|
1
|
Waller LP, Deshpande V and Pyrsopoulos N:
Hepatocellular carcinoma: A comprehensive review. World J Hepatol.
7:2648–2663. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Forner A, Reig M and Bruix J:
Hepatocellular carcinoma. Lancet. 391:1301–1314. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Li L and Wang H: Heterogeneity of liver
cancer and personalized therapy. Cancer Lett. 379:191–197. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Llovet JM, Bru C and Bruix J: Prognosis of
hepatocellular carcinoma: The BCLC staging classification. Semin
Liver Dis. 19:329–338. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
de Lope CR, Tremosini S, Forner A, Reig M
and Bruix J: Management of HCC. J Hepatol. 56 (Suppl 1):S75–S87.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bruix J and Sherman M; American
Association for the Study of Liver Diseases, : Management of
hepatocellular carcinoma: An update. Hepatology. 53:1020–1022.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Llovet JM, Zucman-Rossi J, Pikarsky E,
Sangro B, Schwartz M, Sherman M and Gores G: Hepatocellular
carcinoma. Nat Rev Dis Primers. 2:160182016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Grandhi MS, Kim AK, Ronnekleiv-Kelly SM,
Kamel IR, Ghasebeh MA and Pawlik TM: Hepatocellular carcinoma: From
diagnosis to treatment. Surg Oncol. 25:74–85. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Goyal L, Muzumdar MD and Zhu AX: Targeting
the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res.
19:2310–2318. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Whittaker S, Marais R and Zhu AX: The role
of signaling pathways in the development and treatment of
hepatocellular carcinoma. Oncogene. 29:4989–5005. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nakamura T, Nishizawa T, Hagiya M, Seki T,
Shimonishi M, Sugimura A, Tashiro K and Shimizu S: Molecular
cloning and expression of human hepatocyte growth factor. Nature.
342:440–443. 1989. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Furlong RA, Takehara T, Taylor WG,
Nakamura T and Rubin JS: Comparison of biological and
immunochemical properties indicates that scatter factor and
hepatocyte growth factor are indistinguishable. J Cell Sci.
100:173–177. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shima N, Nagao M, Ogaki F, Tsuda E,
Murakami A and Higashio K: Tumor cytotoxic factor/hepatocyte growth
factor from human fibroblasts: Cloning of its cDNA, purification
and characterization of recombinant protein. Biochem Biophys Res
Commun. 180:1151–1158. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Seki T, Hagiya M, Shimonishi M, Nakamura T
and Shimizu S: Organization of the human hepatocyte growth
factor-encoding gene. Gene. 102:213–219. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan
C, Wu Y, Li X, Li X, Li G, et al: Function of the c-Met receptor
tyrosine kinase in carcinogenesis and associated therapeutic
opportunities. Mol Cancer. 17:452018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sakai K, Aoki S and Matsumoto K:
Hepatocyte growth factor and Met in drug discovery. J Biochem.
157:271–284. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nakamura T, Sakai K, Nakamura T and
Matsumoto K: Hepatocyte growth factor twenty years on: Much more
than a growth factor. J Gastroenterol Hepatol. 26 (Suppl
1):S188–S202. 2011. View Article : Google Scholar
|
|
19
|
Barrow-McGee R and Kermorgant S: Met
endosomal signalling: In the right place, at the right time. Int J
Biochem Cell Biol. 49:69–74. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Imamura R and Matsumoto K: Hepatocyte
growth factor in physiology and infectious diseases. Cytokine.
98:97–106. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cooper CS, Park M, Blair DG, Tainsky MA,
Huebner K, Croce CM and Vande Woude GF: Molecular cloning of a new
transforming gene from a chemically transformed human cell line.
Nature. 311:29–33. 1984. View
Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bottaro DP, Rubin JS, Faletto DL, Chan AM,
Kmiecik TE, Vande Woude GF and Aaronson SA: Identification of the
hepatocyte growth factor receptor as the c-met proto-oncogene
product. Science. 251:802–804. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Naldini L, Vigna E, Narsimhan RP, Gaudino
G, Zarnegar R, Michalopoulos GK and Comoglio PM: Hepatocyte growth
factor (HGF) stimulates the tyrosine kinase activity of the
receptor encoded by the proto-oncogene c-MET. Oncogene. 6:501–504.
1991.PubMed/NCBI
|
|
24
|
Li Y, Liu H and Chen J: Dysregulation of
HGF/c-Met signal pathway and their targeting drugs in lung cancer.
Zhongguo Fei Ai Za Zhi. 17:625–634. 2014.(In Chinese). PubMed/NCBI
|
|
25
|
Kim KH and Kim H: Progress of
antibody-based inhibitors of the HGF-cMET axis in cancer therapy.
Exp Mol Med. 49:e3072017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Safaie Qamsari E, Safaei Ghaderi S, Zarei
B, Dorostkar R, Bagheri S, Jadidi-Niaragh F, Somi MH and Yousefi M:
The c-Met receptor: Implication for targeted therapies in
colorectal cancer. Tumour Biol. 39:10104283176991182017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yin B, Liu Z, Wang Y, Wang X, Liu W, Yu P,
Duan X, Liu C, Chen Y, Zhang Y, et al: RON and c-Met facilitate
metastasis through the ERK signaling pathway in prostate cancer
cells. Oncol Rep. 37:3209–3218. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hass R, Jennek S, Yang Y and Friedrich K:
c-Met expression and activity in urogenital cancers-novel aspects
of signal transduction and medical implications. Cell Commun
Signal. 15:102017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hu CT, Wu JR, Cheng CC and Wu WS: The
therapeutic targeting of HGF/c-Met signaling in hepatocellular
carcinoma: Alternative approaches. Cancers. 9:582017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Giordano S and Columbano A: Met as a
therapeutic target in HCC: Facts and hopes. J Hepatol. 60:442–452.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Birchmeier C, Birchmeier W, Gherardi E and
Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol
Cell Biol. 4:915–925. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Szturz P, Raymond E, Abitbol C, Albert S,
de Gramont A and Faivre S: Understanding c-MET signalling in
squamous cell carcinoma of the head & neck. Crit Rev Oncol
Hematol. 111:39–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
International Cancer Genome Consortium
PedBrain Tumor Project, . Recurrent MET fusion genes represent a
drug target in pediatric glioblastoma. Nat Med. 22:1314–1320. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kim B, Jung N, Lee S, Sohng JK and Jung
HJ: Apigenin inhibits cancer stem cell-like phenotypes in human
glioblastoma cells via suppression of c-Met signaling. Phytother
Res. 30:1833–1840. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Blumenschein GR Jr, Mills GB and
Gonzalez-Angulo AM: Targeting the hepatocyte growth factor-cMET
axis in cancer therapy. J Clin Oncol. 30:3287–3296. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gherardi E, Birchmeier W, Birchmeier C and
Vande Woude G: Targeting MET in cancer: Rationale and progress. Nat
Rev Cancer. 12:89–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Spina A, De Pasquale V, Cerulo G,
Cocchiaro P, Della Morte R, Avallone L and Pavone LM: HGF/c-MET
axis in tumor microenvironment and metastasis formation.
Biomedicines. 3:71–88. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gui Y, Yeganeh M, Donates YC, Tobelaim WS,
Chababi W, Mayhue M, Yoshimura A, Ramanathan S, Saucier C and
Ilangumaran S: Regulation of MET receptor tyrosine kinase signaling
by suppressor of cytokine signaling 1 in hepatocellular carcinoma.
Oncogene. 34:5718–5728. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu X, Newton RC and Scherle PA:
Developing c-MET pathway inhibitors for cancer therapy: Progress
and challenges. Trends Mol Med. 16:37–45. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sierra JR and Tsao MS: c-MET as a
potential therapeutic target and biomarker in cancer. Ther Adv Med
Oncol. 3 (Suppl 1):S21–S35. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jafarnejad M, Sove RJ, Danilova L, Mirando
AC, Zhang Y, Yarchoan M, Tran PT, Pandey NB, Fertig EJ and Popel
AS: Mechanistically detailed systems biology modeling of the
HGF/Met pathway in hepatocellular carcinoma. NPJ Syst Biol Appl.
5:292019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang YW: Promise and challenges on the
horizon of MET-targeted cancer therapeutics. World J Biol Chem.
6:16–27. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cao HH, Cheng CY, Su T, Fu XQ, Guo H, Li
T, Tse AK, Kwan HY, Yu H and Yu ZL: Quercetin inhibits HGF/c-Met
signaling and HGF-stimulated melanoma cell migration and invasion.
Mol Cancer. 14:1032015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Matsumoto K, Umitsu M, De Silva DM, Roy A
and Bottaro DP: Hepatocyte growth factor/MET in cancer progression
and biomarker discovery. Cancer Sci. 108:296–307. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Czyz M: HGF/c-MET signaling in melanocytes
and melanoma. Int J Mol Sci. 19:38442018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Parizadeh SM, Jafarzadeh-Esfehani R,
Fazilat-Panah D, Hassanian SM, Shahidsales S, Khazaei M, Parizadeh
SMR, Ghayour-Mobarhan M, Ferns GA and Avan A: The potential
therapeutic and prognostic impacts of the c-MET/HGF signaling
pathway in colorectal cancer. IUBMB Life. 71:802–811.
2019.PubMed/NCBI
|
|
47
|
Liu S: HGF-MET as a breast cancer
biomarker. Aging. 7:150–151. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Matsumoto R, Tsuda M, Wang L, Maishi N,
Abe T, Kimura T, Tanino M, Nishihara H, Hida K, Ohba Y, et al:
Adaptor protein CRK induces epithelial-mesenchymal transition and
metastasis of bladder cancer cells through HGF/c-Met feedback loop.
Cancer Sci. 106:709–717. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huang KH, Sung IC, Fang WL, Chi CW, Yeh
TS, Lee HC, Yin PH, Li AF, Wu CW, Shyr YM and Yang MH: Correlation
between HGF/c-Met and Notch1 signaling pathways in human gastric
cancer cells. Oncol Rep. 40:294–302. 2018.PubMed/NCBI
|
|
50
|
Boromand N, Hasanzadeh M, ShahidSales S,
Farazestanian M, Gharib M, Fiuji H, Behboodi N, Ghobadi N,
Hassanian SM, Ferns GA and Avan A: Clinical and prognostic value of
the C-Met/HGF signaling pathway in cervical cancer. J Cell Physiol.
233:4490–4496. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu WT, Jing YY, Yu GF, Chen H, Han ZP, Yu
DD, Fan QM, Ye F, Li R, Gao L, et al: Hepatic stellate cell
promoted hepatoma cell invasion via the HGF/c-Met signaling pathway
regulated by p53. Cell Cycle. 15:886–894. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tan S, Li R, Ding K, Lobie PE and Zhu T:
miR-198 inhibits migration and invasion of hepatocellular carcinoma
cells by targeting the HGF/c-MET pathway. FEBS Lett. 585:2229–2234.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Moosavi F, Giovannetti E, Saso L and
Firuzi O: HGF/MET pathway aberrations as diagnostic, prognostic,
and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci.
56:533–566. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kondo S, Ojima H, Tsuda H, Hashimoto J,
Morizane C, Ikeda M, Ueno H, Tamura K, Shimada K, Kanai Y and
Okusaka T: Clinical impact of c-Met expression and its gene
amplification in hepatocellular carcinoma. Int J Clin Oncol.
18:207–213. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang K, Lim HY, Shi S, Lee J, Deng S, Xie
T, Zhu Z, Wang Y, Pocalyko D, Yang WJ, et al: Genomic landscape of
copy number aberrations enables the identification of oncogenic
drivers in hepatocellular carcinoma. Hepatology. 58:706–717. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Guichard C, Amaddeo G, Imbeaud S, Ladeiro
Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M,
Degos F, et al: Integrated analysis of somatic mutations and focal
copy-number changes identifies key genes and pathways in
hepatocellular carcinoma. Nat Genet. 44:694–698. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chu JS, Ge FJ, Zhang B, Wang Y, Silvestris
N, Liu LJ, Zhao CH, Lin L, Brunetti AE, Fu YL, et al: Expression
and prognostic value of VEGFR-2, PDGFR-β, and c-Met in advanced
hepatocellular carcinoma. J Exp Clin Cancer Res. 32:162013.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu
MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, et al: Role of overexpression of
CD151 and/or c-Met in predicting prognosis of hepatocellular
carcinoma. Hepatology. 49:491–503. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lee SJ, Lee J, Sohn I, Mao M, Kai W, Park
CK and Lim HY: A survey of c-MET expression and amplification in
287 patients with hepatocellular carcinoma. Anticancer Res.
33:5179–5186. 2013.PubMed/NCBI
|
|
60
|
Ang CS, Sun MY, Huitzil-Melendez DF, Chou
JF, Capanu M, Jarnagin W, Fong Y, Dematteo RP, DAngelica M, Allen
P, et al: c-MET and HGF mRNA expression in hepatocellular
carcinoma: Correlation with clinicopathological features and
survival. Anticancer Res. 33:3241–3245. 2013.PubMed/NCBI
|
|
61
|
He C, Zhou Z, Jiang H, Yin Z, Meng S,
Zhang J, Huang P, Xu K, Bian L, Xiao Z and Wang J:
Epithelial-mesenchymal transition is superior to
vessels-encapsulate tumor cluster in promoting metastasis of
hepatocellular carcinoma: A morphological evidence. J Cancer.
8:39–47. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Trusolino L, Bertotti A and Comoglio PM:
MET signalling: Principles and functions in development, organ
regeneration and cancer. Nat Rev Mol Cell Biol. 11:834–848. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Menard L, Parker PJ and Kermorgant S:
Receptor tyrosine kinase c-Met controls the cytoskeleton from
different endosomes via different pathways. Nat Commun. 5:39072014.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bozkaya G, Korhan P, Cokakli M, Erdal E,
Sağol O, Karademir S, Korch C and Atabey N: Cooperative interaction
of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis. Mol
Cancer. 11:642012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xie B, Xing R, Chen P, Gou Y, Li S, Xiao J
and Dong J: Down-regulation of c-Met expression inhibits human HCC
cells growth and invasion by RNA interference. J Surg Res.
162:231–238. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang W, Sun H, Shi X, Wang H, Cui C, Xiao
F, Wu C, Guo X and Wang L: SENP1 regulates hepatocyte growth
factor-induced migration and epithelial-mesenchymal transition of
hepatocellular carcinoma. Tumour Biol. 37:7741–7748. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hass HG, Jobst J, Scheurlen M, Vogel U and
Nehls O: Gene expression analysis for evaluation of potential
biomarkers in hepatocellular carcinoma. Anticancer Res.
35:2021–2028. 2015.PubMed/NCBI
|
|
68
|
Alkozai EM, Porte RJ, Adelmeijer J,
Zanetto A, Simioni P, Senzolo M and Lisman T: Levels of angiogenic
proteins in plasma and platelets are not different between patients
with hepatitis B/C-related cirrhosis and patients with cirrhosis
and hepatocellular carcinoma. Platelets. 26:577–582. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yamagamim H, Moriyama M, Matsumura H, Aoki
H, Shimizu T, Saito T, Kaneko M, Shioda A, Tanaka N and Arakawa Y:
Serum concentrations of human hepatocyte growth factor is a useful
indicator for predicting the occurrence of hepatocellular
carcinomas in C-viral chronic liver diseases. Cancer. 95:824–834.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Karabulut S, Tas F, Akyuz F, Ormeci AC,
Serilmez M, Soydinç HO, Vatansever S and Yasasever V: Clinical
significance of serum hepatocyte growth factor (HGF) levels in
hepatocellular carcinoma. Tumour Biol. 35:2327–2333. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Unic A, Derek L, Duvnjak M, Patrlj L,
Rakić M, Kujundžić M, Renjić V, Štoković N, Dinjar P, Jukic A and
Grgurević I: Diagnostic specificity and sensitivity of PIVKAII,
GP3, CSTB, SCCA1 and HGF for the diagnosis of hepatocellular
carcinoma in patients with alcoholic liver cirrhosis. Ann Clin
Biochem. 55:355–362. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dreikhausen L, Blank S, Sisic L, Heger U,
Weichert W, Jäger D, Bruckner T, Giese N, Grenacher L, Falk C, et
al: Association of angiogenic factors with prognosis in esophageal
cancer. BMC cancer. 15:1212015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hong TS, Grassberger C, Yeap BY, Jiang W,
Wo JY, Goyal L, Clark JW, Crane CH, Koay EJ, Dima S, et al:
Pretreatment plasma HGF as potential biomarker for susceptibility
to radiation-induced liver dysfunction after radiotherapy. NPJ
Precis Oncol. 2:222018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Rimassa L, Abbadessa G, Personeni N, Porta
C, Borbath I, Daniele B, Salvagni S, Van Laethem JL, Van
Vlierberghe H, Trojan J, et al: Tumor and circulating biomarkers in
patients with second-line hepatocellular carcinoma from the
randomized phase II study with tivantinib. Oncotarget.
7:72622–72633. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yan S, Jiao X, Zou H and Li K: Prognostic
significance of c-Met in breast cancer: A meta-analysis of 6010
cases. Diagn Pathol. 10:622015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Pyo JS, Kang G, Cho WJ and Choi SB:
Clinicopathological significance and concordance analysis of c-MET
immunohistochemistry in non-small cell lung cancers: A
meta-analysis. Pathol Res Pract. 212:710–716. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pyo JS, Kang G and Cho H:
Clinicopathological significance and diagnostic accuracy of c-MET
expression by immunohistochemistry in gastric cancer: A
meta-analysis. J Gastric Cancer. 16:141–151. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu Y, Yu XF, Zou J and Luo ZH: Prognostic
value of c-Met in colorectal cancer: A meta-analysis. World J
Gastroenterol. 21:3706–3710. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kim JH, Kim HS, Kim BJ, Jang HJ and Lee J:
Prognostic value of c-Met overexpression in hepatocellular
carcinoma: A meta-analysis and review. Oncotarget. 8:90351–90357.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhuang PH, Xu L, Gao L, Lu W, Ruan LT and
Yang J: Correlations of microvascular blood flow of
contrast-enhanced ultrasound and HGF/c-Met signaling pathway with
clinicopathological features and prognosis of patients with
hepatocellular carcinoma. Onco Targets Ther. 10:847–857. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang ZL, Liang P, Dong BW, Yu XL and Yu
DJ: Prognostic factors and recurrence of small hepatocellular
carcinoma after hepatic resection or microwave ablation: A
retrospective study. J Gastrointest Surg. 12:327–337. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang Y, Du Z and Zhang M: Biomarker
development in MET-targeted therapy. Oncotarget. 7:37370–37389.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xiang Q, Chen W, Ren M, Wang J, Zhang H,
Deng DY, Zhang L, Shang C and Chen Y: Cabozantinib suppresses tumor
growth and metastasis in hepatocellular carcinoma by a dual
blockade of VEGFR2 and MET. Clin Cancer Res. 20:2959–2970. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Forner A, Reig ME, de Lope CR and Bruix J:
Current strategy for staging and treatment: The BCLC update and
future prospects. Semin Liver Dis. 30:61–74. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Garcia-Vilas JA and Medina MA: Updates on
the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma
and its therapeutic implications. World J Gastroenterol.
24:3695–3708. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gao J, Inagaki Y, Song P, Qu X, Kokudo N
and Tang W: Targeting c-Met as a promising strategy for the
treatment of hepatocellular carcinoma. Pharmacol Res. 65:23–30.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gao JJ, Inagaki Y, Xue X, Qu XJ and Tang
W: c-Met: A potential therapeutic target for hepatocellular
carcinoma. Drug Discov Ther. 5:2–11. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Garber K: MET inhibitors start on road to
recovery. Nat Rev Drug Discov. 13:563–565. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lemmon MA and Schlessinger J: Cell
signaling by receptor tyrosine kinases. Cell. 141:1117–1134. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Munshi N, Jeay S, Li Y, Chen CR, France
DS, Ashwell MA, Hill J, Moussa MM, Leggett DS and Li CJ: ARQ 197, a
novel and selective inhibitor of the human c-Met receptor tyrosine
kinase with antitumor activity. Mol Cancer Ther. 9:1544–1553. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
You H, Ding W, Dang H, Jiang Y and
Rountree CB: c-Met represents a potential therapeutic target for
personalized treatment in hepatocellular carcinoma. Hepatology.
54:879–889. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Brunetti O, Gnoni A, Licchetta A, Longo V,
Calabrese A, Argentiero A, Delcuratolo S, Solimando AG,
Casadei-Gardini A and Silvestris N: Predictive and prognostic
factors in HCC patients treated with Sorafenib. Medicina (Kaunas).
55:7072019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kuczynski EA, Lee CR, Man S, Chen E and
Kerbel RS: Effects of sorafenib dose on acquired reversible
resistance and toxicity in hepatocellular carcinoma. Cancer Res.
75:2510–2519. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhu AX: Molecularly targeted therapy for
advanced hepatocellular carcinoma in 2012: Current status and
future perspectives. Semin Oncol. 39:493–502. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhai B and Sun XY: Mechanisms of
resistance to sorafenib and the corresponding strategies in
hepatocellular carcinoma. World J Hepatol. 5:345–352. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yau TCC, Lencioni R, Sukeepaisarnjaroen W,
Chao Y, Yen CJ, Lausoontornsiri W, Chen PJ, Sanpajit T, Camp A, Cox
DS, et al: A phase I/II multicenter study of single-agent foretinib
as first-line therapy in patients with advanced hepatocellular
carcinoma. Clin Cancer Res. 23:2405–2413. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kelley RK, Verslype C, Cohn AL, Yang TS,
Su WC, Burris H, Braiteh F, Vogelzang N, Spira A, Foster P, et al:
Cabozantinib in hepatocellular carcinoma: Results of a phase 2
placebo-controlled randomized discontinuation study. Ann Oncol.
28:528–534. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Rimassa L, Cheng A, Braiteh F, Benzaghou
F, Hazra S, Borgman A, Sinha R, Kayali Z, Zhu A and Kelley R: Phase
3 (COSMIC-312) study of cabozantinib in combination with
atezolizumab vs. sorafenib in patients with advanced hepatocellular
carcinoma (aHCC) who have not received previous systemic anticancer
therapy. Ann Oncol. 30 (Suppl 4):iv65–iv66. 2019. View Article : Google Scholar
|
|
99
|
Santoro A, Rimassa L, Borbath I, Daniele
B, Salvagni S, Van Laethem JL, Van Vlierberghe H, Trojan J, Kolligs
FT, Weiss A, et al: Tivantinib for second-line treatment of
advanced hepatocellular carcinoma: A randomised, placebo-controlled
phase 2 study. Lancet Oncol. 14:55–63. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wagner AJ, Goldberg JM, Dubois SG, Choy E,
Rosen L, Pappo A, Geller J, Judson I, Hogg D, Senzer N, et al:
Tivantinib (ARQ 197), a selective inhibitor of MET, in patients
with microphthalmia transcription factor-associated tumors: Results
of a multicenter phase 2 trial. Cancer. 118:5894–5902. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yoshioka H, Azuma K, Yamamoto N, Takahashi
T, Nishio M, Katakami N, Ahn MJ, Hirashima T, Maemondo M, Kim SW,
et al: A randomized, double-blind, placebo-controlled, phase III
trial of erlotinib with or without a c-Met inhibitor tivantinib
(ARQ 197) in Asian patients with previously treated stage IIIB/IV
nonsquamous nonsmall-cell lung cancer harboring wild-type epidermal
growth factor receptor (ATTENTION study). Ann Oncol. 26:2066–2072.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yap TA, Olmos D, Brunetto AT, Tunariu N,
Barriuso J, Riisnaes R, Pope L, Clark J, Futreal A, Germuska M, et
al: Phase I trial of a selective c-MET inhibitor ARQ 197
incorporating proof of mechanism pharmacodynamic studies. J Clin
Oncol. 29:1271–1279. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Dietrich CG, Gotze O and Geier A:
Molecular changes in hepatic metabolism and transport in cirrhosis
and their functional importance. World J Gastroenterol. 22:72–88.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Tong Y, Wang M, Huang H, Zhang J, Huang Y,
Chen Y and Pan H: Inhibitory effects of genistein in combination
with gefitinib on the hepatocellular carcinoma Hep3B cell line. Exp
Ther Med. 18:3793–3800. 2019.PubMed/NCBI
|
|
105
|
Abou-Alfa GK, Meyer T, Cheng AL,
El-Khoueiry AB, Rimassa L, Ryoo BY, Cicin I, Merle P, Chen Y, Park
JW, et al: Cabozantinib in patients with advanced and progressing
hepatocellular carcinoma. N Engl J Med. 379:54–63. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhang W, Ai J, Shi D, Peng X, Ji Y, Liu J,
Geng M and Li Y: Discovery of novel type II c-Met inhibitors based
on BMS-777607. Eur J Med Chem. 80:254–266. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Molife LR, Dean EJ, Blanco-Codesido M,
Krebs MG, Brunetto AT, Greystoke AP, Daniele G, Lee L, Kuznetsov G,
Myint KT, et al: A phase I, dose-escalation study of the
multitargeted receptor tyrosine kinase inhibitor, golvatinib, in
patients with advanced solid tumors. Clin Cancer Res. 20:6284–6294.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sun CY, Zhu Y, Li XF, Tang LP, Su ZQ, Wang
XQ, Li CY, Yang HM, Zheng GJ and Feng B: Norcantharidin alone or in
combination with crizotinib induces autophagic cell death in
hepatocellular carcinoma by repressing c-Met-mTOR signaling.
Oncotarget. 8:114945–114955. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Katz JD, Jewell JP, Guerin DJ, Lim J,
Dinsmore CJ, Deshmukh SV, Pan BS, Marshall CG, Lu W, Altman MD, et
al: Discovery of a 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one
(MK-2461) inhibitor of c-Met kinase for the treatment of cancer. J
Med Chem. 54:4092–4108. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hughes PE, Rex K, Caenepeel S, Yang Y,
Zhang Y, Broome MA, Kha HT, Burgess TL, Amore B, Kaplan-Lefko PJ,
et al: In Vitro and in vivo activity of AMG 337, a potent and
selective MET kinase inhibitor, in MET-dependent cancer models. Mol
Cancer Ther. 15:1568–1579. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Decaens T, Barone C, Assenat E, Wermke M,
Fasolo A, Merle P, Blanc JF, Grando V, Iacobellis A, Villa E, et
al: Phase 1b/2 trial of tepotinib in sorafenibpretreated advanced
hepatocellular carcinoma with MET overexpression. Br J Cancer. Apr
6–2021.(Epub ahead of print). doi: 10.1038/s41416-021-01334-9.
View Article : Google Scholar
|
|
112
|
Qin S, Chan SL, Sukeepaisarnjaroen W, Han
G, Choo SP, Sriuranpong V, Pan H, Yau T, Guo Y, Chen M, et al: A
phase II study of the efficacy and safety of the MET inhibitor
capmatinib (INC280) in patients with advanced hepatocellular
carcinoma. Ther Adv Med Oncol. 11:17588359198890012019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kudo M, Morimoto M, Moriguchi M, Izumi N,
Takayama T, Yoshiji H, Hino K, Oikawa T, Chiba T, Motomura K, et
al: A randomized, double-blind, placebo-controlled, phase 3 study
of tivantinib in Japanese patients with MET-high hepatocellular
carcinoma. Cancer Sci. 111:3759–3769. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Giubellino A, Gao Y, Lee S, Lee MJ,
Vasselli JR, Medepalli S, Trepel JB, Burke TR Jr and Bottaro DP:
Inhibition of tumor metastasis by a growth factor receptor bound
protein 2 Src homology 2 domain-binding antagonist. Cancer Res.
67:6012–6016. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Atabey N, Gao Y, Yao ZJ, Breckenridge D,
Soon L, Soriano JV, Burke TR Jr and Bottaro DP: Potent blockade of
hepatocyte growth factor-stimulated cell motility, matrix invasion
and branching morphogenesis by antagonists of Grb2 Src homology 2
domain interactions. J Biol Chem. 276:14308–14314. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Prell RA, Dybdal N, Arima A, Chihaya Y,
Nijem I and Halpern W: Placental and fetal effects of onartuzumab,
a Met/HGF signaling antagonist, when administered to pregnant
cynomolgus monkeys. Toxicol Sci. 165:186–197. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Harding JJ, Zhu AX, Bauer TM, Choueiri TK,
Drilon A, Voss MH, Fuchs CS, Abou-Alfa GK, Wijayawardana SR, Wang
XA, et al: A Phase Ib/II study of ramucirumab in combination with
emibetuzumab in patients with advanced cancer. Clin Cancer Res.
25:5202–5211. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kim BJ, Kim D, Kim JH, Kim HS and Jang HJ:
The efficacy and safety of onartuzumab in patients with solid
cancers: A meta-analysis of randomized trials. Indian J Cancer.
58:232–240. 2021.PubMed/NCBI
|
|
119
|
Scagliotti G, Moro-Sibilot D, Kollmeier J,
Favaretto A, Cho EK, Grosch H, Kimmich M, Girard N, Tsai CM, Hsia
TC, et al: A randomized-controlled phase 2 study of the MET
antibody emibetuzumab in combination with erlotinib as first-line
treatment for EGFR mutation-positive NSCLC patients. J Thorac
Oncol. 15:80–90. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Vijayaraghavan S, Lipfert L, Chevalier K,
Bushey BS, Henley B, Lenhart R, Sendecki J, Beqiri M, Millar HJ,
Packman K, et al: Amivantamab (JNJ-61186372), an Fc enhanced
EGFR/cMet bispecific antibody, induces receptor downmodulation and
antitumor activity by Monocyte/macrophage trogocytosis. Mol Cancer
Ther. 19:2044–2056. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Patnaik A, Gordon M, Tsai F, Papadopoulos
KP, Rasco D, Beeram M, Fu S, Janku F, Hynes SM, Gundala SR, et al:
A phase I study of LY3164530, a bispecific antibody targeting MET
and EGFR, in patients with advanced or metastatic cancer. Cancer
Chemother Pharmacol. 82:407–418. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Lee BS, Kang S, Kim KA, Song YJ, Cheong
KH, Cha HY and Kim CH: Met degradation by SAIT301, a Met monoclonal
antibody, reduces the invasion and migration of nasopharyngeal
cancer cells via inhibition of EGR-1 expression. Cell Death Dis.
5:e11592014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Strickler JH, LoRusso P, Salgia R, Kang
YK, Yen CJ, Lin CC, Ansell P, Motwani M, Wong S, Yue H, et al:
Phase I dose-escalation and -expansion study of telisotuzumab
(ABT-700), an anti-c-Met antibody, in patients with advanced solid
tumors. Mol Cancer Ther. 19:1210–1217. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hultberg A, Morello V, Huyghe L, De Jonge
N, Blanchetot C, Hanssens V, De Boeck G, Silence K, Festjens E,
Heukers R, et al: Depleting MET-expressing tumor cells by ADCC
provides a therapeutic advantage over inhibiting HGF/MET signaling.
Cancer Res. 75:3373–3383. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Vigna E, Chiriaco C, Cignetto S, Fontani
L, Basilico C, Petronzelli F and Comoglio PM: Inhibition of
ligand-independent constitutive activation of the Met oncogenic
receptor by the engineered chemically-modified antibody DN30. Mol
Oncol. 9:1760–1772. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Affronti ML, Jackman JG, McSherry F,
Herndon JE II, Massey EC Jr, Lipp E, Desjardins A, Friedman HS,
Vlahovic G, Vredenburgh J and Peters KB: Phase II study to evaluate
the efficacy and safety of Rilotumumab and Bevacizumab in subjects
with recurrent malignant glioma. Oncologist. 23:889–e98. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Mok TS, Geater SL, Su WC, Tan EH, Yang JC,
Chang GC, Han M, Komarnitsky P, Payumo F, Garrus JE, et al: A
randomized phase 2 study comparing the combination of ficlatuzumab
and gefitinib with gefitinib alone in Asian patients with advanced
stage pulmonary adenocarcinoma. J Thorac Oncol. 11:1736–1744. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Houghton PJ, Kurmasheva RT, Kolb EA, Wu J,
Gorlick R, Maris JM and Smith MA: Initial testing (stage 1) of
TAK-701, a humanized hepatocyte growth factor binding antibody, by
the pediatric preclinical testing program. Pediatr Blood Cancer.
61:380–382. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Kim HJ and Heo K: YYB-101, a humanized
antihepatocyte growth factor monoclonal antibody, inhibits ovarian
cancer cell motility and proliferation. Anticancer Res. 41:671–678.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Martinez-Montemayor MM, Acevedo RR,
Otero-Franqui E, Cubano LA and Dharmawardhane SF: Ganoderma
lucidum (Reishi) inhibits cancer cell growth and expression of
key molecules in inflammatory breast cancer. Nutr Cancer.
63:1085–1094. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang PH, Yang SF, Chen GD, Han CP, Chen
SC, Lin LY and Ko JL: Human nonmetastatic clone 23 type 1 gene
suppresses migration of cervical cancer cells and enhances the
migration inhibition of fungal immunomodulatory protein from
Ganoderma tsugae. Reprod Sci. 14:475–485. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Liao CH, Hsiao YM, Hsu CP, Lin MY, Wang
JC, Huang YL and Ko JL: Transcriptionally mediated inhibition of
telomerase of fungal immunomodulatory protein from Ganoderma
tsugae in A549 human lung adenocarcinoma cell line. Mol
Carcinog. 45:220–229. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Wu JR, Hu CT, You RI, Ma PL, Pan SM, Lee
MC and Wu WS: Preclinical trials for prevention of tumor
progression of hepatocellular carcinoma by LZ-8 targeting c-Met
dependent and independent pathways. PLoS One. 10:e1144952015.
|
|
134
|
Gao F, Deng G, Liu W, Zhou K and Li M:
Resveratrol suppresses human hepatocellular carcinoma via targeting
HGF-c-Met signaling pathway. Oncol Rep. 37:1203–1211. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Chen T, Yuan SJ, Wang J and Hu W:
Mechanism of QHF-cisplatin against hepatocellular carcinoma in a
mouse model. World J Gastroenterol. 21:10126–10136. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhang S, Tang D, Zang W, Yin G, Dai J, Sun
YU, Yang Z, Hoffman RM and Guo X: Synergistic inhibitory effect of
traditional Chinese medicine astragaloside IV and curcumin on tumor
growth and angiogenesis in an orthotopic nude-mouse model of human
hepatocellular carcinoma. Anticancer Res. 37:465–473. 2017.
View Article : Google Scholar : PubMed/NCBI
|