|
1
|
World Health Organization (WHO), . Fact
sheet on cancer. https://www.who.int/news-room/factsheets/detail/cancer#:~:text=Cancer%20is%20the%20second%20leading,%2D%20and%20middle%2Dincome%20countriesAugust
23–2021
|
|
2
|
Kim R, Emi M and Tanabe K: Cancer
immunoediting from immune surveillance to immune escape.
Immunology. 121:1–14. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Leonardi GC, Accardi G, Monastero R,
Nicoletti F and Libra M: Ageing: From inflammation to cancer. Immun
Ageing. 15:12018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Camous X, Pera A, Solana R and Larbi A: NK
cells in healthy aging and age-associated diseases. J Biomed
Biotechnol. 2012:1959562012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
National Cancer Institute: The genetics of
Cancer. https://www.cancer.gov/about-cancer/causes-prevention/geneticsAugust
23–2021PubMed/NCBI
|
|
6
|
Imai K, Matsuyama S, Miyake S, Suga K and
Nakachi K: Natural cytotoxic activity of peripheral-blood
lymphocytes and cancer incidence: An 11-year follow-up study of a
general population. Lancet. 356:1795–1799. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wu Y, Liu Y, Dong Y and Vadgama J:
Diabetes-associated dysregulated cytokines and cancer. Integr
Cancer Sci Ther. 3:370–378. 2016.PubMed/NCBI
|
|
8
|
Liefvendahl E and Arnqvist HJ: Mitogenic
effect of the insulin analogue glargine in malignant cells in
comparison with insulin and IGF-I. Horm Metab Res. 40:369–374.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Esposito K, Nappo F, Marfella R, Giugliano
G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A and Giugliano D:
Inflammatory cytokine concentrations are acutely increased by
hyperglycemia in humans: Role of oxidative stress. Circulation.
106:2067–2072. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cai D and Khor S: ‘Hypothalamic
Microinflammation’ paradigm in aging and metabolic diseases. Cell
Metab. 30:19–35. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kang DH, Weaver MT, Park NJ, Smith B,
McArdle T and Carpenter J: Significant impairment in immune
recovery after cancer treatment. Nurs Res. 58:105–114. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Coffey JC, Wang JH, Smith MJ,
Bouchier-Hayes D, Cotter TG and Redmond HP: Excisional surgery for
cancer cure: Therapy at a cost. Lancet Oncol. 4:760–768. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Angka L, Khan ST, Kilgour MK, Xu R,
Kennedy MA and Auer RC: Dysfunctional natural killer cells in the
aftermath of cancer surgery. Int J Mol Sci. 18:17872017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Centers for Disease Control and
Prevention, . Immunization: The Basics. https://www.cdc.gov/vaccines/vac-gen/imz-basics.htmAugust
23–2021
|
|
15
|
Finn OJ: Vaccines for cancer prevention: A
practical and feasible approach to the cancer epidemic. Cancer
Immunol Res. 2:708–713. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Melief CJ, van Hall T, Arens R, Ossendorp
F and van der Burg SH: Therapeutic cancer vaccines. J Clin Invest.
125:3401–3412. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Thomas S and Prendergast GC: Cancer
vaccines: A brief overview. Methods Mol Biol. 1403:755–761. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
British Society of Immunology, .
Adjuvants: Introduction. British Society of immunology. https://www.immunology.org/public-information/bitesized-immunology/vaccines-and-therapeutics/adjuvants-introductionAugust
23–2021
|
|
19
|
Hu HG and Li YM: Emerging adjuvants for
cancer immunotherapy. Front Chem. 8:6012020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Crunkhorn S: Strengthening the sting of
immunotherapy. Nat Rev Immunol. 20:5892020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pifferi C, Fuentes R and Fernández-Tejada
A: Natural and synthetic carbohydrate-based vaccine adjuvants and
their mechanisms of action. Nat Rev Chem. 25:1–20. 2021.PubMed/NCBI
|
|
22
|
De Maria L and Oestergaard LH:
Carbohydrate oxidases. Patent Ref. No: WO2011009747A1. https://patents.google.com/patent/WO2011009747A1/en
|
|
23
|
Lazarus MB, Nam Y, Jiang J, Sliz P and
Walker S: Structure of human O-GlcNAc transferase and its complex
with a peptide substrate. Nature. 27:564–567. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ranjan A, Ramachandran S, Gupta N, Kaushik
I, Wright S, Srivastava S, Das H, Srivastava S, Prasad S and
Srivastava SK: Role of phytochemicals in cancer prevention. Int J
Mol Sci. 20:49812019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Raguindin PF, Itodo OA, Stoyanov J,
Dejanovic GM, Gamba M, Asllanaj E, Minder B, Bussler W, Metzger B,
Muka T, et al: A systematic review of phytochemicals in oat and
buckwheat. Food Chem. 5:1279822021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Vetvicka V, Vannucci L, Sima P and Richter
J.: Beta glucan: Supplement or drug? from laboratory to clinical
trials. Molecules. 24:12512019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Du B, Meenu M, Liu H and Xu B: A concise
review on the molecular structure and function relationship of
β-glucan. Int J Mol Sci. 18:40322019. View Article : Google Scholar
|
|
28
|
Seya T, Takeda Y, Takashima K, Yoshida S,
Azuma M and Matsumoto M: Adjuvant immunotherapy for cancer: Both
dendritic cell-priming and check-point inhibitor blockade are
required for immunotherapy. Proc Jpn Acad Ser B Phys Biol Sci.
94:153–160. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kalafati L, Kourtzelis I,
Schulte-Schrepping J, Li X, Hatzioannou A, Grinenko T, Hagag E,
Sinha A, Has C, Dietz S, et al: Innate immune training of
granulopoiesis promotes anti-tumor activity. Cell. 183:771–785.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chaichian S, Moazzami B, Sadoughi F,
Kashani HH, Zaroudi M and Asemi Z: Functional activities of
beta-glucans in the prevention or treatment of cervical cancer. J
Ovarian Res. 13:242020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cognigni V, Ranallo N, Tronconi F, Morgese
F and Berardi R: Potential benefit of β-glucans as adjuvant therapy
in immuno-oncology: A review. Explor Target Antitumor Ther.
2:122–138. 2021.
|
|
32
|
Jin Y, Li P and Wang F: β-glucans as
potential immunoadjuvants: A review on the adjuvanticity,
structure-activity relationship and receptor recognition
properties. Vaccine. 36:5235–5244. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mirza Z, Soto ER, Dikengil F, Levitz SM
and Ostroff GR: Beta-glucan particles as vaccine adjuvant carriers.
Methods Mol Biol. 1625:143–157. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Paris S, Chapat L, Martin-Cagnon N, Durand
PY, Piney L, Cariou C, Bergamo P, Bonnet JM, Poulet H, Freyburger L
and De Luca K: β-glucan as trained immunity-based adjuvants for
rabies vaccines in dogs. Front Immunol. 8:5644972020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang M, Kim JA and Huang AY: Optimizing
tumor microenvironment for cancer immunotherapy: β-glucan-based
nanoparticles. Front Immunol. 26:3412018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hong F, Hansen RD, Yan J, Allendorf DJ,
Baran JT, Ostroff GR and Ross GD: Beta-glucan functions as an
adjuvant for monoclonal antibody immunotherapy by recruiting
tumoricidal granulocytes as killer cells. Cancer Res. 15:9023–9031.
2003.PubMed/NCBI
|
|
37
|
Geller A and Yan J: Could the induction of
trained immunity by β-glucan serve as a defense against COVID-19?
Front Immunol. 11:17822020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ikewaki N, Iwasaki M, Kurosawa G, Rao KS,
Lakey-Beitia J, Preethy S and Abraham SJ: β-Glucans: Wide-spectrum
immune-balancing food-supplement-based enteric (β-WIFE) vaccine
adjuvant approach to COVID-19. Human Vaccin Immunother.
3:2808–2813. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vetvicka V and Vetvickova J: Glucans and
cancer: Comparison of commercially available β-glucans-Part IV.
Anticancer Res. 38:1327–1333. 2018.PubMed/NCBI
|
|
40
|
Sadeghi F, Peymaeei F, Falahati M, Safari
E, Farahyar S, Mohammadi SR and Roudbary M: The effect of
Candida cell wall beta-glucan on treatment-resistant LL/2
cancer cell line: In vitro evaluation. Mol Biol Rep. 47:3653–3661.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Eiró N and Vizoso FJ: Inflammation and
cancer. World J Gastrointest Surg. 4:62–72. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Todoric J, Antonucci L and Karin M:
Targeting inflammation in cancer prevention and therapy. Cancer
Prev Res (Phila). 9:895–905. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dedeepiya VD, Sivaraman G, Venkatesh AP,
Preethy S and Abraham SJ: Potential effects of nichi glucan as a
food supplement for diabetes mellitus and hyperlipidemia:
Preliminary findings from the study on three patients from India.
Case Rep Med. 2012:8953702012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ganesh JS, Rao YY, Ravikumar R,
Jayakrishnan GA, Iwasaki M, Preethy S and Abraham SJ: Beneficial
effects of black yeast derived 1-3, 1-6 beta glucan-nichi glucan in
a dyslipidemic individual of Indian origin-a case report. J Diet
Suppl. 11:1–6. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bacha U, Nasir M, Iqbal S and Anjum AA:
Nutraceutical, anti-inflammatory, and immune modulatory effects of
β-glucan isolated from yeast. Biomed Res Int. 2017:89726782017.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Barera A, Buscemi S, Monastero R, Caruso
C, Caldarella R, Ciaccio M and Vasto S: β-glucans: Ex vivo
inflammatory and oxidative stress results after pasta intake. Immun
Ageing. 7:142016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ikewaki N, Fujii N, Onaka T, Ikewaki S and
Inoko H: Immunological actions of Sophy beta-glucan (beta-1,3-1,6
glucan), currently available commercially as a health food
supplement. Microbiol Immunol. 51:861–873. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Qazi BS, Tang K and Qazi A: Recent
advances in underlying pathologies provide insight into
interleukin-8 expression-mediated inflammation and angiogenesis.
Int J Inflam. 2011:9084682011.PubMed/NCBI
|
|
49
|
Kozlowski M, Kowalczuk O, Sulewska A,
Dziegielewski P, Lapuc G, Laudanski W, Niklinska W, Chyczewski L,
Niklinski J and Laudanski J: Serum soluble fas ligand (sFasL) in
patients with primary squamous cell carcinoma of the esophagus.
Folia Histochem Cytobiol. 45:199–204. 2007.PubMed/NCBI
|
|
50
|
Setrerrahmane S and Xu H: Tumor-related
interleukins: Old validated targets for new anti-cancer drug
development. Mol Cancer. 16:1532017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chonov DC, Ignatova MMK, Ananiev JR and
Gulubova MV: IL-6 activities in the tumour microenvironment. Part
1. Open Access Maced J Med Sci. 7:2391–2398. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zaidi MR: The interferon-gamma paradox in
cancer. J Interferon Cytokine Res. 39:30–38. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhao P and Zhang Z: TNF-α promotes colon
cancer cell migration and invasion by upregulating TROP-2. Oncol
Lett. 15:3820–3827. 2018.PubMed/NCBI
|
|
54
|
Chiba S, Ikushima H, Ueki H, Yanai H,
Kimura Y, Hangai S, Nishio J, Negishi H, Tamura T, Saijo S, et al:
Recognition of tumor cells by dectin-1 orchestrates innate immune
cells for anti-tumor responses. Elife. 3:e041772014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yatawara L, Wickramasinghe S, Nagataki M,
Takamoto M, Nomura H, Ikeue Y, Watanabe Y and Agatsuma T:
Aureobasidium-derived soluble branched (1,3–1,6) beta-glucan
(Sophy beta-glucan) enhances natural killer activity in
Leishmania amazonensis-infected mice. Korean J Parasitol.
47:345–351. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Le T, Le T, Doan TH, Quyen D, Le KX, Pham
V, Nagataki M, Nomura H, Ikeue Y, Watanabe Y and Agatsuma T: The
adjuvant effect of sophy β-glucan to the antibody response in
poultry immunized by the avian influenza A H5N1 and H5N2 vaccines.
J Microbiol Biotechnol. 21:405–411. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ikewaki N, Raghavan K, Dedeepiya VD,
Suryaprakash V, Iwasaki M, Preethy S, Senthilkumar R and Abraham
SJK: Beneficial immune-regulatory effects of novel strains of
Aureobasidium pullulans AFO-202 and N-163 produced beta
glucans in Sprague Dawley rats. 02 August 2021, PREPRINT (Version
1) available at Research Square; doi: 10.21203/rs.3.rs-771315/v1.
View Article : Google Scholar
|
|
58
|
Raghavan K, Dedeepiya VD, Suryaprakash V,
Rao KS, Ikewaki N, Sonoda T, Levy GA, Iwasaki M, Senthilkumar R,
Preethy S and Abraham SJK: Beneficial effects of novel
Aureobasidium pullulans strains produced beta-1,3-1,6
glucans on interleukin-6 and D-Dimer levels in COVID-19 patients;
results of a randomized multiple-arm pilot clinical study. Biomed
Pharmacother. doi: 10.1016/j.biopha.2021.112243. 2021.(In print).
View Article : Google Scholar
|
|
59
|
Ikewaki N, Onaka T, Ikeue Y, Nagataki M,
Kurosawa G, Dedeepiya VD, Rajmohan M, Vaddi S, Senthilkumar R,
Preethy S and Abraham SJK: Beneficial effects of the AFO-202 and
N-163 strains of Aureobasidium pullulans produced 1,3-1,6
beta glucans on non-esterified fatty acid levels in obese diabetic
KKAy mice: A comparative study. bioRxiv. doi:
https://doi.org/10.1101/2021.07.22.453362.
|
|
60
|
Ikewaki N, Kurosawa G, Iwasaki M, Preethy
S, Dedeepiya VD, Vaddi S, Senthilkumar R, Levy GA and Abraham SJK:
Hepatoprotective effects of Aureobasidium pullulans derived
Beta 1,3-1,6 biological response modifier glucans in a STAM-animal
model of non-alcoholic steatohepatitis. bioRxiv. doi:
https://doi.org/10.1101/2021.07.08.451700.
|
|
61
|
Kimura Y, Sumiyoshi M, Suzuki T and
Sakanaka M: Antitumor and antimetastatic activity of a novel
water-soluble low molecular weight beta-1, 3-D-glucan (branch
beta-1,6) isolated from Aureobasidium pullulans 1A1 strain
black yeast. Anticancer Res. 26:4131–4141. 2006.PubMed/NCBI
|
|
62
|
Yano H, Takamoto M, Nagataki M,
Wickramasinghe S, Yatawara L, Mizobuchi S, Sasaguri S, Watanabe Y,
Azuma Y and Azuma K: Induction of NK activity using Sofy β-glucan.
Tosa Biological Society Annual Meeting 2006, Japan. https://b--glucan-org.translate.goog/society/%E5%9C%9F%E4%BD%90%E7%94%9F%E7%89%A9%E5%AD%A6%E4%BC%9A-2006%E5%B9%B4%E5%BA%A6%E4%BE%8B%E4%BC%9A-2/?_x_tr_sch=http&_x_tr_sl=ja&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=nui,sc
|
|
63
|
Suzuki T, Kusano K, Kondo N, Nishikawa K,
Kuge T and Ohno N: Biological activity of high-purity
β-1,3-1,6-glucan derived from the black yeast Aureobasidium
pullulans: A literature review. Nutrients. 13:2422021.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ma L, Wang H, Wang C, Su J, Xie Q, Xu L,
Yu Y, Liu S, Li S, Xu Y and Li Z: Failure of elevating calcium
induces oxidative stress tolerance and imparts cisplatin resistance
in ovarian cancer cells. Aging Dis. 7:254–266. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Steimbach L, Borgmann AV, Gomar GG,
Hoffmann LV, Rutckeviski R, de Andrade DP and Smiderle FR: Fungal
beta-glucans as adjuvants for treating cancer patients-A systematic
review of clinical trials. Clin Nutr. 40:3104–3113. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Papaioannou NE, Beniata OV, Vitsos P,
Tsitsilonis O and Samara P: Harnessing the immune system to improve
cancer therapy. Ann Transl Med. 4:2612016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bayindir T, Iraz M, Kelles M, Kaya S, Tan
M, Filiz A, Toplu Y and Kalcioglu MT: The effect of beta glucan on
cisplatin ototoxicity. Indian J Otolaryngol Head Neck Surg.
66:131–134. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
National Cancer Institute, . OPT-821 with
Vaccine Therapy and Beta-Glucan in Treating Younger Patients with
High-Risk Neuroblastoma. https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2009-01362&r=1
|
|
69
|
Geller A, Shrestha R and Yan J:
Yeast-derived β-glucan in cancer: Novel uses of a traditional
therapeutic. Int J Mol Sci. 20:36182019. View Article : Google Scholar : PubMed/NCBI
|