Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the ERK and p53/HDM2 signaling pathways to promote the survival, proliferation and migration of non‑small cell lung cancer cells

  • Authors:
    • Min Kyu Kim
    • Mun Ju Choi
    • Hyun Min Lee
    • Hong Seo Choi
    • Young-Kwon Park
    • Chun Jeih Ryu
  • View Affiliations

  • Published online on: June 7, 2021     https://doi.org/10.3892/or.2021.8104
  • Article Number: 153
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Lung cancer is the most frequent cause of cancer‑associated mortality worldwide. Upregulation of heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) has been reported in non‑small cell lung cancer (NSCLC) cells, but its contribution to NSCLC remains poorly understood. hnRNPA2/B1 is involved in carcinogenesis by interacting with a number of proteins; however, little is known about its interaction with p53. The results of the present study revealed that hnRNPA2/B1 expression levels were upregulated in NSCLC cells under tumorsphere culture conditions and cisplatin treatment compared with those in cells under the adherent condition and dimethyl sulfoxide treatment, respectively, suggesting that hnRNPA2/B1 expression is induced under stress conditions. hnRNPA2/B1 knockdown decreased the number and size of NSCLC cell colonies in a clonogenic survival assay and led to a decreased migratory potential of NSCLC cells, suggesting that hnRNPA2/B1 may promote the survival, proliferation and migration of NSCLC cells. hnRNPA2/B1 knockdown induced G0/G1 phase arrest in NSCLC cells through cyclin E degradation and phosphorylation of cyclin‑dependent kinase 2. In addition, hnRNPA2/B1 knockdown inhibited extracellular signal‑regulated kinase (ERK)1/2 phosphorylation, suggesting that hnRNPA2/B1 may promote the G1/S phase transition in NSCLC cells through ERK signaling. hnRNPA2/B1 knockdown resulted in increased expression levels of p21 and p27 in NSCLC cells, as well as p53 induction and phosphorylation. Additionally, hnRNPA2/B1 knockdown inhibited human double minute 2 protein (HDM2) stability and phosphorylation, whereas overexpression of hnRNPA2 induced the opposite effects. These results suggested that hnRNPA2/B1 may promote the survival, proliferation and migration of NSCLC cells through preventing the activation of p53, which is induced by ERK‑mediated HDM2 activation. The results of the present study also indicated that the components of the hnRNPA2/B1/ERK/p53/HDM2 signaling pathway may be novel potential molecular targets for the treatment of patients with NSCLC.
View Figures
View References

Related Articles

Journal Cover

August-2021
Volume 46 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Kim MK, Choi MJ, Lee HM, Choi HS, Park Y and Ryu CJ: Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the ERK and p53/HDM2 signaling pathways to promote the survival, proliferation and migration of non‑small cell lung cancer cells. Oncol Rep 46: 153, 2021
APA
Kim, M.K., Choi, M.J., Lee, H.M., Choi, H.S., Park, Y., & Ryu, C.J. (2021). Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the ERK and p53/HDM2 signaling pathways to promote the survival, proliferation and migration of non‑small cell lung cancer cells. Oncology Reports, 46, 153. https://doi.org/10.3892/or.2021.8104
MLA
Kim, M. K., Choi, M. J., Lee, H. M., Choi, H. S., Park, Y., Ryu, C. J."Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the ERK and p53/HDM2 signaling pathways to promote the survival, proliferation and migration of non‑small cell lung cancer cells". Oncology Reports 46.2 (2021): 153.
Chicago
Kim, M. K., Choi, M. J., Lee, H. M., Choi, H. S., Park, Y., Ryu, C. J."Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the ERK and p53/HDM2 signaling pathways to promote the survival, proliferation and migration of non‑small cell lung cancer cells". Oncology Reports 46, no. 2 (2021): 153. https://doi.org/10.3892/or.2021.8104