|
1
|
Romano G, Veneziano D, Acunzo M and Croce
CM: Small non-coding RNA and cancer. Carcinogenesis. 38:485–491.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Huang Y, Zhang JL, Yu XL, Xu TS, Wang ZB
and Cheng XC: Molecular functions of small regulatory noncoding
RNA. Biochemistry (Mosc). 78:221–230. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ohtani M: Transcriptional regulation of
snRNAs and its significance for plant development. J Plant Res.
130:57–66. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Scott MS and Ono M: From snoRNA to miRNA:
Dual function regulatory non-coding RNAs. Biochimie. 93:1987–1992.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Carthew RW and Sontheimer EJ: Origins and
mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu X, Luo G, Bai X and Wang XJ:
Bioinformatic analysis of microRNA biogenesis and function related
proteins in eleven animal genomes. J Genet Genomics. 36:591–601.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chalbatani GM, Dana H, Memari F,
Gharagozlou E, Ashjaei S, Kheirandish P, Marmari V, Mahmoudzadeh H,
Mozayani F, Maleki AR, et al: Biological function and molecular
mechanism of piRNA in cancer. Pract Lab Med. 13:e001132019.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cabral GF, Pinheiro JA, Vidal AF, Santos S
and Ribeiro-Dos-Santos A: piRNAs in gastric cancer: A new approach
towards translational research. Int J Mol Sci. 21:21262020.
View Article : Google Scholar
|
|
9
|
Vagin VV, Sigova A, Li C, Seitz H, Gvozdev
V and Zamore PD: A distinct small RNA pathway silences selfish
genetic elements in the germline. Science. 313:320–324. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Aravin A, Gaidatzis D, Pfeffer S,
Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ,
Kuramochi-Miyagawa S, Nakano T, et al: A novel class of small RNAs
bind to MILI protein in mouse testes. Nature. 442:203–207. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Han BW and Zamore PD: piRNAs. Curr Biol.
24:R730–R733. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rosenkranz D: piRNA cluster database: A
web resource for piRNA producing loci. Nucleic Acids Res.
44:D223–D230. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gunawardane LS, Saito K, Nishida KM,
Miyoshi K, Kawamura Y, Nagami T, Siomi H and Siomi MC: A
slicer-mediated mechanism for repeat-associated siRNA 5′ end
formation in Drosophila. Science. 315:1587–1590. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Klattenhoff C and Theurkauf W: Biogenesis
and germline functions of piRNAs. Development. 135:3–9. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ernst C, Odom DT and Kutter C: The
emergence of piRNAs against transposon invasion to preserve
mammalian genome integrity. Nat Commun. 8:14112017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Han YN, Li Y, Xia SQ, Zhang YY, Zheng JH
and Li W: PIWI proteins and PIWI-interacting RNA: Emerging roles in
cancer. Cell Physiol Biochem. 44:1–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Morrish TA, Gilbert N, Myers JS, Vincent
BJ, Stamato TD, Taccioli GE, Batzer MA and Moran JV: DNA repair
mediated by endonuclease-independent LINE-1 retrotransposition. Nat
Genet. 31:159–165. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lu Y, Li C, Zhang K, Sun H, Tao D, Liu Y,
Zhang S and Ma Y: Identification of piRNAs in hela cells by massive
parallel sequencing. BMB Rep. 43:635–641. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Brennecke J, Aravin AA, Stark A, Dus M,
Kellis M, Sachidanandam R and Hannon GJ: Discrete small
RNA-generating loci as master regulators of transposon activity in
Drosophila. Cell. 128:1089–1103. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Klenov MS, Lavrov SA, Stolyarenko AD,
Ryazansky SS, Aravin AA, Tuschl T and Gvozdev VA: Repeat-associated
siRNAs cause chromatin silencing of retrotransposons in the
drosophila melanogaster germline. Nucleic Acids Res. 35:5430–5438.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang SH and Elgin SC: Drosophila PIWI
functions downstream of piRNA production mediating a
chromatin-based transposon silencing mechanism in female germ line.
Proc Natl Acad Sci USA. 108:21164–21169. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gou LT, Dai P, Yang JH, Xue Y, Hu YP, Zhou
Y, Kang JY, Wang X, Li H, Hua MM, et al: Pachytene piRNAs instruct
massive mRNA elimination during late spermiogenesis. Cell Res.
25:2662015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Watanabe T, Cheng Ec, Zhong M and Lin H:
Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the
piRNA pathway in the germline. Genome Res. 25:368–380. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kuramochi-Miyagawa S, Kimura T, Ijiri TW,
Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, et
al: Mili, a mammalian member of piwi family gene, is essential for
spermatogenesis. Development. 131:839–849. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhao S, Gou LT, Zhang M, Zu LD, Hua MM,
Hua Y, Shi HJ, Li Y, Li J, Li D, et al: piRNA-triggered MIWI
ubiquitination and removal by APC/C in late spermatogenesis. Dev
Cell. 24:13–25. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rouget C, Papin C, Boureux A, Meunier AC,
Franco B, Robine N, Lai EC, Pelisson A and Simonelig M: Maternal
mRNA deadenylation and decay by the piRNA pathway in the early
Drosophila embryo. Nature. 467:1128–1132. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sharma AK, Nelson MC, Brandt JE, Wessman
M, Mahmud N, Weller KP and Hoffman R: Human CD34(+) stem cells
express the hiwi gene, a human homologue of the drosophila gene
piwi. Blood. 97:426–434. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Reddien PW, Oviedo NJ, Jennings JR, Jenkin
JC and Alvarado AS: SMEDWI-2 is a PIWI-like protein that regulates
planarian stem cells. Science. 310:1327–1330. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu Y: MicroRNAs and PIWI-interacting RNAs
in oncology. Oncol Lett. 12:2289–2292. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Law PT, Qin H, Ching AK, Lai KP, Co NN, He
M, Lung RW, Chan AW, Chan TF and Wong N: Deep sequencing of small
RNA transcriptome reveals novel non-coding RNAs in hepatocellular
carcinoma. J Hepatol. 58:1165–1173. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lee JH, Schütte D, Wulf G, Füzesi L,
Radzun HJ, Schweyer S, Engel W and Nayernia K: Stem-cell protein
Piwil2 is widely expressed in tumors and inhibits apoptosis through
activation of Stat3/Bcl-XL pathway. Hum Mol Genet. 15:201–211.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Cheng J, Deng H, Xiao B, Zhou H, Zhou F,
Shen Z and Guo J: piR-823, a novel non-coding small RNA,
demonstrates in vitro and in vivo tumor suppressive activity in
human gastric cancer cells. Cancer Lett. 315:12–17. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Miao PZ, Yang Y, Chen EB, Zhu GQ, Wang B
and Dai Z: Differential expressions analysis of piwi-interacting
RNAs in hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi.
26:842–846. 2018.PubMed/NCBI
|
|
35
|
Tang X, Xie X, Wang X, Wang Y, Jiang X and
Jiang H: The combination of piR-823 and eukaryotic initiation
factor 3 B (EIF3B) activates hepatic stellate cells via
upregulating TGF-β1 in liver fibrogenesis. Med Sci Monit.
24:9151–9165. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z,
Zhou H and Li QN: piRNA, the new non-coding RNA, is aberrantly
expressed in human cancer cells. Clin Chim Acta. 412:1621–1625.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zeng G, Zhang D, Liu X, Kang Q, Fu Y, Tang
B, Guo W, Zhang Y, Wei G and He D: Co-expression of Piwil2/Piwil4
in nucleus indicates poor prognosis of hepatocellular carcinoma.
Oncotarget. 8:4607–4617. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Rizzo F, Rinaldi A, Marchese G, Coviello
E, Sellitto A, Cordella A, Giurato G, Nassa G, Ravo M, Tarallo R,
et al: Specific patterns of PIWI-interacting small noncoding RNA
expression in dysplastic liver nodules and hepatocellular
carcinoma. Oncotarget. 7:54650–54661. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Martinez VD, Enfield KSS, Rowbotham DA and
Lam WL: An atlas of gastric PIWI-interacting RNA transcriptomes and
their utility for identifying signatures of gastric cancer
recurrence. Gastric Cancer. 19:660–665. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lin X, Xia Y, Hu D, Mao Q, Yu Z, Zhang H,
Li C, Chen G, Liu F, Zhu W, et al: Transcriptomewide piRNA
profiling in human gastric cancer. Oncol Rep. 41:3089–3099.
2019.PubMed/NCBI
|
|
42
|
Wang DW, Wang ZH, Wang LL, Song Y and
Zhang GZ: Overexpression of hiwi promotes growth of human breast
cancer cells. Asian Pac J Cancer Prev. 15:7553–7558. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cui L, Lou Y, Zhang X, Zhou H, Deng H,
Song H, Yu X, Xiao B, Wang W and Guo J: Detection of circulating
tumor cells in peripheral blood from patients with gastric cancer
using piRNAs as markers. Clin Biochem. 44:1050–1057. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ge L, Zhang N, Li D, Wu Y, Wang H and Wang
J: Circulating exosomal small RNAs are promising non-invasive
diagnostic biomarkers for gastric cancer. J Cell Mol Med.
24:14502–14513. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jing Z, Xi Y, Yin J and Shuwen H:
Biological roles of piRNAs in colorectal cancer. Gene.
769:1450632021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sarraf JS, Puty TC, da Silva EM, Allen
TSR, Sarraf YS, de Carvalho LEW, Adami F and de Oliveira EHC:
Noncoding RNAs and colorectal cancer: A general overview. Microrna.
9:336–345. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yin J, Jiang XY, Qi W, Ji CG, Xie XL,
Zhang DX, Cui ZJ, Wang CK, Bai Y, Wang J and Jiang HQ: piR-823
contributes to colorectal tumorigenesis by enhancing the
transcriptional activity of HSF1. Cancer Sci. 108:1746–1756. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Weng W, Liu N, Toiyama Y, Kusunoki M,
Nagasaka T, Fujiwara T, Wei Q, Qin H, Lin H, Ma Y and Goel A: Novel
evidence for a PIWI-interacting RNA (piRNA) as an oncogenic
mediator of disease progression, and a potential prognostic
biomarker in colorectal cancer. Mol Cancer. 17:162018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chu H, Xia L, Qiu X, Gu D, Zhu L, Jin J,
Hui G, Hua Q, Du M, Tong N, et al: Genetic variants in noncoding
PIWI-interacting RNA and colorectal cancer risk. Cancer.
121:2044–2052. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Qu A, Wang W, Yang Y, Zhang X, Dong Y,
Zheng G, Wu Q, Zou M, Du L, Wang Y and Wang C: A serum piRNA
signature as promising non-invasive diagnostic and prognostic
biomarkers for colorectal cancer. Cancer Manag Res. 11:3703–3720.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mai D, Ding P, Tan L, Zhang J, Pan Z, Bai
R, Li C, Li M, Zhou Y, Tan W, et al: PIWI-interacting RNA-54265 is
oncogenic and a potential therapeutic target in colorectal
adenocarcinoma. Theranostics. 8:5213–5230. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mai D, Zheng Y, Guo H, Ding P, Bai R, Li
M, Ye Y, Zhang J, Huang X, Liu D, et al: Serum piRNA-54265 is a new
biomarker for early detection and clinical surveillance of human
colorectal cancer. Theranostics. 10:8468–8478. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yin J, Qi W, Ji CG, Zhang DX, Xie XL, Ding
Q, Jiang XY, Han J and Jiang HQ: Small RNA sequencing revealed
aberrant piRNA expression profiles in colorectal cancer. Oncol Rep.
42:263–272. 2019.PubMed/NCBI
|
|
54
|
Vychytilova-Faltejskova P, Stitkovcova K,
Radova L, Sachlova M, Kosarova Z, Slaba K, Kala Z, Svoboda M, Kiss
I, Vyzula R, et al: Circulating PIWI-interacting RNAs piR-5937 and
piR-28876 are promising diagnostic biomarkers of colon cancer.
Cancer Epidemiol Biomarkers Prev. 27:1019–1028. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang Z, Yang H, Ma D, Mu Y, Tan X, Hao Q,
Feng L, Liang J, Xin W, Chen Y, et al: Serum PIWI-interacting RNAs
piR-020619 and piR-020450 are promising novel biomarkers for early
detection of colorectal cancer. Cancer Epidemiol Biomarkers Prev.
29:990–998. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Litwin M, Dubis J, Arczyńska K, Piotrowska
A, Frydlewicz A, Karczewski M, Dzięgiel P and Witkiewicz W:
Correlation of HIWI and HILI expression with cancer stem cell
markers in colorectal cancer. Anticancer Res. 35:3317–3324.
2015.PubMed/NCBI
|
|
57
|
Wu J, Sun H, Li J, Guo Y, Zhang K, Lang C,
Zou C and Ma H: Increased survival of patients aged 0–29 years with
osteosarcoma: A period analysis, 1984–2013. Cancer Med.
7:3652–3661. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Vijayamurugan N and Bakhshi S: Review of
management issues in relapsed osteosarcoma. Expert Rev Anticancer
Ther. 14:151–161. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Das B, Jain N and Mallick B: piR-39980
promotes cell proliferation, migration and invasion, and inhibits
apoptosis via repression of SERPINB1 in human osteosarcoma. Biol
Cell. 112:73–91. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Nogueira Jorge NA, Wajnberg G, Ferreira
CG, de Sa Carvalho B and Passetti F: snoRNA and piRNA expression
levels modified by tobacco use in women with lung adenocarcinoma.
PLoS One. 12:e01834102017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Peng L, Song L, Liu C, Lv X, Li X, Jie J,
Zhao D and Li D: piR-55490 inhibits the growth of lung carcinoma by
suppressing mTOR signaling. Tumour Biol. 37:2749–2756. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Dammann R, Li C, Yoon JH, Chin PL, Bates S
and Pfeifer GP: Epigenetic inactivation of a RAS association domain
family protein from the lung tumour suppressor locus 3p21.3. Nat
Genet. 25:315–319. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
63
|
Reeves ME, Firek M, Chen ST and Amaar Y:
The RASSF1 gene and the opposing effects of the RASSF1A and RASSF1C
isoforms on cell proliferation and apoptosis. Mol Biol Int.
2013:1450962013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Reeves ME, Firek M, Jliedi A and Amaar YG:
Identification and characterization of RASSF1C piRNA target genes
in lung cancer cells. Oncotarget. 8:34268–34282. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Reeves ME, Baldwin ML, Aragon R, Baldwin
S, Chen ST, Li X, Mohan S and Amaar YG: RASSF1C modulates the
expression of a stem cell renewal gene, PIWIL1. BMC Res Notes.
5:2392012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Xie K, Zhang K, Kong J, Wang C, Gu Y,
Liang C, Jiang T, Qin N, Liu J, Guo X, et al: Cancer-testis gene
PIWIL1 promotes cell proliferation, migration, and invasion in lung
adenocarcinoma. Cancer Med. 7:157–166. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yao J, Wang YW, Fang BB, Zhang SJ and
Cheng BL: piR-651 and its function in 95-D lung cancer cells.
Biomed Rep. 4:546–550. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li D, Luo Y, Gao Y and Yang Y, Wang Y, Xu
Y, Tan S, Zhang Y, Duan J and Yang Y: piR-651 promotes tumor
formation in non-small cell lung carcinoma through the upregulation
of cyclin D1 and CDK4. Int J Mol Med. 38:927–936. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang SJ, Yao J, Shen BZ, Li GB, Kong SS,
Bi DD, Pan SH and Cheng BL: Role of piwi-interacting RNA-651 in the
carcinogenesis of non-small cell lung cancer. Oncol Lett.
15:940–946. 2018.PubMed/NCBI
|
|
70
|
Mei Y, Wang Y, Kumari P, Shetty AC, Clark
D, Gable T, MacKerell AD, Ma MZ, Weber DJ, Yang AJ, et al: A
piRNA-like small RNA interacts with and modulates p-ERM proteins in
human somatic cells. Nat Commun. 6:73162015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Guo B, Li D, Du L and Zhu X: piRNAs:
Biogenesis and their potential roles in cancer. Cancer Metastasis
Rev. 39:567–575. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Huang G, Hu H, Xue X, Shen S, Gao E, Guo
G, Shen X and Zhang X: Altered expression of piRNAs and their
relation with clinicopathologic features of breast cancer. Clin
Transl Oncol. 15:563–568. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hashim A, Rizzo F, Marchese G, Ravo M,
Tarallo R, Nassa G, Giurato G, Santamaria G, Cordella A, Cantarella
C and Weisz A: RNA sequencing identifies specific PIWI-interacting
small non-coding RNA expression patterns in breast cancer.
Oncotarget. 5:9901–9910. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Öner C, Öner DT and Çolak E: Estrogen and
androgen hormone levels modulate the expression of PIWI interacting
RNA in prostate and breast cancer. PLoS One. 11:e01590442016.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Fu A, Jacobs DI, Hoffman AE, Zheng T and
Zhu Y: PIWI-interacting RNA 021285 is involved in breast
tumorigenesis possibly by remodeling the cancer epigenome.
Carcinogenesis. 36:1094–1102. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Dana PM, Mansournia MA and Mirhashemi SM:
PIWI-interacting RNAs: New biomarkers for diagnosis and treatment
of breast cancer. Cell Biosci. 10:442020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Tan L, Mai D, Zhang B, Jiang X, Zhang J,
Bai R, Ye Y, Li M, Pan L, Su J, et al: PIWI-interacting RNA-36712
restrains breast cancer progression and chemoresistance by
interaction with SEPW1 pseudogene SEPW1P RNA. Mol Cancer. 18:92019.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Krishnan P, Ghosh S, Graham K, Mackey JR,
Kovalchuk O and Damaraju S: Piwi-interacting RNAs and PIWI genes as
novel prognostic markers for breast cancer. Oncotarget.
7:37944–37956. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Heng ZSL, Lee JY, Subhramanyam CS, Wang C,
Thanga LZ and Hu Q: The role of 17β-estradiol-induced upregulation
of piwi-like 4 in modulating gene expression and motility in breast
cancer cells. Oncol Rep. 40:2525–2535. 2018.PubMed/NCBI
|
|
80
|
Lee JH, Jung C, Javadian-Elyaderani P,
Schweyer S, Schütte D, Shoukier M, Karimi-Busheri F, Weinfeld M,
Rasouli-Nia A, Hengstler JG, et al: Pathways of proliferation and
antiapoptosis driven in breast cancer stem cells by stem cell
protein piwil2. Cancer Res. 70:4569–4579. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang H, Ren Y, Xu H, Pang D, Duan C and
Liu C: The expression of stem cell protein Piwil2 and piR-932 in
breast cancer. Surg Oncol. 22:217–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zuo Y, Liang Y, Zhang J, Hao Y, Li M, Wen
Z and Zhao Y: Transcriptome analysis identifies piwi-interacting
RNAs as prognostic markers for recurrence of prostate cancer. Front
Genet. 10:10182019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang L, Meng X, Li D and Han X:
piR-001773 and piR-017184 promote prostate cancer progression by
interacting with PCDH9. Cell Signal. 76:1097802020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chu H, Hui G, Yuan L, Shi D, Wang Y, Du M,
Zhong D, Ma L, Tong N, Qin C, et al: Identification of novel piRNAs
in bladder cancer. Cancer Lett. 356:561–567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ravo M, Cordella A, Rinaldi A, Bruno G,
Alexandrova E, Saggese P, Nassa G, Giurato G, Tarallo R, Marchese
G, et al: Small non-coding RNA deregulation in endometrial
carcinogenesis. Oncotarget. 6:4677–4691. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li F, Yuan P, Rao M, Jin CH, Tang W, Rong
YF, Hu YP, Zhang F, Wei T, Yin Q, et al: piRNA-independent function
of PIWIL1 as a co-activator for anaphase promoting
complex/cyclosome to drive pancreatic cancer metastasis. Nat Cell
Biol. 22:425–438. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lim SL, Ricciardelli C, Oehler MK, Tan IM,
Russell D and Grützner F: Overexpression of piRNA pathway genes in
epithelial ovarian cancer. PLoS One. 9:e996872014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Capitanio U, Bensalah K, Bex A, Boorjian
SA, Bray F, Coleman J, Gore JL, Sun M, Wood C and Russo P:
Epidemiology of renal cell carcinoma. Eur Urol. 75:74–84. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Owens B: Kidney cancer. Nature.
537:S972016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Busch J, Ralla B, Jung M, Wotschofsky Z,
Trujillo-Arribas E, Schwabe P, Kilic E, Fendler A and Jung K:
Piwi-interacting RNAs as novel prognostic markers in clear cell
renal cell carcinomas. J Exp Clin Cancer Res. 34:612015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhao C, Tolkach Y, Schmidt D, Toma M,
Muders MH, Kristiansen G, Müller SC and Ellinger J: Mitochondrial
PIWI-interacting RNAs are novel biomarkers for clear cell renal
cell carcinoma. World J Urol. 37:1639–1647. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li Y, Wu X, Gao H, Jin JM, Li AX, Kim YS,
Pal SK, Nelson RA, Lau CM, Guo C, et al: Piwi-interacting RNAs
(piRNAs) are dysregulated in renal cell carcinoma and associated
with tumor metastasis and cancer-specific survival. Mol Med.
21:381–388. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Iliev R, Fedorko M, Machackova T,
Mlcochova H, Svoboda M, Pacik D, Dolezel J, Stanik M and Slaby O:
Expression levels of PIWI-interacting RNA, piR-823, are deregulated
in tumor tissue, blood serum and urine of patients with renal cell
carcinoma. Anticancer Res. 36:6419–6423. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Iliev R, Stanik M, Fedorko M, Poprach A,
Vychytilova-Faltejskova P, Slaba K, Svoboda M, Fabian P, Pacik D,
Dolezel J and Slaby O: Decreased expression levels of PIWIL1,
PIWIL2, and PIWIL4 are associated with worse survival in renal cell
carcinoma patients. Onco Targets Ther. 9:217–222. 2016.PubMed/NCBI
|
|
96
|
Stöhr CG, Steffens S, Polifka I, Jung R,
Kahlmeyer A, Ivanyi P, Weber F, Hartmann A, Wullich B, Wach S and
Taubert H: Piwi-like 1 protein expression is a prognostic factor
for renal cell carcinoma patients. Sci Rep. 9:17412019. View Article : Google Scholar : PubMed/NCBI
|