|
1
|
Fonseca NA, Cruz AF, Moura V, Simões S and
Moreira JN: The cancer stem cell phenotype as a determinant factor
of the heterotypic nature of breast tumors. Crit Rev Oncol Hematol.
113:111–121. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Xin HW, Hari DM, Mullinax JE, Ambe CW,
Koizumi T, Ray S, Anderson AJ, Wiegand GW, Garfield SH,
Thorgeirsson SS and Avital I: Tumor-initiating label-retaining
cancer cells in human gastrointestinal cancers undergo asymmetric
cell division. Stem Cells. 30:591–598. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Xin HW, Ambe CM, Ray S, Kim BK, Koizumi T,
Wiegand GW, Hari D, Mullinax JE, Jaiswal KR, Garfield SH, et al:
Wnt and the cancer niche: Paracrine interactions with
gastrointestinal cancer cells undergoing asymmetric cell division.
J Cancer. 4:447–457. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Xin HW, Ambe CM, Miller TC, Chen JQ,
Wiegand GW, Anderson AJ, Ray S, Mullinax JE, Hari DM, Koizumi T, et
al: Liver label retaining cancer cells are relatively resistant to
the reported anti-cancer stem cell drug metformin. J Cancer.
7:1142–11451. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Xin HW, Ambe CM, Hari DM, Wiegand GW,
Miller TC, Chen JQ, Anderson AJ, Ray S, Mullinax JE, Koizumi T, et
al: Label-retaining liver cancer cells are relatively resistant to
sorafenib. Gut. 62:1777–1786. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hari D, Xin HW, Jaiswal K, Wiegand G, Kim
BK, Ambe C, Burka D, Koizumi T, Ray S, Garfield S, et al: Isolation
of live label-retaining cells and cells undergoing asymmetric cell
division via nonrandom chromosomal cosegregation from human
cancers. Stem Cells Dev. 20:1649–1658. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kiberstis PA: Micromanaging muscle cell
fusion. Science. 356:280–281. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang J, Liu Q, Luo K, Chen X, Xiao J,
Zhang C, Tao M, Zhao R and Liu S: Cell fusion as the formation
mechanism of unreduced gametes in the gynogenetic diploid hybrid
fish. Sci Rep. 6:316582016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mohler WA, Shemer G, del Campo JJ, Valansi
C, Opoku-Serebuoh E, Scranton V, Assaf N, White JG and Podbilewicz
B: The type I membrane protein EFF-1 is essential for developmental
cell fusion. Dev Cell. 2:355–362. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Shemer G, Suissa M, Kolotuev I, Nguyen KC,
Hall DH and Podbilewicz B: EFF-1 is sufficient to initiate and
execute tissue-specific cell fusion in C. elegans. Curr Biol.
14:1587–1591. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Forkner CE: The origin and fate of two
types of multi-nucleated giant cells in the circulating blood. J
Exp Med. 52:279–297. 1930. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Enders JF and Peebles TC: Propagation in
tissue cultures of cytopathogenic agents from patients with
measles. Proc Soc Exp Biol Med. 86:277–286. 1954. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Barski G: ‘Hybrid’ cell clones isolated
from mixed cell cultures. C R Hebd Seances Acad Sci. 253:1186–1188.
1961.(In French). PubMed/NCBI
|
|
14
|
Furusawa E and Cutting W: Loss of
neurotropic pathogenicity and hemagglutinating property of Columbia
SK virus by in vitro cultivation in sarcoma 180 ascites cells. Proc
Soc Exp Biol Med. 109:417–421. 1962. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cascardo MR and Karzon DT: Measles virus
giant cell induction factor (fusion factor). Virology. 26:311–325.
1965. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Harris H and Watkins JF: Hybrid cells
derived from mouse and man: Artificial heterokaryons of mammalian
cells from different species. Nature. 205:640–646. 1965. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Goldenberg DM: On the progression of
malignancy: A hypothesis. Klin Wochenschr. 46:898–899. 1968.(In
German). View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Poste G: Virus-induced polykaryocytosis
and the mechanism of cell fusion. Adv Virus Res. 16:303–356. 1970.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Goldenberg DM, Pavia RA and Tsao MC: In
vivo hybridisation of human tumour and normal hamster cells.
Nature. 250:649–651. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Klein PA, Xiang JH and Kimura AK: Melanoma
cells growing in aggregates on a non-adhesive poly(HEMA) substrate
exhibit polykaryocytosis but do not develop an increased metastatic
capability. Clin Exp Metastasis. 2:287–295. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lapidot T, Sirard C, Vormoor J, Murdoch B,
Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and
Dick JE: A cell initiating human acute myeloid leukaemia after
transplantation into SCID mice. Nature. 367:645–648. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gibson AJ, Karasinski J, Relvas J, Moss J,
Sherratt TG, Strong PN and Watt DJ: Dermal fibroblasts convert to a
myogenic lineage in mdx mouse muscle. J Cell Sci. 108:207–214.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Goldenberg DM, Gold DV, Loo M, Liu D,
Chang CH and Jaffe ES: Horizontal transmission of malignancy:
In-vivo fusion of human lymphomas with hamster stroma produces
tumors retaining human genes and lymphoid pathology. PLoS One.
8:e553242013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kato K, Satouh Y, Nishimasu H, Kurabayashi
A, Morita J, Fujihara Y, Oji A, Ishitani R, Ikawa M and Nureki O:
Structural and functional insights into IZUMO1 recognition by JUNO
in mammalian fertilization. Nat Commun. 7:121982016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Smith JA, Hall AE and Rose MD: Membrane
curvature directs the localization of Cdc42p to novel foci required
for cell-cell fusion. J Cell Biol. 216:3971–3980. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yang Y, Zhang Y, Li WJ, Jiang Y, Zhu Z, Hu
H, Li W, Wu JW, Wang ZX, Dong MQ, et al: Spectraplakin induces
positive feedback between fusogens and the actin cytoskeleton to
promote cell-cell fusion. Dev Cell. 41:107–120. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Di Gioia SA, Connors S, Matsunami N,
Cannavino J, Rose MF, Gilette NM, Artoni P, de Macena Sobreira NL,
Chan WM, Webb BD, et al: A defect in myoblast fusion underlies
Carey-Fineman-Ziter syndrome. Nat Commun. 8:160772017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lee JH, Hsieh CF, Liu HW, Chen CY, Wu SC,
Chen TW, Hsu CS, Liao YH, Yang CY, Shyu JF, et al: Lipid
raft-associated stomatin enhances cell fusion. FASEB J. 31:47–59.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mortensen K, Lichtenberg J, Thomsen PD and
Larsson LI: Spontaneous fusion between cancer cells and endothelial
cells. Cell Mol Life Sci. 61:2125–2131. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Song K, Song Y, Zhao XP, Shen H, Wang M,
Yan TL, Liu K and Shang ZJ: Oral cancer/endothelial cell fusion
experiences nuclear fusion and acquisition of enhanced survival
potential. Exp Cell Res. 328:156–163. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Raj AT, Kheur S, Patil VR and Gupta AA:
Assessing the role of cell fusion in cancer metastasis. Oral Oncol.
90:124–125. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Song K, Zhu F, Zhang Hz and Shang Zj:
Tumor necrosis factor-α enhanced fusions between oral squamous cell
carcinoma cells andendothelial cells via VCAM-1/VLA-4 pathway. Exp
Cell Res. 318:1707–1715. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rappa G, Mercapide J and Lorico A:
Spontaneous formation of tumorigenic hybrids between breast cancer
and multipotent stromal cells is a source of tumor heterogeneity.
Am J Pathol. 180:2504–2515. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang R, Chen S, Li C, Ng KTP, Kong Cw,
Cheng J, Cheng SH, Li RA, Lo CM, Man K and Sun D: Fusion with stem
cell makes the hepatocellular carcinoma cells similar to liver
tumor--initiating cells. BMC Cancer. 16:562016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Noubissi FK, Harkness T, Alexander CM and
Ogle BM: Apoptosis-induced cancer cell fusion: A mechanism of
breast cancer metastasis. FASEB J. 29:4036–4045. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Melzer C, von der Ohe J and Hass R:
Enhanced metastatic capacity of breast cancer cells after
interaction and hybrid formation with mesenchymal stroma/stem cells
(MSC). Cell Commun Signal. 16:22018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Melzer C, von der Ohe J and Hass R:
Involvement of actin cytoskeletal components in breast cancer cell
fusion with human mesenchymal stroma/stem-like cells. Int J Mol
Sci. 20:8762019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xu MH, Gao X, Luo D, Zhou XD, Xiong W and
Liu GX: EMT and acquisition of stem cell-like properties are
involved in spontaneous formation of tumorigenic hybrids between
lung cancer and bone marrow-derived mesenchymal stem cells. PLoS
One. 9:e878932014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xue J, Zhu Y, Sun Z, Ji R, Zhang X, Xu W,
Yuan X, Zhang B, Yan Y, Yin L, et al: Tumorigenic hybrids between
mesenchymal stem cells and gastric cancer cells enhanced cancer
proliferation, migration and stemness. BMC Cancer. 15:7932015.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sun C, Zhao D, Dai X, Chen J, Rong X, Wang
H, Wang A, Li M, Dong J, Huang Q and Lan Q: Fusion of cancer stem
cells and mesenchymal stem cells contributes to glioma
neovascularization. Oncol Rep. 34:2022–2030. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang LN, Kong CF, Zhao D, Cong XL, Wang
SS, Ma L and Huang YH: Fusion with mesenchymal stem cells
differentially affects tumorigenic and metastatic abilities of lung
cancer cells. J Cell Physiol. 234:3570–3582. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li H, Feng Z, Tsang TC, Tang T, Jia X, He
X, Pennington ME, Badowski MS, Liu AKM, Chen D, et al: Fusion of
HepG2 cells with mesenchymal stem cells increases cancer associated
and malignant properties: An in vivo metastasis model. Oncol
Rep. 32:539–547. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yin L, Hu P, Shi X, Qian W, Zhau HE,
Pandol SJ, Lewis MS, Chung LWK and Wang R: Cancer cell's
neuroendocrine feature can be acquired through cell-cell fusion
during cancer-neural stem cell interaction. Sci Rep. 10:12162020.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang H, Yang L, Wang D, Zhang Q and Zhang
L: Pro-tumor activities of macrohpages in the progression of
melanoma. Hum Vaccin Immunother. 13:1556–1562. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang LN, Huang YH and Zhao L: Fusion of
macrophages promotes breast cancer cell proliferation, migration
and invasion through activating epithelial-mesenchymal transition
and Wnt/β-catenin signaling pathway. Arch Biochem Biophys.
676:1081372019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ding J, Jin W, Chen C, Shao Z and Wu J:
Tumor associated macrophage × cancer cell hybrids may acquire
cancer stem cell properties in breast cancer. PLoS One.
7:e419422012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chakraborty AK, Pawelek J, Ikeda Y,
Miyoshi E, Kolesnikova N, Funasaka Y, Ichihashi M and Taniguchi N:
Fusion hybrids with macrophage and melanoma cells up-regulate
N-acetylglucosaminyltransferase V, beta1-6 branching, and
metastasis. Cell Growth Differ. 12:623–630. 2001.PubMed/NCBI
|
|
48
|
Kemény LV, Kurgyis Z, Buknicz T, Groma G,
Jakab A, Zänker K, Dittmar T, Kemény L and Németh IB: Melanoma
cells can adopt the phenotype of stromal fibroblasts and
macrophages by spontaneous cell fusion in vitro. Int J Mol Sci.
17:8262016. View Article : Google Scholar
|
|
49
|
Kurgyis Z, Kemény LV, Buknicz T, Groma G,
Oláh J, Jakab A, Polyánka H, Zänker K, Dittmar T, Kemény L and
Németh IB: Melanoma-Derived BRAF (V600E) mutation in peritumoral
stromal cells: Implications for in vivo cell fusion. Int J Mol Sci.
17:9802016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lindström A, Midtbö K, Arnesson LG, Garvin
S and Shabo I: Fusion between M2-macrophages and cancer cells
results in a subpopulation of radioresistant cells with enhanced
DNA-repair capacity. Oncotarget. 8:51370–51386. 2017. View Article : Google Scholar
|
|
51
|
He K, Qu H, Xu LN, Gao J, Cheng FY, Xiang
P and Zhou CQ: Epigenetics changes caused by the fusion of human
embryonic stem cell and ovarian cancer cells. Biosci Rep.
36:e003782016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang Y, Fan H, Zhou B, Ju Z, Yu L, Guo L,
Han J and Lu S: Fusion of human umbilical cord mesenchymal stem
cells with esophageal carcinoma cells inhibits the tumorigenicity
of esophageal carcinoma cells. Int J Oncol. 40:370–377.
2012.PubMed/NCBI
|
|
53
|
Fan H and Lu S: Fusion of human bone
hemopoietic stem cell with esophageal carcinoma cells didn't
generate esophageal cancer stem cell. Neoplasma. 61:540–545. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kim TB, Park HK, Chang JH, Choi IH, Kim
KH, Yoon SJ, Lee MS, Jung H and Kim CS: The establishment of
dendritic cell-tumor fusion vaccines for hormone refractory
prostate cancer cell. Korean J Urol. 51:139–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yoo C, Do HA, Jeong IG, Park H, Hwang JJ,
Hong JH, Cho JS, Choo MS, Ahn H and Kim CS: Efficacy of dendritic
cells matured early with OK-432 (Picibanil), prostaglandin E2, and
interferon-alpha as a vaccine for a hormone refractory prostate
cancer cell line. J Korean Med Sci. 25:1284–1290. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kawada M, Ikeda H, Takahashi T, AIshizu A,
Ishikura H, Katoh H and Yoshiki T: Vaccination of fusion cells of
rat dendritic and carcinoma cells prevents tumor growth in vivo.
Int J Cancer. 105:520–526. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Matsumoto S, Saito H, Tsujitani S and
Ikeguchi M: Allogeneic gastric cancer cell-dendritic cell hybrids
induce tumor antigen (carcinoembryonic antigen) specific CD8(+) T
cells. Cancer Immunol Immunother. 55:131–139. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Koido S, Hara E, Homma S, Torii A, Toyama
Y, Kawahara H, Watanabe M, Yanaga K, Fujise K, Tajiri H, et al:
Dendritic cells fused with allogeneic colorectal cancer cell line
present multiple colorectal cancer-specific antigens and induce
antitumor immunity against autologous tumor cells. Clin Cancer Res.
11:7891–7900. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang K, Gao PF, Yu PW, Rao Y and Zhou LX:
Study on biological characters of SGC7901 gastric cancer
cell-dendritic cell fusion vaccines. World J Gastroenterol.
12:3438–3441. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Imura K, Ueda Y, Hayashi T, Itoh T,
Shimizu K, Tamai H, Yano Y, Naito K, Kohara J, Nakane K, et al:
Induction of cytotoxic T lymphocytes against human cancer cell
lines using dendritic cell-tumor cell hybrids generated by a newly
developed electrofusion technique. Int J Oncol. 29:531–539.
2006.PubMed/NCBI
|
|
61
|
Zhang Y, Ma B, Zhou Y, Zhang M, Qiu X, Sui
Y, Zhang X, Ma B and Fan Q: Dendritic cells fused with allogeneic
breast cancer cell line induce tumor antigen-specific CTL responses
against autologous breast cancer cells. Breast Cancer Res Treat.
105:277–286. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Koido S, Tanaka Y, Tajiri H and Gong J:
Generation and functional assessment of antigen-specific T cells
stimulated by fusions of dendritic cells and allogeneic breast
cancer cells. Vaccine. 25:2610–2619. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Serhal K, Baillou C, Ghinea N, Fontanges
P, Dupuy FP, Lemoine FM and Lacave R: Characteristics of hybrid
cells obtained by dendritic cell/tumour cell fusion in a T-47D
breast cancer cell line model indicate their potential as
anti-tumour vaccines. Int J Oncol. 31:1357–1365. 2007.PubMed/NCBI
|
|
64
|
Hu Z, Chen J, Zhou S, Yang N, Duan S,
Zhang Z, Su J, He J, Zhang Z, Lu X and Zhao Y: Mouse IP-10 gene
delivered by folate-modified chitosan nanoparticles and
dendritic/tumor cells fusion vaccine effectively inhibit the growth
of hepatocellular carcinoma in mice. Theranostics. 7:1942–1952.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Dittmar T, Schwitalla S, Seidel J,
Haverkampf S, Reith G, Meyer-Staeckling S, Brandt BH, Niggemann B
and Zänker KS: Characterization of hybrid cells derived from
spontaneous fusion events between breast epithelial cells
exhibiting stem-like characteristics and breast cancer cells. Clin
Exp Metastasis. 28:75–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ozel C, Seidel J, Meyer-Staeckling S,
Brandt BH, Niggemann B, Zänker KS and Dittmar T: Hybrid cells
derived from breast epithelial cell/breast cancer cell fusion
events show a differential RAF-AKT crosstalk. Cell Commun Signal.
10:102012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gauck D, Keil S, Niggemann B, Zänker KS
and Dittmar T: Hybrid clone cells derived from human breast
epithelial cells and human breast cancer cells exhibit properties
of cancer stem/initiating cells. BMC Cancer. 17:5152017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bhatia B, Multani AS, Patrawala L, Chen X,
Calhoun-Davis T, Zhou J, Schroeder L, Schneider-Broussard R, Shen
J, Pathak S, et al: Evidence that senescent human prostate
epithelial cells enhance tumorigenicity: Cell fusion as a potential
mechanism and inhibition by p16INK4a and hTERT. Int J Cancer.
122:1483–1495. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kerbel RS, Lagarde AE, Dennis JW and
Donaghue TP: Spontaneous fusion in vivo between normal host and
tumor cells: Possible contribution to tumor progression and
metastasis studied with a lectin-resistant mutant tumor. Mol Cell
Biol. 3:523–538. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chakraborty AK, Sodi S, Rachkovsky M,
Kolesnikova N, Platt JT, Bolognia JL and Pawelek JM: A spontaneous
murine melanoma lung metastasis comprised of host × tumor hybrids.
Cancer Res. 60:2512–2519. 2000.PubMed/NCBI
|
|
71
|
Luo F, Liu T, Wang J, Li J, Ma P, Ding H,
Feng G, Lin D, Xu Y and Yang K: Bone marrow mesenchymal stem cells
participate in prostate carcinogenesis and promote growth of
prostate cancer by cell fusion in vivo. Oncotarget. 7:30924–30934.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sun C, Dai X, Zhao D, Wang H, Rong X,
Huang Q and Lan Q: Mesenchymal stem cells promote glioma
neovascularization in vivo by fusing with cancer stem cells. BMC
Cancer. 19:12402019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jacobsen BM, Harrell JC, Jedlicka P,
Borges VF, Varella-Garcia M and Horwitz KB: Spontaneous fusion
with, and transformation of mouse stroma by, malignant human breast
cancer epithelium. Cancer Res. 66:8274–8279. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Martin-Padura I, Marighetti P, Gregato G,
Agliano A, Malazzi O, Mancuso P, Pruneri G, Viale A and Bertolini
F: Spontaneous cell fusion of acute leukemia cells and macrophages
observed in cells with leukemic potential. Neoplasia. 14:1057–1066.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chitwood CA, Dietzsch C, Jacobs G, McArdle
T, Freeman BT, Banga A, Noubissi FK and Ogle BM: Breast tumor cell
hybrids form spontaneously in vivo and contribute to breast tumor
metastases. APL Bioeng. 2:0319072018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Pawelek JM and Chakraborty AK: The cancer
cell-leukocyte fusion theory of metastasis. Adv Cancer Res.
101:397–444. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Harkness T, Weaver BA, Alexander CM and
Ogle BM: Cell fusion in tumor development: Accelerated genetic
evolution. Crit Rev Oncog. 18:19–42. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chakraborty A, Lazova R, Davies S,
Bäckvall H, Ponten F, Brash D and Pawelek J: Donor DNA in a renal
cell carcinoma metastasis from a bone marrow transplant recipient.
Bone Marrow Transplant. 34:183–186. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yilmaz Y, Lazova R, Qumsiyeh M, Cooper D,
Pawelek J and Donor Y: Chromosome in renal carcinoma cells of a
female BMT recipient: Visualization of putative BMT-tumor hybrids
by FISH. Bone Marrow Transplant. 35:1021–1024. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lazova R, Laberge GS, Duvall E, Spoelstra
N, Klump V, Sznol M, Cooper D, Spritz RA, Chang JT and Pawelek JM:
A melanoma brain metastasis with a donor-patient hybrid genome
following bone marrow transplantation: First evidence for fusion in
human cancer. PLoS One. 8:e667312013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
LaBerge GS, Duvall E, Grasmick Z, Haedicke
K and Pawelek J: A melanoma lymphnode metastasis with a
donor-patient hybrid genome following bone marrow transplantation:
A second case of leucocyte-tumor cell hybridization in cancer
metastasis. PLoS One. 12:e01685812017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Andersen TL, Boissy P, Sondergaard TE,
Kupisiewicz K, Plesner T, Rasmussen T, Haaber J, Kølvraa S and
Delaissé JM: Osteoclast nuclei of myeloma patients show chromosome
translocations specific for the myeloma cell clone: A new type of
cancer-host partnership? J Pathol. 211:10–17. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Clawson GA, Matters GL, Xin P,
Imamura-Kawasawa Y, Du Z, Thiboutot DM, Helm KF, Neves RI and
Abraham T: Macrophage-tumor cell fusions from peripheral blood of
melanoma patients. PLoS One. 10:e01343202015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Melzer C, von der Ohe J and Hass R: In
vivo cell fusion between mesenchymal stroma/stem-like cells and
breast cancer cells. Cancers (Basel). 110:1852019. View Article : Google Scholar
|
|
85
|
Hong S, Zhang P, Zhang H, Jia L, Qu X,
Yang Q, Rong F and Kong B: Enforced effect of tk-MCP-1 fusion gene
in ovarian cancer. J Exp Clin Cancer Res. 31:742012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang D, Li B, Shi J, Zhao L, Zhang X,
Wang C, Hou S, Qian W, Kou G, Wang H and Guo Y: Suppression of
tumor growth and metastasis by simultaneously blocking vascular
endothelial growth factor (VEGF)-A and VEGF-C with a
receptor-immunoglobulin fusion protein. Cancer Res. 70:2495–2503.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Tammela T, Zarkada G, Nurmi H, Jakobsson
L, Heinolainen K, Tvorogov D, Zheng W, FrancoC A, Murtomäki A,
Aranda E, et al: VEGFR-3 controls tip to stalk conversion at vessel
fusion sites by reinforcing Notch signalling. Nat Cell Biol.
13:1202–1213. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liang AL, Qian HL, Zhang TT, Zhou N, Wang
HJ, Men XT, Qi W, Zhang PP, Fu M, Liang X, et al: Bifunctional
fused polypeptide inhibits the growth and metastasis of breast
cancer. Drug Des Devel Ther. 9:5671–5686. 2015.PubMed/NCBI
|
|
89
|
Beha N, Harder M, Ring S, Kontermann RE
and Müller D: IL15-based trifunctional antibody-fusion proteins
with costimulatory TNF-superfamily ligands in the single-chain
format for cancer immunotherapy. Mol Cancer Ther. 18:1278–1288.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Weiler J and Dittmar T: Minocycline
impairs TNF-α-induced cell fusion of M13SV1-Cre cells with
MDA-MB-435-pFDR1 cells by suppressing NF-κB transcriptional
activity and its induction of target-gene expression of
fusion-relevant factors. Cell Commun Signal. 17:712019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Goldenberg DM, Zagzag D, Heselmeyer-Haddad
KM, Garcia LYB, Ried T, Loo M, Chang CH and Gold DV: Horizontal
transmission and retention of malignancy, as well as functional
human genes, after spontaneous fusion of human glioblastoma and
hamster host cells in vivo. Int J Cancer. 131:49–58. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lee SH, Lee YP, Kim SY, Jeong MS, Lee MJ,
Kang HW, Jeong HJ, Kim DW, Sohn EJ, Jang SH, et al: Inhibition of
LPS-induced cyclooxygenase 2 and nitric oxide production by
transduced PEP-1-PTEN fusion protein in raw 264.7 macrophage cells.
Exp Mol Med. 40:629–638. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wolf S, Haase-Kohn C, Lenk J, Hoppmann S,
Bergmann R, Steinbach J and Pietzsch J: Expression, purification
and fluorine-18 radiolabeling of recombinant S100A4: A potential
probe for molecular imaging of receptor for advanced glycation
endproducts in vivo? Amino Acids. 41:809–820. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu XQ, Xin HY, Lyu YN, Ma ZW, Peng XC,
Xiang Y, Wang YY, Wu ZJ, Cheng JT, Ji JF, et al: Oncolytic herpes
simplex virus tumor targeting and neutralization escape by
engineering viral envelope glycoproteins. Drug Deliv. 25:1950–1962.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Foo CH, Rootes CL, Cowley K, Marsh GA,
Gould CM, Deffrasnes C, Cowled CJ, Klein R, Riddell SJ and
Middleton D: Dual microRNA screens reveal that the
immune-responsive miR-181 promotes henipavirus entry and cell-cell
fusion. PLoS Pathog. 12:e10059742016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hu C, He Y, Liu D, Zhao L, Fang S, Tan B,
Dong S, Wang Y, He T and Bi Y: Hypoxia preconditioning promotes the
proliferation and migration of urine-derived stem cells in
chronically injured liver of mice by upregulating CXCR4. Stem Cells
Dev. 15:526–536. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Luo Y, Zhu D, Lam DH, Huang J, Tang Y, Luo
X and Wang S: A double-switch cell fusion-inducible transgene
expression system for neural stem cell-based antiglioma gene
therapy. Stem Cells Int. 2015:6490802015. View Article : Google Scholar : PubMed/NCBI
|