133 overexpression on bone metastasis in prostate cancer cell line LNCaP. Oncol Lett. 18:1189–1198. 2019.PubMed/NCBI

81 

Bisson I and Prowse DM: WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 19:683–697. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Chen B, Zhu Z, Li L, Ye W, Zeng J, Gao J, Wang S, Zhang L and Huang Z: Effect of overexpression of oct4 and sox2 genes on the biological and oncological characteristics of gastric cancer cells. Onco Targets Ther. 12:4667–4682. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Kanwal R, Shukla S, Walker E and Gupta S: Acquisition of tumorigenic potential and therapeutic resistance in CD133+ subpopulation of prostate cancer cells exhibiting stem-cell like characteristics. Cancer Lett. 430:25–33. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Hoofd C, Wang X, Lam S, Jenkins C, Wood B, Giambra V and Weng AP: CD44 promotes chemoresistance in T-ALL by increased drug efflux. Exp Hematol. 44:166–171.e17. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Pérez G, López‑Moncada F, Indo S, Torres MJ, Castellón EA and Contreras HR: Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells. Oncol Rep 45: 58, 2021.
APA
Pérez, G., López‑Moncada, F., Indo, S., Torres, M.J., Castellón, E.A., & Contreras, H.R. (2021). Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells. Oncology Reports, 45, 58. https://doi.org/10.3892/or.2021.8009
MLA
Pérez, G., López‑Moncada, F., Indo, S., Torres, M. J., Castellón, E. A., Contreras, H. R."Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells". Oncology Reports 45.5 (2021): 58.
Chicago
Pérez, G., López‑Moncada, F., Indo, S., Torres, M. J., Castellón, E. A., Contreras, H. R."Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells". Oncology Reports 45, no. 5 (2021): 58. https://doi.org/10.3892/or.2021.8009
Copy and paste a formatted citation
x
Spandidos Publications style
Pérez G, López‑Moncada F, Indo S, Torres MJ, Castellón EA and Contreras HR: Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells. Oncol Rep 45: 58, 2021.
APA
Pérez, G., López‑Moncada, F., Indo, S., Torres, M.J., Castellón, E.A., & Contreras, H.R. (2021). Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells. Oncology Reports, 45, 58. https://doi.org/10.3892/or.2021.8009
MLA
Pérez, G., López‑Moncada, F., Indo, S., Torres, M. J., Castellón, E. A., Contreras, H. R."Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells". Oncology Reports 45.5 (2021): 58.
Chicago
Pérez, G., López‑Moncada, F., Indo, S., Torres, M. J., Castellón, E. A., Contreras, H. R."Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells". Oncology Reports 45, no. 5 (2021): 58. https://doi.org/10.3892/or.2021.8009
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team