Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2022 Volume 47 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 47 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Siah1 in cancer and nervous system diseases (Review)

  • Authors:
    • Hui Zhang
    • Jie Wang
    • Yidong Ge
    • Meng Ye
    • Xiaofeng Jin
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
  • Article Number: 35
    |
    Published online on: December 23, 2021
       https://doi.org/10.3892/or.2021.8246
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
View Figures

Figure 1

Figure 2

View References

1 

Hershko A and Ciechanover A: The ubiquitin system. Ann Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI

2 

Mani RS: The emerging role of speckle-type POZ protein (SPOP) in cancer development. Drug Discov Today. 19:1498–1502. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Zou T and Zhang J: Diverse and pivotal roles of neddylation in metabolism and immunity. FEBS J. 288:3884–3912. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Chen RH: Cullin 3 and its role in tumorigenesis. Adv Exp Med Biol. 1217:187–210. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Nandi D, Tahiliani P, Kumar A and Chandu D: The ubiquitin-proteasome system. J Biosci. 31:137–155. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Cuneo MJ and Mittag T: The ubiquitin ligase adaptor SPOP in cancer. FEBS J. 286:3946–3958. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Wang D, Ma L, Wang B, Liu J and Wei W: E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev. 36:683–702. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Wang Z, Song Y, Ye M, Dai X, Zhu X and Wei W: The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 17:339–350. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Morreale F and Walden H: Types of ubiquitin ligases. Cell. 165:248. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Yun S, Möller A, Chae SK, Hong WP, Bae YJ, Bowtell DD, Ryu SH and Suh PG: Siah proteins induce the epidermal growth factor-dependent degradation of phospholipase Cepsilon. J Biol Chem. 283:1034–1042. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Qi J, Kim H, Scortegagna M and Ronai ZA: Regulators and effectors of Siah ubiquitin ligases. Cell Biochem Biophys. 67:15–24. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Garrison JB, Correa RG, Gerlic M, Yip KW, Krieg A, Tamble CM, Shi R, Welsh K, Duggineni S, Huang Z, et al: ARTS and Siah collaborate in a pathway for XIAP degradation. Mol Cell. 41:107–116. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Santelli E, Leone M, Li C, Fukushima T, Preece NE, Olson AJ, Ely KR, Reed JC, Pellecchia M, Liddington RC and Matsuzawa SI: Structural analysis of Siah1-Siah-interacting protein interactions and insights into the assembly of an E3 ligase multiprotein complex. J Biol Chem. 280:34278–34287. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Zhang Q, Wang Z, Hou F, Harding R, Huang X, Dong A, Walker JR and Tong Y: The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear. Biochim Biophys Acta Gen Subj. 1861:3095–3105. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Knauer SK, Mahendrarajah N, Roos WP and Krämer OH: The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine Growth Factor Rev. 26:405–413. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Nakayama K and Ronai Z: Siah: New players in the cellular response to hypoxia. Cell Cycle. 3:1345–1347. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Famulski JK, Trivedi N, Howell D, Yang Y, Tong Y, Gilbertson R and Solecki DJ: Siah regulation of Pard3A controls neuronal cell adhesion during germinal zone exit. Science. 330:1834–1838. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Wong CS and Möller A: Siah: A promising anticancer target. Cancer Res. 73:2400–2406. 2013. View Article : Google Scholar : PubMed/NCBI

19 

House CM, Möller A and Bowtell DD: Siah proteins: Novel drug targets in the Ras and hypoxia pathways. Cancer Res. 69:8835–8838. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Matsuzawa S, Li C, Ni CZ, Takayama S, Reed JC and Ely KR: Structural analysis of Siah1 and its interactions with Siah-interacting protein (SIP). J Biol Chem. 278:1837–1840. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Topolska-Woś AM, Chazin WJ and Filipek A: CacyBP/SIP-structure and variety of functions. Biochim Biophys Acta. 1860:79–85. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Yan S, Li A and Liu Y: CacyBP/SIP inhibits the migration and invasion behaviors of glioblastoma cells through activating Siah1 mediated ubiquitination and degradation of cytoplasmic p27. Cell Biol Int. 42:216–226. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Wen YY, Yang ZQ, Song M, Li BL, Yao XH, Chen XL, Zhao J, Lu YY, Zhu JJ and Wang EH: The expression of SIAH1 is downregulated and associated with Bim and apoptosis in human breast cancer tissues and cells. Mol Carcinog. 49:440–449. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Briant DJ, Ceccarelli DF and Sicheri F: I Siah substrate! Structure. 14:627–628. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Czechowicz JS, Nagel CH, Voges M, Spohn M, Eibl MM and Hauber J: Interaction between the cellular E3 ubiquitin ligase SIAH-1 and the viral immediate-early protein ICP0 enables efficient replication of herpes simplex virus type 2 in vivo. PLoS One. 13:e02018802018. View Article : Google Scholar : PubMed/NCBI

26 

Shi H, Zheng B, Wu Y, Tang Y, Wang L, Gao Y, Gong H, Du J and Yu R: Ubiquitin ligase Siah1 promotes the migration and invasion of human glioma cells by regulating HIF-1α signaling under hypoxia. Oncol Rep. 33:1185–1190. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Krämer OH, Stauber RH, Bug G, Hartkamp J and Knauer SK: SIAH proteins: Critical roles in leukemogenesis. Leukemia. 27:792–802. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Sim HW and Knox J: Hepatocellular carcinoma in the era of immunotherapy. Curr Probl Cancer. 42:40–48. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Matsuo K, Satoh S, Okabe H, Nomura A, Maeda T, Yamaoka Y and Ikai I: SIAH1 inactivation correlates with tumor progression in hepatocellular carcinomas. Genes Chromosomes Cancer. 36:283–291. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Yoshibayashi H, Okabe H, Satoh S, Hida K, Kawashima K, Hamasu S, Nomura A, Hasegawa S, Ikai I and Sakai Y: SIAH1 causes growth arrest and apoptosis in hepatoma cells through beta-catenin degradation-dependent and -independent mechanisms. Oncol Rep. 17:549–556. 2007.PubMed/NCBI

31 

Yao H, Ashihara E and Maekawa T: Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets. 15:873–887. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Arend RC, Londoño-Joshi AI, Straughn JM Jr and Buchsbaum DJ: The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecol Oncol. 131:772–779. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Taciak B, Pruszynska I, Kiraga L, Bialasek M and Krol M: Wnt signaling pathway in development and cancer. J Physiol Pharmacol. 69:doi: 10.26402. 2018.PubMed/NCBI

35 

Steinhart Z and Angers S: Wnt signaling in development and tissue homeostasis. Development. 145:dev1465892018. View Article : Google Scholar : PubMed/NCBI

36 

Huang P, Yan R, Zhang X, Wang L, Ke X and Qu Y: Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacol Ther. 196:79–90. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Kim E, Lisby A, Ma C, Lo N, Ehmer U, Hayer KE, Furth EE and Viatour P: Promotion of growth factor signaling as a critical function of β-catenin during HCC progression. Nat Commun. 10:19092019. View Article : Google Scholar : PubMed/NCBI

38 

Ji L, Jiang B, Jiang X, Charlat O, Chen A, Mickanin C, Bauer A, Xu W, Yan X and Cong F: The SIAH E3 ubiquitin ligases promote Wnt/β-catenin signaling through mediating wnt-induced axin degradation. Genes Dev. 31:904–915. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Yang Y, Zhang J, Wu T, Xu X, Cao G, Li H and Chen X: Histone deacetylase 2 regulates the doxorubicin (Dox) resistance of hepatocarcinoma cells and transcription of ABCB1. Life Sci. 216:200–206. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Cheng C, Li C, Zhu X, Han W, Li J and Lv Y: Doxorubicin-loaded Fe(3)O(4)-ZIF-8 nano-composites for hepatocellular carcinoma therapy. J Biomater Appl. 33:1373–1381. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Long L, Xiang H, Liu J, Zhang Z and Sun L: ZEB1 mediates doxorubicin (Dox) resistance and mesenchymal characteristics of hepatocarcinoma cells. Exp Mol Pathol. 106:116–122. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Li LY, Yang CC, Yang JF, Li HD, Zhang BY, Zhou H, Hu S, Wang K, Huang C, Meng XM, et al: ZEB1 regulates the activation of hepatic stellate cells through Wnt/β-catenin signaling pathway. Eur J Pharmacol. 865:1727872019. View Article : Google Scholar : PubMed/NCBI

43 

Qin Y, Yu J, Zhang M, Qin F and Lan X: ZEB1 promotes tumorigenesis and metastasis in hepatocellular carcinoma by regulating the expression of vimentin. Mol Med Rep. 19:2297–2306. 2019.PubMed/NCBI

44 

Han X, Liu F, Zhang C, Ren Z, Li L and Wang G: SIAH1/ZEB1/IL-6 axis is involved in doxorubicin (Dox) resistance of osteosarcoma cells. Biol Chem. 400:545–553. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Abshire CF, Carroll JL and Dragoi AM: FLASH protects ZEB1 from degradation and supports cancer cells' epithelial-to-mesenchymal transition. Oncogenesis. 5:e2542016. View Article : Google Scholar : PubMed/NCBI

46 

Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, Li J, An P, Lu L, Luo N, et al: m6 A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer. 18:872019. View Article : Google Scholar : PubMed/NCBI

47 

Brauckhoff A, Malz M, Tschaharganeh D, Malek N, Weber A, Riener MO, Soll C, Samarin J, Bissinger M and Schmidt J: Nuclear expression of the ubiquitin ligase seven in absentia homolog (SIAH)-1 induces proliferation and migration of liver cancer cells. J Hepatol. 55:1049–1057. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Veronesi U, Boyle P, Goldhirsch A, Orecchia R and Viale G: Breast cancer. Lancet. 365:1727–1741. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Woolston C: Breast cancer. Nature. 527:S1012015. View Article : Google Scholar : PubMed/NCBI

50 

DeSantis C, Siegel R, Bandi P and Jemal A: Breast cancer statistics, 2011. CA Cancer J Clin. 61:409–418. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Ullah MF: Breast cancer: Current perspectives on the disease status. Adv Exp Med Biol. 1152:51–64. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Tsang JYS and Tse GM: Molecular classification of breast cancer. Adv Anat Pathol. 27:27–35. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, Safari E and Farahmand L: Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol. 84:1065352020. View Article : Google Scholar : PubMed/NCBI

54 

Bruzzoni-Giovanelli H, Faille A, Linares-Cruz G, Nemani M, Deist FL, Germani A, Chassoux D, Millot G, Roperch JP, Amson R, et al: SIAH-1 inhibits cell growth by altering the mitotic process. Oncogene. 18:7101–7109. 1999. View Article : Google Scholar : PubMed/NCBI

55 

Medhioub M, Vaury C, Hamelin R and Thomas G: Lack of somatic mutation in the coding sequence of SIAH1 in tumors hemizygous for this candidate tumor suppressor gene. Int J Cancer. 87:794–797. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Germani A, Bruzzoni-Giovanelli H, Fellous A, Gisselbrecht S, Varin-Blank N and Calvo F: SIAH-1 interacts with alpha-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis. Oncogene. 19:5997–6006. 2000. View Article : Google Scholar : PubMed/NCBI

57 

Wen YY, Yang ZQ, Song M, Li BL, Zhu JJ and Wang EH: SIAH1 induced apoptosis by activation of the JNK pathway and inhibited invasion by inactivation of the ERK pathway in breast cancer cells. Cancer Sci. 101:73–79. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Nedeljković M and Damjanović A: Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells. 8:9572019. View Article : Google Scholar : PubMed/NCBI

59 

Zhang L, Ma P, Sun LM, Han YC, Li BL, Mi XY, Wang EH and Song M: MiR-107 down-regulates SIAH1 expression in human breast cancer cells and silencing of miR-107 inhibits tumor growth in a nude mouse model of triple-negative breast cancer. Mol Carcinog. 55:768–777. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Hong HC, Chuang CH, Huang WC, Weng SL, Chen CH, Chang KH, Liao KW and Huang HD: A panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapse. Theranostics. 10:8771–8789. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Sahlberg KK, Bottai G, Naume B, Burwinkel B, Calin GA, Børresen-Dale AL and Santarpia L: A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin Cancer Res. 21:1207–1214. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Flores-Pérez A, Marchat LA, Rodríguez-Cuevas S, Bautista VP, Fuentes-Mera L, Romero-Zamora D, Maciel-Dominguez A, de la Cruz OH, Fonseca-Sánchez M, Ruíz-García E, et al: Suppression of cell migration is promoted by miR-944 through targeting of SIAH1 and PTP4A1 in breast cancer cells. BMC Cancer. 16:3792016. View Article : Google Scholar : PubMed/NCBI

63 

Ren H, Mi X, Zhao P, Zhao X, Wei N, Huang H, Meng Z, Kou J, Sun M, Liu Y, et al: TRAF4, a new substrate of SIAH1, participates in chemotherapy resistance of breast cancer cell by counteracting SIAH1-mediated downregulation of β-catenin. Breast Cancer Res Treat. 183:275–289. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Butti R, Gunasekaran VP, Kumar TVS, Banerjee P and Kundu GC: Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol. 107:38–52. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Fisusi FA and Akala EO: Drug combinations in breast cancer therapy. Pharm Nanotechnol. 7:3–23. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Tang Y, Wang Y, Kiani MF and Wang B: Classification, treatment strategy, and associated drug resistance in breast cancer. Clin Breast Cancer. 16:335–343. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Zhou J, Li W, Ming J, Yang W, Lu L, Zhang Q, Ruan S and Huang T: High expression of TRAF4 predicts poor prognosis in tamoxifen-treated breast cancer and promotes tamoxifen resistance. Anticancer Drugs. 31:558–566. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Zhang X, Wen Z and Mi X: Expression and anti-apoptotic function of TRAF4 in human breast cancer MCF-7 cells. Oncol Lett. 7:411–414. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Wang A, Wang J, Ren H, Yang F, Sun L, Diao K, Zhao Z, Song M, Cui Z, Wang E, et al: TRAF4 participates in wnt/β-catenin signaling in breast cancer by upregulating β-catenin and mediating its translocation to the nucleus. Mol Cell Biochem. 395:211–219. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Liu M, Hsu J, Chan C, Li Z and Zhou Q: The ubiquitin ligase Siah1 controls ELL2 stability and formation of super elongation complexes to modulate gene transcription. Mol Cell. 46:325–334. 2012. View Article : Google Scholar : PubMed/NCBI

71 

de Thé H, Pandolfi PP and Chen Z: Acute promyelocytic leukemia: A paradigm for oncoprotein-targeted cure. Cancer Cell. 32:552–560. 2017. View Article : Google Scholar : PubMed/NCBI

72 

De Braekeleer E, Douet-Guilbert N and De Braekeleer M: RARA fusion genes in acute promyelocytic leukemia: A review. Expert Rev Hematol. 7:347–357. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Liquori A, Ibañez M, Sargas C, Sanz MA, Barragán E and Cervera J: Acute promyelocytic leukemia: A constellation of molecular events around a single PML-RARA Fusion Gene. Cancers (Basel). 12:6242020. View Article : Google Scholar : PubMed/NCBI

74 

Pietschmann K, Buchwald M, Müller S, Knauer SK, Kögl M, Heinzel T and Krämer OH: Differential regulation of PML-RARα stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. Int J Biochem Cell Biol. 44:132–138. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Bug G, Ritter M, Wassmann B, Schoch C, Heinzel T, Schwarz K, Romanski A, Kramer OH, Kampfmann M, Hoelzer D, et al: Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer. 104:2717–2725. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Bursen A, Moritz S, Gaussmann A, Moritz S, Dingermann T and Marschalek R: Interaction of AF4 wild-type and AF4.MLL fusion protein with SIAH proteins: Indication for t(4;11) pathobiology? Oncogene. 23:6237–6249. 2004. View Article : Google Scholar : PubMed/NCBI

77 

Krämer OH, Müller S, Buchwald M, Reichardt S and Heinzel T: Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. Faseb J. 22:1369–1379. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Luo Z, Lin C and Shilatifard A: The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol. 13:543–547. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Dahl NA, Danis E, Balakrishnan I, Wang D, Pierce A, Walker FM, Gilani A, Serkova NJ, Madhavan K, Fosmire S, et al: Super elongation complex as a targetable dependency in diffuse midline glioma. Cell Rep. 31:1074852020. View Article : Google Scholar : PubMed/NCBI

80 

Yu D, Liu R, Yang G and Zhou Q: The PARP1-Siah1 axis controls HIV-1 transcription and expression of Siah1 substrates. Cell Rep. 23:3741–3749. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Wu J, Xue Y, Gao X and Zhou Q: Host cell factors stimulate HIV-1 transcription by antagonizing substrate-binding function of Siah1 ubiquitin ligase to stabilize transcription elongation factor ELL2. Nucleic Acids Res. 48:7321–7332. 2020.PubMed/NCBI

82 

Nagel CH, Albrecht N, Milovic-Holm K, Mariyanna L, Keyser B, Abel B, Weseloh B, Hofmann TG, Eibl MM and Hauber J: Herpes simplex virus immediate-early protein ICP0 is targeted by SIAH-1 for proteasomal degradation. J Virol. 85:7644–7657. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T and Aoki Y: LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ. 27:1023–1035. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, et al: The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 45:1141–1149. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Wirsching HG, Galanis E and Weller M: Glioblastoma. Handb Clin Neurol. 134:381–397. 2016. View Article : Google Scholar : PubMed/NCBI

86 

He Y, Roos WP, Wu Q, Hofmann TG and Kaina B: The SIAH1-HIPK2-p53ser46 damage response pathway is involved in temozolomide-induced glioblastoma cell death. Mol Cancer Res. 17:1129–1141. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Fan Z, Li Z, Yang Y, Liu S, Guo J and Xu Y: HIF-1α coordinates epigenetic activation of SIAH1 in hepatocytes in response to nutritional stress. Biochim Biophys Acta Gene Regul Mech. 1860:1037–1046. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Matsui-Hasumi A, Sato Y, Uto-Konomi A, Yamashita S, Uehori J, Yoshimura A, Yamashita M, Asahara H, Suzuki S and Kubo M: E3 ubiquitin ligases SIAH1/2 regulate hypoxia-inducible factor-1 (HIF-1)-mediated Th17 cell differentiation. Int Immunol. 29:133–143. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Ke Q and Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI

90 

Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003. View Article : Google Scholar : PubMed/NCBI

91 

You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q and Kuca K: The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev. 41:1622–1643. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Peng S, Zhang J, Tan X, Huang Y, Xu J, Silk N, Zhang D, Liu Q and Jiang J: The VHL/HIF axis in the development and treatment of pheochromocytoma/paraganglioma. Front Endocrinol (Lausanne). 11:5868572020. View Article : Google Scholar : PubMed/NCBI

93 

Gopalsamy A, Hagen T and Swaminathan K: Investigating the molecular basis of Siah1 and Siah2 E3 ubiquitin ligase substrate specificity. PLoS One. 9:e1065472014. View Article : Google Scholar : PubMed/NCBI

94 

Kim SY, Choi DW, Kim EA and Choi CY: Stabilization of HIPK2 by escape from proteasomal degradation mediated by the E3 ubiquitin ligase Siah1. Cancer Lett. 279:177–184. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Choi DW and Choi CY: HIPK2 modification code for cell death and survival. Mol Cell Oncol. 1:e9559992014. View Article : Google Scholar : PubMed/NCBI

96 

Feng Y, Zhou L, Sun X and Li Q: Homeodomain-interacting protein kinase 2 (HIPK2): A promising target for anti-cancer therapies. Oncotarget. 8:20452–20461. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Moll UM and Petrenko O: The MDM2-p53 interaction. Mol Cancer Res. 1:1001–1008. 2003.PubMed/NCBI

98 

Krastev DB and Buchholz F: Ribosome biogenesis and p53: Who is regulating whom? Cell Cycle. 10:3417–3418. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Chao CC: Mechanisms of p53 degradation. Clin Chim Acta. 438:139–147. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Kanapathipillai M: Treating p53 mutant aggregation-associated cancer. Cancers (Basel). 10:1542018. View Article : Google Scholar : PubMed/NCBI

101 

Feng L, Hollstein M and Xu Y: Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle. 5:2812–2819. 2006. View Article : Google Scholar : PubMed/NCBI

102 

Liebl MC and Hofmann TG: Cell fate regulation upon DNA damage: p53 serine 46 kinases pave the cell death road. Bioessays. 41:e19001272019. View Article : Google Scholar : PubMed/NCBI

103 

Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J and Hofmann TG: Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol. 10:812–824. 2008. View Article : Google Scholar : PubMed/NCBI

104 

Moehlenbrink J, Bitomsky N and Hofmann TG: Hypoxia suppresses chemotherapeutic drug-induced p53 Serine 46 phosphorylation by triggering HIPK2 degradation. Cancer Lett. 292:119–124. 2010. View Article : Google Scholar : PubMed/NCBI

105 

Chen D, Li M, Luo J and Gu W: Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem. 278:13595–13598. 2003. View Article : Google Scholar : PubMed/NCBI

106 

Wang P, Guan D, Zhang XP, Liu F and Wang W: Modeling the regulation of p53 activation by HIF-1 upon hypoxia. FEBS Lett. 593:2596–2611. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Fukuba H, Yamashita H, Nagano Y, Jin HG, Hiji M, Ohtsuki T, Takahashi T, Kohriyama T and Matsumoto M: Siah-1 facilitates ubiquitination and degradation of factor inhibiting HIF-1alpha (FIH). Biochem Biophys Res Commun. 353:324–329. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Xiao Z, Wei Z, Deng D, Zheng Z, Zhao Y, Jiang S, Zhang D, Zhang LJ, Fan M, Chen S, et al: Downregulation of Siah1 promotes colorectal cancer cell proliferation and migration by regulating AKT and YAP ubiquitylation and proteasome degradation. Cancer Cell Int. 20:502020. View Article : Google Scholar : PubMed/NCBI

109 

Wu W, Liu X, Wei L, Li T, Zang Y, Qian Y, Bai T, Li J, Xie M, Zhu Y, et al: Tp53 mutation inhibits ubiquitination and degradation of WISP1 via down-regulation of siah1 in pancreatic carcinogenesis. Front Pharmacol. 9:8572018. View Article : Google Scholar : PubMed/NCBI

110 

Ascherio A and Schwarzschild M: The epidemiology of Parkinson's disease: Risk factors and prevention. Lancet Neurol. 15:1257–1272. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Bloem BR, Okun MS and Klein C: Parkinson's disease. Lancet. 397:2284–2303. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Lees A, Hardy J and Revesz T: Parkinson's disease. Lancet. 373:2055–2066. 2009. View Article : Google Scholar : PubMed/NCBI

113 

Franck T, Krueger R, Woitalla D, Müller T, Engelender S and Riess O: Mutation analysis of the seven in absentia homolog 1 (SIAH1) gene in Parkinson's disease. J Neural Transm (Vienna). 113:1903–1908. 2006. View Article : Google Scholar : PubMed/NCBI

114 

Nagano Y, Yamashita H, Takahashi T, Kishida S, Nakamura T, Iseki E, Hattori N, Mizuno Y, Kikuchi A and Matsumoto M: Siah-1 facilitates ubiquitination and degradation of synphilin-1. J Biol Chem. 278:51504–51514. 2003. View Article : Google Scholar : PubMed/NCBI

115 

Liani E, Eyal A, Avraham E, Shemer R, Szargel R, Berg D, Bornemann A, Riess O, Ross CA, Rott R and Engelender S: Ubiquitylation of synphilin-1 and alpha-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson's disease. Proc Natl Acad Sci USA. 101:5500–5505. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, Randle SJ, Wray S, Lewis PA, Houlden H, et al: The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci. 16:1257–1265. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Yamamura Y, Kuzuhara S, Kondo K, Yanagi T, Uchida M, Matsumine H and Mizuno Y: Clinical, pathologic and genetic studies on autosomal recessive early-onset parkinsonism with diurnal fluctuation. Parkinsonism Relat Disord. 4:65–72. 1998. View Article : Google Scholar : PubMed/NCBI

118 

Shahnawaz M, Mukherjee A, Pritzkow S, Mendez N, Rabadia P, Liu X, Hu B, Schmeichel A, Singer W, Wu G, et al: Discriminating α-synuclein strains in Parkinson's disease and multiple system atrophy. Nature. 578:273–277. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Lövestam S, Schweighauser M, Matsubara T, Murayama S, Tomita T, Ando T, Hasegawa K, Yoshida M, Tarutani A, Hasegawa M, et al: Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy. FEBS Open Bio. 11:999–1013. 2021. View Article : Google Scholar : PubMed/NCBI

120 

Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B, Matsubara T, Tomita T, Ando T, Hasegawa K, et al: Structures of α-synuclein filaments from multiple system atrophy. Nature. 585:464–469. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Szargel R, Shani V, Elghani FA, Mekies LN, Liani E, Rott R and Engelender S: The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum Mol Genet. 25:3476–3490. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Subramaniam SR and Chesselet MF: Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol. 106–107. 17–32. 2013.PubMed/NCBI

123 

Pickrell AM and Youle RJ: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron. 85:257–273. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Ganguly G, Chakrabarti S, Chatterjee U and Saso L: Proteinopathy, oxidative stress and mitochondrial dysfunction: Cross talk in Alzheimer's disease and Parkinson's disease. Drug Des Devel Ther. 11:797–810. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Rocha EM, De Miranda B and Sanders LH: Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis. 109:249–257. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Macdonald R, Barnes K, Hastings C and Mortiboys H: Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: Can mitochondria be targeted therapeutically? Biochem Soc Trans. 46:891–909. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Wang T, Zhang J, Hu M, Zhang Y, Cui P, Li X, Li J, Vestin E, Brännström M, Shao LR and Billig H: Differential expression patterns of glycolytic enzymes and mitochondria-dependent apoptosis in PCOS patients with endometrial hyperplasia, an early hallmark of endometrial cancer, in vivo and the impact of metformin in vitro. Int J Biol Sci. 15:714–725. 2019. View Article : Google Scholar : PubMed/NCBI

128 

Buratti J, Ji L, Keren B, Lee Y, Booke S, Erdin S, Kim SY, Palculict TB, Meiner V, Chae JH, et al: De novo variants in SIAH1, encoding an E3 ubiquitin ligase, are associated with developmental delay, hypotonia and dysmorphic features. J Med Genet. 58:205–212. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Khan I and Leventhal BL: Developmental delay. StatPearls StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; Treasure Island, FL: 2021

130 

Oberklaid F and Efron D: Developmental delay - identification and management. Aust Fam Physician. 34:739–742. 2005.PubMed/NCBI

131 

Martiniuk AL, Vujovich-Dunn C, Park M, Yu W and Lucas BR: Plagiocephaly and developmental delay: A systematic review. J Dev Behav Pediatr. 38:67–78. 2017. View Article : Google Scholar : PubMed/NCBI

132 

Zhou T, Chen Y, Zhao B, Hu S, Li J, Liu M, Liang S, Bao Z and Wu X: Characterization and functional analysis of SIAH1 during skin and hair follicle development in the angora rabbit (Oryctolagus cuniculus). Hereditas. 157:102020. View Article : Google Scholar : PubMed/NCBI

133 

Farmanullah Hosseini SM, Liang A, Hua G, Rehman ZU, Talpur HS, Salim M, Ahmad S, Abulaiti A, Khan M, et al: Adaptive molecular evolution of AKT3 gene for positive diversifying selection in mammals. Biomed Res Int. 2020:25846272020. View Article : Google Scholar : PubMed/NCBI

134 

Alcantara D, Timms AE, Gripp K, Baker L, Park K, Collins S, Cheng C, Stewart F, Mehta SG, Saggar A, et al: Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain. 140:2610–2622. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Ko HR, Jin E, Lee SB, Kim CK, Yun T, Cho SW, Park KW and Ahn JY: SIAH1 ubiquitin ligase mediates ubiquitination and degradation of Akt3 in neural development. J Biol Chem. 294:15435–15445. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Taoufik E and Probert L: Ischemic neuronal damage. Curr Pharm Des. 14:3565–3573. 2008. View Article : Google Scholar : PubMed/NCBI

137 

Bruce-Keller AJ: Microglial-neuronal interactions in synaptic damage and recovery. J Neurosci Res. 58:191–201. 1999. View Article : Google Scholar : PubMed/NCBI

138 

Huo J, Zhu XL, Ma R, Dong HL and Su BX: GAPDH/Siah1 cascade is involved in traumatic spinal cord injury and could be attenuated by sivelestat sodium. Neuroscience. 330:171–180. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Huo J, Ma R, Chai X, Liang HJ, Jiang P, Zhu XL, Chen X and Su BX: Inhibiting a spinal cord signaling pathway protects against ischemia injury in rats. J Thoracic Cardiovascular Surg. 157:494–503. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL, Dawson TM, Sawa A and Snyder SH: Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci USA. 103:3887–3889. 2006. View Article : Google Scholar : PubMed/NCBI

141 

Bangaru ML, Park F, Hudmon A, McCallum JB and Hogan QH: Quantification of gene expression after painful nerve injury: Validation of optimal reference genes. J Mol Neurosci. 46:497–504. 2012. View Article : Google Scholar : PubMed/NCBI

142 

Chuang DM and Ishitani R: A role for GAPDH in apoptosis and neurodegeneration. Nat Med. 2:609–610. 1996. View Article : Google Scholar : PubMed/NCBI

143 

Su BX, Chen X, Huo J, Guo SY, Ma R and Liu YW: The synthetic cannabinoid WIN55212-2 ameliorates traumatic spinal cord injury via inhibition of GAPDH/Siah1 in a CB2-receptor dependent manner. Brain Res. 1671:85–92. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Zhai D, Chin K, Wang M and Liu F: Disruption of the nuclear p53-GAPDH complex protects against ischemia-induced neuronal damage. Mol Brain. 7:202014. View Article : Google Scholar : PubMed/NCBI

145 

Li C, Feng JJ, Wu YP and Zhang GY: Cerebral ischemia-reperfusion induces GAPDH S-nitrosylation and nuclear translocation. Biochemistry (Mosc). 77:671–678. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Jiang X and Shen X: Knockdown of miR-299-5p inhibits the progression of hepatocellular carcinoma by targeting SIAH1. Bull Cancer. 105:873–883. 2018. View Article : Google Scholar : PubMed/NCBI

147 

Hui Z, Zhijun Y, Yushan Y, Liping C, Yiying Z, Difan Z, Chunglit CT and Wei C: The combination of acyclovir and dexamethasone protects against Alzheimer's disease-related cognitive impairments in mice. Psychopharmacology (Berl). 237:1851–1860. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Vogel J, Young A, Oxtoby N, Smith R, Ossenkoppele R, Strandberg OT, Joie RL, Aksman LM, Grothe MJ, Iturria-Medina Y, et al: Four distinct trajectories of tau deposition identified in Alzheimer's disease. Nat Med. 27:871–881. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA and Jones DT: Alzheimer disease. Nat Rev Dis Primers. 7:332021. View Article : Google Scholar : PubMed/NCBI

150 

Wasik U, Schneider G, Mietelska-Porowska A, Mazurkiewicz M, Fabczak H, Weis S, Zabke C, Harrington CR, Filipek A and Niewiadomska G: Calcyclin binding protein and Siah-1 interacting protein in Alzheimer's disease pathology: Neuronal localization and possible function. Neurobiol Aging. 34:1380–1388. 2013. View Article : Google Scholar : PubMed/NCBI

151 

Chen Y, Lian YJ, Ma YQ, Wu CJ, Zheng YK and Xie NC: LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology. 68:212–221. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Pang RT, Liu WM, Leung CO, Ye TM, Kwan PC, Lee KF and Yeung WS: miR-135A regulates preimplantation embryo development through down-regulation of E3 ubiquitin ligase seven in absentia homolog 1A (SIAH1A) expression. PLoS One. 6:e278782011. View Article : Google Scholar : PubMed/NCBI

153 

Schafer AR, Smith JL, Pryke KM, DeFilippis VR and Hirsch AJ: The E3 ubiquitin ligase SIAH1 targets MyD88 for proteasomal degradation during dengue virus infection. Front Microbiol. 11:242020. View Article : Google Scholar : PubMed/NCBI

154 

Zhou Y, Li L, Liu Q, Xing G, Kuai X, Sun J, Yin X, Wang J, Zhang L and He F: E3 ubiquitin ligase SIAH1 mediates ubiquitination and degradation of TRB3. Cell Signal. 20:942–948. 2008. View Article : Google Scholar : PubMed/NCBI

155 

Nagano Y, Fukushima T, Okemoto K, Tanaka K, Bowtell DD, Ronai Z, Reed JC and Matsuzawa SI: Siah1/SIP regulates p27(kip1) stability and cell migration under metabolic stress. Cell Cycle. 10:2592–2602. 2011. View Article : Google Scholar : PubMed/NCBI

156 

Hara MR and Snyder SH: Nitric oxide-GAPDH-Siah: A novel cell death cascade. Cell Mol Neurobiol. 26:527–538. 2006. View Article : Google Scholar : PubMed/NCBI

157 

Song Y, Xu Y, Pan C, Yan L, Wang ZW and Zhu X: The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer. 19:22020. View Article : Google Scholar : PubMed/NCBI

158 

Shah M, Stebbins JL, Dewing A, Qi J, Pellecchia M and Ronai ZA: Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis. Pigment Cell Melanoma Res. 22:799–808. 2009. View Article : Google Scholar : PubMed/NCBI

159 

Zhang H, Cao X, Wang J, Li Q, Zhao Y and Jin X: LZTR1: A promising adaptor of the CUL3 family. Oncol Lett. 22:5642021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang H, Wang J, Ge Y, Ye M and Jin X: Siah1 in cancer and nervous system diseases (Review). Oncol Rep 47: 35, 2022.
APA
Zhang, H., Wang, J., Ge, Y., Ye, M., & Jin, X. (2022). Siah1 in cancer and nervous system diseases (Review). Oncology Reports, 47, 35. https://doi.org/10.3892/or.2021.8246
MLA
Zhang, H., Wang, J., Ge, Y., Ye, M., Jin, X."Siah1 in cancer and nervous system diseases (Review)". Oncology Reports 47.2 (2022): 35.
Chicago
Zhang, H., Wang, J., Ge, Y., Ye, M., Jin, X."Siah1 in cancer and nervous system diseases (Review)". Oncology Reports 47, no. 2 (2022): 35. https://doi.org/10.3892/or.2021.8246
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang H, Wang J, Ge Y, Ye M and Jin X: Siah1 in cancer and nervous system diseases (Review). Oncol Rep 47: 35, 2022.
APA
Zhang, H., Wang, J., Ge, Y., Ye, M., & Jin, X. (2022). Siah1 in cancer and nervous system diseases (Review). Oncology Reports, 47, 35. https://doi.org/10.3892/or.2021.8246
MLA
Zhang, H., Wang, J., Ge, Y., Ye, M., Jin, X."Siah1 in cancer and nervous system diseases (Review)". Oncology Reports 47.2 (2022): 35.
Chicago
Zhang, H., Wang, J., Ge, Y., Ye, M., Jin, X."Siah1 in cancer and nervous system diseases (Review)". Oncology Reports 47, no. 2 (2022): 35. https://doi.org/10.3892/or.2021.8246
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team