
Natural killer cell‑based immunotherapy for lung cancer: Challenges and perspectives (Review)
- Authors:
- Yongqin Zeng
- Xiuzhi Lv
- Juan Du
-
Affiliations: Department of Nephrology, The Affiliated Hospital Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China, Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China, Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China - Published online on: September 8, 2021 https://doi.org/10.3892/or.2021.8183
- Article Number: 232
-
Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Yuan M, Huang LL, Chen JH, Wu J and Xu Q: The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct Target Ther. 4:612019. View Article : Google Scholar : PubMed/NCBI | |
Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, Nicholson AG, Groome P, Mitchell A, Bolejack V, et al: The IASLC lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 11:39–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, Mok TS, Reck M, Van Schil PE, Hellmann MD, et al: Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 29 (Suppl 4):iv192–iv237. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Fillmore CM, Hammerman PS, Kim CF and Wong KK: Non-small-cell lung cancers: A heterogeneous set of diseases. Nat Rev Cancer. 14:535–546. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mayekar MK and Bivona TG: Current landscape of targeted therapy in lung cancer. Clin Pharmacol Ther. 102:757–764. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Yu Z, Lu Y, Fan J, Ni Y and Ma L: MicroRNA-148a-3p inhibited the proliferation and epithelial-mesenchymal transition progression of non-small-cell lung cancer via modulating Ras/MAPK/Erk signaling. J Cell Physiol. 234:12786–12799. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fan Q, Hu X, Zhang H, Wang S, Zhang H, You C, Zhang CY, Liang H, Chen X and Ba Y: miR-193a-3p is an important tumour suppressor in lung cancer and directly targets KRAS. Cell Physiol Biochem. 44:1311–1324. 2017. View Article : Google Scholar : PubMed/NCBI | |
Steven A, Fisher SA and Robinson BW: Immunotherapy for lung cancer. Respirology. 21:821–833. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shimasaki N, Jain A and Campana D: NK cells for cancer immunotherapy. Nat Rev Drug Discov. 19:200–218. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM and Ugolini S: Innate or adaptive immunity? The example of natural killer cells. Science. 331:44–49. 2011. View Article : Google Scholar : PubMed/NCBI | |
Herberman RB, Nunn ME, Holden HT and Lavrin DH: Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 16:230–239. 1975. View Article : Google Scholar : PubMed/NCBI | |
Kiessling R, Klein E, Pross H and Wigzell H: ‘Natural’ killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 5:117–121. 1975. View Article : Google Scholar : PubMed/NCBI | |
Cooper MA, Fehniger TA and Caligiuri MA: The biology of human natural killer-cell subsets. Trends Immunol. 22:633–640. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J, et al: Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife. 3:e016592014. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Peng H, Zhou J, Chen Y, Wei H, Sun R, Yokoyama WM and Tian Z: Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s. J Autoimmun. 67:29–35. 2016. View Article : Google Scholar : PubMed/NCBI | |
Björkström NK, Ljunggren HG and Michaëlsson J: Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol. 16:310–320. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lugthart G, Melsen JE, Vervat C, van Ostaijen-Ten Dam MM, Corver WE, Roelen DL, van Bergen J, van Tol MJ, Lankester AC and Schilham MW: Human lymphoid tissues harbor a distinct CD69+CXCR6+ NK cell population. J Immunol. 197:78–84. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marquardt N, Kekäläinen E, Chen P, Lourda M, Wilson JN, Scharenberg M, Bergman P, Al-Ameri M, Hård J, Mold JE, et al: Unique transcriptional and protein-expression signature in human lung tissue-resident NK cells. Nat Commun. 10:38412019. View Article : Google Scholar : PubMed/NCBI | |
Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE and Caligiuri MA: Human natural killer cells: A unique innate immunoregulatory role for the CD56(bright) subset. Blood. 97:3146–3151. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fehniger TA and Caligiuri MA: Interleukin 15: Biology and relevance to human disease. Blood. 97:14–32. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong JW, Sullivan RP, Jewell BA, Becker-Hapak M, Schappe T, et al: CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 127:4042–4058. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fauriat C, Long EO, Ljunggren HG and Bryceson YT: Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 115:2167–2176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA and Ritz J: Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med. 171:1509–1526. 1990. View Article : Google Scholar : PubMed/NCBI | |
Nagler A, Lanier LL and Phillips JH: Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo. J Exp Med. 171:1527–1533. 1990. View Article : Google Scholar : PubMed/NCBI | |
Leibson PJ: Signal transduction during natural killer cell activation: Inside the mind of a killer. Immunity. 6:655–661. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lanier LL: On guard-activating NK cell receptors. Nat Immunol. 2:23–27. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yoon SR, Kim TD and Choi I: Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med. 47:e1412015. View Article : Google Scholar : PubMed/NCBI | |
Moretta L, Bottino C, Pende D, Mingari MC, Biassoni R and Moretta A: Human natural killer cells: Their origin, receptors and function. Eur J Immunol. 32:1205–1211. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ljunggren HG and Kärre K: In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today. 11:237–244. 1990. View Article : Google Scholar : PubMed/NCBI | |
Osińska I, Popko K and Demkow U: Perforin: An important player in immune response. Cent Eur J Immunol. 39:109–115. 2014. View Article : Google Scholar : PubMed/NCBI | |
Smyth MJ and Johnstone RW: Role of TNF in lymphocyte-mediated cytotoxicity. Microsc Res Tech. 50:196–208. 2000. View Article : Google Scholar : PubMed/NCBI | |
Screpanti V, Wallin RP, Ljunggren HG and Grandien A: A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol. 167:2068–2073. 2001. View Article : Google Scholar : PubMed/NCBI | |
Crinier A, Narni-Mancinelli E, Ugolini S and Vivier E: SnapShot: Natural killer cells. Cell. 180:1280–1280.e1. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Schlereth SL, Park EY, Emami-Naeini P, Chauhan SK and Dana R: A novel pro-angiogenic function for interferon-γ-secreting natural killer cells. Invest Ophthalmol Vis Sci. 55:2885–2892. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A and Sallusto F: Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol. 5:1260–1265. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ and Schreiber RD: IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 410:1107–1111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wen B, Anton OM, Yao Z, Dubois S, Ju W, Sato N, DiLillo DJ, Bamford RN, Ravetch JV and Waldmann TA: IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci USA. 115:E10915–E10924. 2018. View Article : Google Scholar : PubMed/NCBI | |
Malmberg KJ, Carlsten M, Björklund A, Sohlberg E, Bryceson YT and Ljunggren HG: Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol. 31:20–29. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Yang B, Lao S, Fan Y and Wu C: Human memory-like NK cells migrating to tuberculous pleural fluid via IP-10/CXCR3 and SDF-1/CXCR4 axis produce IFN-γ in response to Bacille Calmette Guerin. Clin Immunol. 148:113–123. 2013. View Article : Google Scholar : PubMed/NCBI | |
Culley FJ: Natural killer cells in infection and inflammation of the lung. Immunology. 128:151–163. 2009. View Article : Google Scholar : PubMed/NCBI | |
Grégoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E and Walzer T: The trafficking of natural killer cells. Immunol Rev. 220:169–182. 2007. View Article : Google Scholar : PubMed/NCBI | |
Trinchieri G: Biology of natural killer cells. Adv Immunol. 47:187–376. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hervier B, Russick J, Cremer I and Vieillard V: NK cells in the human lungs. Front Immunol. 10:12632019. View Article : Google Scholar : PubMed/NCBI | |
Ge N, Nishioka Y, Nakamura Y, Okano Y, Yoneda K, Ogawa H, Sugita A, Yanagawa H and Sone S: Synthesis and secretion of interleukin-15 by freshly isolated human bronchial epithelial cells. Int Arch Allergy Immunol. 135:235–242. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shi FD, Ljunggren HG, La Cava A and Van Kaer L: Organ-specific features of natural killer cells. Nat Rev Immunol. 11:658–671. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ma A, Koka R and Burkett P: Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol. 24:657–679. 2006. View Article : Google Scholar : PubMed/NCBI | |
Floros T and Tarhini AA: Anticancer cytokines: Biology and clinical effects of interferon-α2, interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin Oncol. 42:539–548. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tomasello E, Yessaad N, Gregoire E, Hudspeth K, Luci C, Mavilio D, Hardwigsen J and Vivier E: Mapping of NKp46(+) cells in healthy human lymphoid and non-lymphoid tissues. Front Immunol. 3:3442012. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li F, Zheng M, Sun R, Wei H and Tian Z: Lung natural killer cells in mice: Phenotype and response to respiratory infection. Immunology. 137:37–47. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marquardt N, Kekäläinen E, Chen P, Kvedaraite E, Wilson JN, Ivarsson MA, Mjösberg J, Berglin L, Säfholm J, Manson ML, et al: Human lung natural killer cells are predominantly comprised of highly differentiated hypofunctional CD69-CD56dim cells. J Allergy Clin Immunol. 139:1321–1330.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Robinson BW, Pinkston P and Crystal RG: Natural killer cells are present in the normal human lung but are functionally impotent. J Clin Invest. 74:942–950. 1984. View Article : Google Scholar : PubMed/NCBI | |
Weissman DN, deShazo RD and Banks DE: Modulation of natural killer cell function by human alveolar macrophages. J Allergy Clin Immunol. 78((4 Pt 1)): 571–577. 1986. View Article : Google Scholar : PubMed/NCBI | |
Cooper GE, Ostridge K, Khakoo SI, Wilkinson TMA and Staples KJ: Human CD49a(+) lung natural killer cell cytotoxicity in response to influenza a virus. Front Immunol. 9:16712018. View Article : Google Scholar : PubMed/NCBI | |
Roder JC, Haliotis T, Klein M, Korec S, Jett JR, Ortaldo J, Heberman RB, Katz P and Fauci AS: A new immunodeficiency disorder in humans involving NK cells. Nature. 284:553–555. 1980. View Article : Google Scholar : PubMed/NCBI | |
Sullivan JL, Byron KS, Brewster FE and Purtilo DT: Deficient natural killer cell activity in x-linked lymphoproliferative syndrome. Science. 210:543–545. 1980. View Article : Google Scholar : PubMed/NCBI | |
Pross HF and Lotzová E: Role of natural killer cells in cancer. Nat Immun. 12:279–292. 1993.PubMed/NCBI | |
Imai K, Matsuyama S, Miyake S, Suga K and Nakachi K: Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet. 356:1795–1799. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schantz SP and Ordonez NG: Quantitation of natural killer cell function and risk of metastatic poorly differentiated head and neck cancer. Nat Immun Cell Growth Regul. 10:278–288. 1991.PubMed/NCBI | |
Schantz SP, Savage HE, Racz T, Taylor DL and Sacks PG: Natural killer cells and metastases from pharyngeal carcinoma. Am J Surg. 158:361–366. 1989. View Article : Google Scholar : PubMed/NCBI | |
Tartter PI, Steinberg B, Barron DM and Martinelli G: The prognostic significance of natural killer cytotoxicity in patients with colorectal cancer. Arch Surg. 122:1264–1268. 1987. View Article : Google Scholar : PubMed/NCBI | |
Cong J, Wang X, Zheng X, Wang D, Fu B, Sun R, Tian Z and Wei H: Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab. 28:243–255.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Takeda K, Nakayama M, Sakaki M, Hayakawa Y, Imawari M, Ogasawara K, Okumura K and Smyth MJ: IFN-γ production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. J Leukoc Biol. 90:777–785. 2011. View Article : Google Scholar : PubMed/NCBI | |
Villegas FR, Coca S, Villarrubia VG, Jiménez R, Chillón MJ, Jareño J, Zuil M and Callol L: Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer. 35:23–28. 2002. View Article : Google Scholar : PubMed/NCBI | |
Takanami I, Takeuchi K and Giga M: The prognostic value of natural killer cell infiltration in resected pulmonary adenocarcinoma. J Thorac Cardiovasc Surg. 121:1058–1063. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jin S, Deng Y, Hao JW, Li Y, Liu B, Yu Y, Shi FD and Zhou QH: NK cell phenotypic modulation in lung cancer environment. PLoS One. 9:e1099762014. View Article : Google Scholar : PubMed/NCBI | |
Muntasell A, Rojo F, Servitja S, Rubio-Perez C, Cabo M, Tamborero D, Costa-García M, Martínez-Garcia M, Menéndez S, Vazquez I, et al: NK cell infiltrates and HLA class I expression in primary HER2+ breast cancer predict and uncouple pathological response and disease-free survival. Clin Cancer Res. 25:1535–1545. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eckl J, Buchner A, Prinz PU, Riesenberg R, Siegert SI, Kammerer R, Nelson PJ and Noessner E: Transcript signature predicts tissue NK cell content and defines renal cell carcinoma subgroups independent of TNM staging. J Mol Med (Berl). 90:55–66. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, Ratto GB, Mingari MC, Moretta L and Ferlazzo G: Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(−) cells and display an impaired capability to kill tumor cells. Cancer. 112:863–875. 2008. View Article : Google Scholar : PubMed/NCBI | |
Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P, André P, Dieu-Nosjean MC, Alifano M, Régnard JF, et al: Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 71:5412–5422. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schleypen JS, Baur N, Kammerer R, Nelson PJ, Rohrmann K, Gröne EF, Hohenfellner M, Haferkamp A, Pohla H, Schendel DJ, et al: Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res. 12((3 Pt 1)): 718–725. 2006. View Article : Google Scholar : PubMed/NCBI | |
Melero I, Rouzaut A, Motz GT and Coukos G: T-cell and NK-cell infiltration into solid tumors: A key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 4:522–526. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cantoni C, Huergo-Zapico L, Parodi M, Pedrazzi M, Mingari MC, Moretta A, Sparatore B, Gonzalez S, Olive D, Bottino C, et al: NK cells, tumor cell transition, and tumor progression in solid malignancies: New Hints for NK-based immunotherapy? J Immunol Res. 2016:46842682016. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Gugel E, Saxena M and Bhardwaj N: Modulation of innate immunity in the tumor microenvironment. Cancer Immunol Immunother. 65:1261–1268. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, et al: Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell. 169:750–765.e17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Buckley CD and Simmons DL: Sticky moments with sticky molecules. Immunol Today. 21:601–603. 2000. View Article : Google Scholar : PubMed/NCBI | |
Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR, Wu L and Butcher EC: Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol. 166:6477–6482. 2001. View Article : Google Scholar : PubMed/NCBI | |
Böhm W, Thoma S, Leithäuser F, Möller P, Schirmbeck R and Reimann J: T cell-mediated, IFN-gamma-facilitated rejection of murine B16 melanomas. J Immunol. 161:897–908. 1998.PubMed/NCBI | |
Spear P, Barber A, Rynda-Apple A and Sentman CL: Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-γ and GM-CSF. J Immunol. 188:6389–6398. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cremer I, Fridman WH and Sautès-Fridman C: Tumor microenvironment in NSCLC suppresses NK cells function. Oncoimmunology. 1:244–246. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guillerey C and Smyth MJ: NK cells and cancer immunoediting. Curr Top Microbiol Immunol. 395:115–145. 2016.PubMed/NCBI | |
Belli C, Trapani D, Viale G, D'Amico P, Duso BA, Della Vigna P, Orsi F and Curigliano G: Targeting the microenvironment in solid tumors. Cancer Treat Rev. 65:22–32. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vitale M, Cantoni C, Pietra G, Mingari MC and Moretta L: Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 44:1582–1592. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D and Costello RT: Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood. 109:323–330. 2007. View Article : Google Scholar : PubMed/NCBI | |
Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K, Ljunggren HG, Kiessling R and Malmberg KJ: Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J Immunol. 183:4921–4930. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, et al: Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 19:723–732. 2018. View Article : Google Scholar : PubMed/NCBI | |
Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L and Moretta A: Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA. 100:4120–4125. 2003. View Article : Google Scholar : PubMed/NCBI | |
Marcenaro E, Della Chiesa M, Bellora F, Parolini S, Millo R, Moretta L and Moretta A: IL-12 or IL-4 prime human NK cells to mediate functionally divergent interactions with dendritic cells or tumors. J Immunol. 174:3992–3998. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pietra G, Manzini C, Rivara S, Vitale M, Cantoni C, Petretto A, Balsamo M, Conte R, Benelli R, Minghelli S, et al: Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res. 72:1407–1415. 2012. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGFbeta in cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bruno A, Focaccetti C, Pagani A, Imperatori AS, Spagnoletti M, Rotolo N, Cantelmo AR, Franzi F, Capella C, Ferlazzo G, et al: The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia. 15:133–142. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim TK, Mo EK, Yoo CG, Lee CT, Han SK, Shim YS and Kim YW: Alteration of cell growth and morphology by overexpression of transforming growth factor beta type II receptor in human lung adenocarcinoma cells. Lung Cancer. 31:181–191. 2001. View Article : Google Scholar : PubMed/NCBI | |
Li J, Shen C, Wang X, Lai Y, Zhou K, Li P, Liu L and Che G: Prognostic value of TGF-beta in lung cancer: Systematic review and meta-analysis. BMC Cancer. 19:6912019. View Article : Google Scholar : PubMed/NCBI | |
Laouar Y, Sutterwala FS, Gorelik L and Flavell RA: Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol. 6:600–607. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee JC, Lee KM, Kim DW and Heo DS: Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol. 172:7335–7340. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kopp HG, Placke T and Salih HR: Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 69:7775–7783. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Xu J, Huang Q, Huang M, Wen H, Zhang C, Wang J, Song J, Zheng M, Sun H, et al: High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology. 6:e12645622016. View Article : Google Scholar : PubMed/NCBI | |
Beldi-Ferchiou A, Lambert M, Dogniaux S, Vély F, Vivier E, Olive D, Dupuy S, Levasseur F, Zucman D, Lebbé C, et al: PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget. 7:72961–72977. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li F, Wei H, Wei H, Gao Y, Xu L, Yin W, Sun R and Tian Z: Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology. 144:392–401. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A and Mortara L: Natural killer cells as key players of tumor progression and angiogenesis: Old and novel tools to divert their pro-tumor activities into potent anti-tumor effects. Cancers (Basel). 11:4612019. View Article : Google Scholar : PubMed/NCBI | |
Kim JI, Lakshmikanthan V, Frilot N and Daaka Y: Prostaglandin E2 promotes lung cancer cell migration via EP4-betaArrestin1-c-Src signalsome. Mol Cancer Res. 8:569–577. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balsamo M, Vermi W, Parodi M, Pietra G, Manzini C, Queirolo P, Lonardi S, Augugliaro R, Moretta A, Facchetti F, et al: Melanoma cells become resistant to NK-cell-mediated killing when exposed to NK-cell numbers compatible with NK-cell infiltration in the tumor. Eur J Immunol. 42:1833–1842. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li T, Yang Y, Hua X, Wang G, Liu W, Jia C, Tai Y, Zhang Q and Chen G: Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett. 318:154–161. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li T, Yi S, Liu W, Jia C, Wang G, Hua X, Tai Y, Zhang Q and Chen G: Colorectal carcinoma-derived fibroblasts modulate natural killer cell phenotype and antitumor cytotoxicity. Med Oncol. 30:6632013. View Article : Google Scholar : PubMed/NCBI | |
Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P and Lang S: Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 89:311–317. 2011. View Article : Google Scholar : PubMed/NCBI | |
Granville CA, Memmott RM, Balogh A, Mariotti J, Kawabata S, Han W, Lopiccolo J, Foley J, Liewehr DJ, Steinberg SM, et al: A central role for Foxp3+ regulatory T cells in K-Ras-driven lung tumorigenesis. PLoS One. 4:e50612009. View Article : Google Scholar : PubMed/NCBI | |
Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI and Hayakawa Y: CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol. 176:1582–1587. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ghiringhelli F, Ménard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, et al: CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med. 202:1075–1085. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lardner A: The effects of extracellular pH on immune function. J Leukoc Biol. 69:522–530. 2001.PubMed/NCBI | |
Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, Varesio L, Moretta L, Bosco MC and Vitale M: Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol. 43:2756–2764. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sarkar S, Germeraad WT, Rouschop KM, Steeghs EM, van Gelder M, Bos GM and Wieten L: Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS One. 8:e648352013. View Article : Google Scholar : PubMed/NCBI | |
Li C, Lu HJ, Na FF, Deng L, Xue JX, Wang JW, Wang YQ, Li QL and Lu Y: Prognostic role of hypoxic inducible factor expression in non-small cell lung cancer: A meta-analysis. Asian Pac J Cancer Prev. 14:3607–3612. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang SL, Ren QG, Wen L and Hu JL: Clinicopathological and prognostic significance of hypoxia-inducible factor-1 alpha in lung cancer: A systematic review with meta-analysis. J Huazhong Univ Sci Technolog Med Sci. 36:321–327. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vaupel P and Multhoff G: Adenosine can thwart antitumor immune responses elicited by radiotherapy: Therapeutic strategies alleviating protumor ADO activities. Strahlenther Onkol. 192:279–287. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pötzl J, Roser D, Bankel L, Hömberg N, Geishauser A, Brenner CD, Weigand M, Röcken M and Mocikat R: Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN-γ and induces NK cell-dependent lymphoma control without other immunotherapies. Int J Cancer. 140:2125–2133. 2017. View Article : Google Scholar : PubMed/NCBI | |
Husain Z, Huang Y, Seth P and Sukhatme VP: Tumor-derived lactate modifies antitumor immune response: Effect on myeloid-derived suppressor cells and NK cells. J Immunol. 191:1486–1495. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sautès-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I and Dieu-Nosjean MC: Tumor microenvironment is multifaceted. Cancer Metastasis Rev. 30:13–25. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mailloux AW and Young MR: NK-dependent increases in CCL22 secretion selectively recruits regulatory T cells to the tumor microenvironment. J Immunol. 182:2753–2765. 2009. View Article : Google Scholar : PubMed/NCBI | |
Srivastava S, Pelloso D, Feng H, Voiles L, Lewis D, Haskova Z, Whitacre M, Trulli S, Chen YJ, Toso J, et al: Effects of interleukin-18 on natural killer cells: Costimulation of activation through Fc receptors for immunoglobulin. Cancer Immunol Immunother. 62:1073–1082. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mi D, Ren W and Yang K: Adoptive immunotherapy with interleukin-2 & induced killer cells in non-small cell lung cancer: A systematic review & meta-analysis. Indian J Med Res. 143:S1–S10. 2016. View Article : Google Scholar : PubMed/NCBI | |
Davis ZB, Felices M, Verneris MR and Miller JS: Natural killer cell adoptive transfer therapy: Exploiting the first line of defense against cancer. Cancer J. 21:486–491. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ito S, Bollard CM, Carlsten M, Melenhorst JJ, Biancotto A, Wang E, Chen J, Kotliarov Y, Cheung F, Xie Z, et al: Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 22:1388–1395. 2014. View Article : Google Scholar : PubMed/NCBI | |
Waldmann TA: The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nat Rev Immunol. 6:595–601. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miller JS, Morishima C, McNeel DG, Patel MR, Kohrt HEK, Thompson JA, Sondel PM, Wakelee HA, Disis ML, Kaiser JC, et al: A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin Cancer Res. 24:1525–1535. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wong HC, Jeng EK and Rhode PR: The IL-15-based superagonist ALT-803 promotes the antigen-independent conversion of memory CD8+ T cells into innate-like effector cells with antitumor activity. Oncoimmunology. 2:e264422013. View Article : Google Scholar : PubMed/NCBI | |
Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, Miller JS, Farhad M, Anderton K, Lindsey K, et al: ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: A non-randomised, open-label, phase 1b trial. Lancet Oncol. 19:694–704. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bowles JA, Wang SY, Link BK, Allan B, Beuerlein G, Campbell MA, Marquis D, Ondek B, Wooldridge JE, Smith BJ, et al: Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood. 108:2648–2654. 2006. View Article : Google Scholar : PubMed/NCBI | |
Decaup E, Rossi C, Gravelle P, Laurent C, Bordenave J, Tosolini M, Tourette A, Perrial E, Dumontet C, Poupot M, et al: A tridimensional model for NK cell-mediated ADCC of follicular lymphoma. Front Immunol. 10:19432019. View Article : Google Scholar : PubMed/NCBI | |
Mallmann-Gottschalk N, Sax Y, Kimmig R, Lang S and Brandau S: EGFR-specific tyrosine kinase inhibitor modifies NK cell-mediated antitumoral activity against ovarian cancer cells. Int J Mol Sci. 20:46932019. View Article : Google Scholar : PubMed/NCBI | |
André P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, Bléry M, Bonnafous C, Gauthier L, Morel A, et al: Anti-NKG2A mAb Is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 175:1731–1743.e13. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Luo H, Liang S, Chen J, Liu A, Niu L and Jiang Y: Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients. J Clin Invest. 130:2560–2569. 2020. View Article : Google Scholar : PubMed/NCBI | |
Youn JI, Park SM, Park S, Kim G, Lee HJ, Son J, Hong MH, Ghaderpour A, Baik B, Islam J, et al: Peripheral natural killer cells and myeloid-derived suppressor cells correlate with anti-PD-1 responses in non-small cell lung cancer. Sci Rep. 10:90502020. View Article : Google Scholar : PubMed/NCBI | |
Trefny MP, Kaiser M, Stanczak MA, Herzig P, Savic S, Wiese M, Lardinois D, Läubli H, Uhlenbrock F and Zippelius A: PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade. Cancer Immunol Immunother. 69:1505–1517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, Hermes B, Çay Şenler F, Csőszi T, Fülöp A, et al: Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 379:2040–2051. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, Castro G Jr, Srimuninnimit V, Laktionov KK, Bondarenko I, et al: Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet. 393:1819–1830. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, Coluzzi P, Ledezma B, Mendenhall M, Hunt J, et al: A phase II study of pembrolizumab in EGFR-Mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC. J Thorac Oncol. 13:1138–1145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chabannon C, Mfarrej B, Guia S, Ugolini S, Devillier R, Blaise D, Vivier E and Calmels B: Manufacturing natural killer cells as medicinal products. Front Immunol. 7:5042016. View Article : Google Scholar : PubMed/NCBI | |
Carotta S: Targeting NK cells for anticancer immunotherapy: Clinical and preclinical approaches. Front Immunol. 7:1522016. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto N, Ishikawa T, Kokura S, Okayama T, Oka K, Ideno M, Sakai F, Kato A, Tanabe M, Enoki T, et al: Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J Transl Med. 13:2772015. View Article : Google Scholar : PubMed/NCBI | |
Parkhurst MR, Riley JP, Dudley ME and Rosenberg SA: Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res. 17:6287–6297. 2011. View Article : Google Scholar : PubMed/NCBI | |
Benson DM Jr, Bakan CE, Zhang S, Collins SM, Liang J, Srivastava S, Hofmeister CC, Efebera Y, Andre P, Romagne F, et al: IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood. 118:6387–6391. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, et al: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 295:2097–2100. 2002. View Article : Google Scholar : PubMed/NCBI | |
Calvo T, Reina-Ortiz C, Giraldos D, Gascón M, Woods D, Asenjo J, Marco-Brualla J, Azaceta G, Izquierdo I, Palomera L, et al: Expanded and activated allogeneic NK cells are cytotoxic against B-chronic lymphocytic leukemia (B-CLL) cells with sporadic cases of resistance. Sci Rep. 10:193982020. View Article : Google Scholar : PubMed/NCBI | |
Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, et al: Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 105:3051–3057. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cheng M, Chen Y, Xiao W, Sun R and Tian Z: NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 10:230–252. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jochems C, Hodge JW, Fantini M, Fujii R, Morillon YM II, Greiner JW, Padget MR, Tritsch SR, Tsang KY, Campbell KS, et al: An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Oncotarget. 7:86359–86373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park HR, Ahn YO, Kim TM, Kim S, Kim S, Lee YS, Kim M, Keam B, Kim DW and Heo DS: NK92-CD16 cells are cytotoxic to non-small cell lung cancer cell lines that have acquired resistance to tyrosine kinase inhibitors. Cytotherapy. 21:603–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, Rigatos G, Papamichail M and Perez SA: A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother. 59:1781–1789. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu C: Heat shock transcription factors: Structure and regulation. Annu Rev Cell Dev Biol. 11:441–469. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kregel KC: Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol (1985). 92:2177–2186. 2002. View Article : Google Scholar : PubMed/NCBI | |
Guzhova IV and Margulis BA: HSP70-based anti-cancer immunotherapy. Hum Vaccin Immunother. 12:2529–2535. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lazarev VF, Nikotina AD, Mikhaylova ER, Nudler E, Polonik SG, Guzhova IV and Margulis BA: Hsp70 chaperone rescues C6 rat glioblastoma cells from oxidative stress by sequestration of aggregating GAPDH. Biochem Biophys Res Commun. 470:766–771. 2016. View Article : Google Scholar : PubMed/NCBI | |
Calderwood SK and Gong J: Heat shock proteins promote cancer: It's a protection racket. Trends Biochem Sci. 41:311–323. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mittal S and Rajala MS: Heat shock proteins as biomarkers of lung cancer. Cancer Biol Ther. 21:477–485. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin HO, Hong SE, Kim JY, Kim MR, Chang YH, Hong YJ, Lee JK and Park IC: Induction of HSP27 and HSP70 by constitutive overexpression of Redd1 confers resistance of lung cancer cells to ionizing radiation. Oncol Rep. 41:3119–3126. 2019.PubMed/NCBI | |
Hromadnikova I, Pirkova P and Sedlackova L: Influence of in vitro IL-2 or IL-15 alone or in combination with Hsp-70-derived 14-mer peptide (TKD) on the expression of NK cell activatory and inhibitory receptors. Mediators Inflamm. 2013:4052952013. View Article : Google Scholar : PubMed/NCBI | |
Multhoff G, Seier S, Stangl S, Sievert W, Shevtsov M, Werner C, Pockley AG, Blankenstein C, Hildebrandt M, Offner R, et al: Targeted natural killer cell-based adoptive immunotherapy for the treatment of patients with NSCLC after radiochemotherapy: A randomized phase II clinical trial. Clin Cancer Res. 26:5368–5379. 2020. View Article : Google Scholar : PubMed/NCBI | |
Specht HM, Ahrens N, Blankenstein C, Duell T, Fietkau R, Gaipl US, Günther C, Gunther S, Habl G, Hautmann H, et al: Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCTx)-from preclinical studies to a clinical phase II trial. Front Immunol. 6:1622015. View Article : Google Scholar : PubMed/NCBI | |
Shevtsov M, Pitkin E, Ischenko A, Stangl S, Khachatryan W, Galibin O, Edmond S, Lobinger D and Multhoff G: Ex vivo Hsp70-activated nk cells in combination with PD-1 inhibition significantly increase overall survival in preclinical models of glioblastoma and lung cancer. Front Immunol. 10:4542019. View Article : Google Scholar : PubMed/NCBI | |
Daher M and Rezvani K: Next generation natural killer cells for cancer immunotherapy: The promise of genetic engineering. Curr Opin Immunol. 51:146–153. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xie G, Dong H, Liang Y, Ham JD, Rizwan R and Chen J: CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 59:1029752020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Jiang J and Wu C: CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett. 472:175–180. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Tian ZG and Zhang C: Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacol Sin. 39:167–176. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oei VYS, Siernicka M, Graczyk-Jarzynka A, Hoel HJ, Yang W, Palacios D, Almåsbak H, Bajor M, Clement D, Brandt L, et al: Intrinsic functional potential of NK-cell subsets constrains retargeting driven by chimeric antigen receptors. Cancer Immunol Res. 6:467–480. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A, et al: Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 32:520–531. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, Nassif Kerbauy L, Overman B, Thall P, Kaplan M, et al: Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 382:545–553. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gunesch JT, Angelo LS, Mahapatra S, Deering RP, Kowalko JE, Sleiman P, Tobias JW, Monaco-Shawver L, Orange JS and Mace EM: Genome-wide analyses and functional profiling of human NK cell lines. Mol Immunol. 115:64–75. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Xu Y, Mou J, Tang K, Fu X, Li Y, Xing Y, Rao Q, Xing H, Tian Z, et al: Irradiated chimeric antigen receptor engineered NK-92MI cells show effective cytotoxicity against CD19+ malignancy in a mouse model. Cytotherapy. 22:552–562. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Cao B, Zhou G, Zhu L, Wang L, Zhang L, Kwok HF, Zhang Z and Zhao Q: Targeting B7-H3 immune checkpoint with chimeric antigen receptor-engineered natural killer cells exhibits potent cytotoxicity against non-small cell lung cancer. Front Pharmacol. 11:10892020. View Article : Google Scholar : PubMed/NCBI | |
Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG and Bug G: Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 15:1563–1570. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Guo C, Chen H, Zhang H, Zhi L, Lv T, Li M, Niu Z, Lu P and Zhu W: A novel chimeric PD1-NKG2D-41BB receptor enhances antitumor activity of NK92 cells against human lung cancer H1299 cells by triggering pyroptosis. Mol Immunol. 122:200–206. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shah NN, Baird K, Delbrook CP, Fleisher TA, Kohler ME, Rampertaap S, Lemberg K, Hurley CK, Kleiner DE, Merchant MS, et al: Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 125:784–792. 2015. View Article : Google Scholar : PubMed/NCBI | |
Klingemann H: Challenges of cancer therapy with natural killer cells. Cytotherapy. 17:245–249. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard-Alvarez A, Grondin G, Trichard S, Cesari C, Sapet M, Bosco F, et al: Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell. 177:1701–1713.e16. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hodgins JJ, Khan ST, Park MM, Auer RC and Ardolino M: Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Invest. 129:3499–3510. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yao C, Ni Z, Gong C, Zhu X, Wang L, Xu Z, Zhou C, Li S, Zhou W, Zou C and Zhu S: Rocaglamide enhances NK cell-mediated killing of non-small cell lung cancer cells by inhibiting autophagy. Autophagy. 14:1831–1844. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Liang SZ, Wang XH, Liang YQ, Zhang MJ, Niu LZ, Chen JB, Li HB and Xu KC: Clinical efficacy of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced non-small cell lung cancer. Immunol Res. 65:880–887. 2017. View Article : Google Scholar : PubMed/NCBI |