|
1
|
Wang W, Hao Y, Liu Y, Li R, Huang DB and
Pan YY: Nanomedicine in lung cancer: Current states of overcoming
drug resistance and improving cancer immunotherapy. Wiley
Interdiscip Rev Nanomed Nanobiotechnol. 13:e16542021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Duma N, Santana-Davila R and Molina JR:
Non-small cell lung cancer: Epidemiology, screening, diagnosis, and
treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hai J, Zhu CQ, Bandarchi B, Wang YH, Navab
R, Shepherd FA, Jurisica I and Tsao MS: L1 cell adhesion molecule
promotes tumorigenicity and metastatic potential in non-small cell
lung cancer. Clin Cancer Res. 18:1914–1924. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Meijer TWH, Peeters WJM, Dubois LJ, van
Gisbergen MW, Biemans R, Venhuizen JH, Span PN and Bussink J:
Targeting glucose and glutamine metabolism combined with radiation
therapy in non-small cell lung cancer. Lung Cancer. 126:32–40.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yao L, Liu M, Huang Y, Wu K, Huang X, Zhao
Y, He W and Zhang R: Metformin use and lung cancer risk in diabetic
patients: A systematic review and meta-analysis. Dis Markers.
2019:62301622019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Troncone M, Cargnelli SM, Villani LA,
Isfahanian N, Broadfield LA, Zychla L, Wright J, Pond G, Steinberg
GR and Tsakiridis T: Targeting metabolism and AMP-activated kinase
with metformin to sensitize non-small cell lung cancer (NSCLC) to
cytotoxic therapy: Translational biology and rationale for current
clinical trials. Oncotarget. 8:57733–57754. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
DeBerardinis RJ and Chandel NS:
Fundamentals of cancer metabolism. Sci Adv. 2:e16002002016.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bose S and Le A: Glucose metabolism in
cancer. Adv Exp Med Biol. 1063:3–12. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu W, Yu X, Zhou L, Li J, Li M, Li W and
Gao F: Sinomenine inhibits non-small cell lung cancer via
downregulation of hexokinases II-mediated aerobic glycolysis. Onco
Targets Ther. 13:3209–3221. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Toba H, Kawakita N, Takashima M, Matsumoto
D, Takizawa H, Otsuka H and Tangoku A: Diagnosis of recurrence and
follow-up using FDG-PET/CT for postoperative non-small-cell lung
cancer patients. Gen Thorac Cardiovasc Surg. 69:311–317. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li XB, Gu JD and Zhou QH: Review of
aerobic glycolysis and its key enzymes-new targets for lung cancer
therapy. Thorac Cancer. 6:17–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Martinez-Outschoorn UE, Peiris-Pagés M,
Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A
therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang L, Ran Y, Zhu Y and Zhen Q: Effect
of addition of WZB117 as an inhibitor of glucose transporter 1 for
venous blood glucose determination. Lab Med. 52:197–201. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tiemin P, Peng X, Qingfu L, Yan W, Junlin
X, Zhefeng H, Ming Z, Desen L and Qinghui M: Dysregulation of the
miR-148a-GLUT1 axis promotes the progression and chemoresistance of
human intrahepatic cholangiocarcinoma. Oncogenesis. 9:192020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhao F, Ming J, Zhou Y and Fan L:
Inhibition of Glut1 by WZB117 sensitizes radioresistant breast
cancer cells to irradiation. Cancer Chemother Pharmacol.
77:963–972. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yakisich JS, Azad N, Kaushik V and Iyer
AKV: The biguanides metformin and buformin in combination with
2-Deoxy-glucose or WZB-117 inhibit the viability of highly
resistant human lung cancer cells. Stem Cells Int.
2019:62542692019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ojelabi OA, Lloyd KP, Simon AH, De Zutter
JK and Carruthers A: WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy)
Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated sugar transport
by binding reversibly at the exofacial sugar binding site. J Biol
Chem. 291:26762–26772. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liu Y, Cao Y, Zhang W, Bergmeier S, Qian
Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, et al: A small-molecule
inhibitor of glucose transporter 1 downregulates glycolysis,
induces cell-cycle arrest, and inhibits cancer cell growth in vitro
and in vivo. Mol Cancer Ther. 11:1672–1682. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jia KG, Feng G, Tong YS, Tao GZ and Xu L:
MiR-206 regulates non-small-cell lung cancer cell aerobic
glycolysis by targeting hexokinase 2. J Biochem. 167:365–370. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
An S, Huang L, Miao P, Shi L, Shen M, Zhao
X, Liu J and Huang G: Small ubiquitin-like modifier 1 modification
of pyruvate kinase M2 promotes aerobic glycolysis and cell
proliferation in A549 human lung cancer cells. Onco Targets Ther.
11:2097–2109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Porporato PE, Filigheddu N, Pedro JMB,
Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell
Res. 28:265–280. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Israelsen WJ, Dayton TL, Davidson SM,
Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW,
et al: PKM2 isoform-specific deletion reveals a differential
requirement for pyruvate kinase in tumor cells. Cell. 155:397–409.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cortés-Cros M, Hemmerlin C, Ferretti S,
Zhang J, Gounarides JS, Yin H, Muller A, Haberkorn A, Chene P,
Sellers WR and Hofmann F: M2 isoform of pyruvate kinase is
dispensable for tumor maintenance and growth. Proc Natl Acad Sci
USA. 110:489–494. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Weinhouse S: The Warburg hypothesis fifty
years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol.
87:115–126. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fantin VR, St-Pierre J and Leder P:
Attenuation of LDH-A expression uncovers a link between glycolysis,
mitochondrial physiology, and tumor maintenance. Cancer Cell.
9:425–434. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Moreno-Sánchez R, Rodríguez-Enríquez S,
Marín-Hernández A and Saavedra E: Energy metabolism in tumor cells.
FEBS J. 274:1393–1418. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zacksenhaus E, Shrestha M, Liu JC,
Vorobieva I, Chung PED, Ju Y, Nir U and Jiang Z: Mitochondrial
OXPHOS Induced by RB1 deficiency in breast cancer: Implications for
anabolic metabolism, stemness, and metastasis. Trends Cancer.
3:768–779. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Joshi S, Tolkunov D, Aviv H, Hakimi AA,
Yao M, Hsieh JJ, Ganesan S, Chan CS and White E: The genomic
landscape of renal oncocytoma identifies a metabolic barrier to
tumorigenesis. Cell Rep. 13:1895–1908. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Weinberg F, Hamanaka R, Wheaton WW,
Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger
GR and Chandel NS: Mitochondrial metabolism and ROS generation are
essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA.
107:8788–8793. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Martínez-Reyes I, Diebold LP, Kong H,
Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH,
Woychik R, et al: TCA cycle and mitochondrial membrane potential
are necessary for diverse biological functions. Mol Cell.
61:199–209. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cheng G, Zhang Q, Pan J, Lee Y, Ouari O,
Hardy M, Zielonka M, Myers CR, Zielonka J, Weh K, et al: Targeting
lonidamine to mitochondria mitigates lung tumorigenesis and brain
metastasis. Nat Commun. 10:22052019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Viollet B, Guigas B, Sanz Garcia N,
Leclerc J, Foretz M and Andreelli F: Cellular and molecular
mechanisms of metformin: An overview. Clin Sci (Lond). 122:253–270.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Sanchez-Alvarez R, Martinez-Outschoorn UE,
Lamb R, Hulit J, Howell A, Gandara R, Sartini M, Rubin E, Lisanti
MP and Sotgia F: Mitochondrial dysfunction in breast cancer cells
prevents tumor growth: Understanding chemoprevention with
metformin. Cell Cycle. 12:172–182. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Brown SL, Kolozsvary A, Isrow DM, Al
Feghali K, Lapanowski K, Jenrow KA and Kim JH: A novel mechanism of
high dose radiation sensitization by metformin. Front Oncol.
9:2472019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhao Q, Zhou X, Curbo S and Karlsson A:
Metformin downregulates the mitochondrial carrier SLC25A10 in a
glucose dependent manner. Biochem Pharmacol. 156:444–450. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang ZJ, Bi Y, Li S, Zhang Q, Zhao G, Guo
Y and Song Q: Reduced risk of lung cancer with metformin therapy in
diabetic patients: A systematic review and meta-analysis. Am J
Epidemiol. 180:11–14. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tsai MJ, Yang CJ, Kung YT, Sheu CC, Shen
YT, Chang PY, Huang MS and Chiu HC: Metformin decreases lung cancer
risk in diabetic patients in a dose-dependent manner. Lung Cancer.
86:137–143. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kang J, Jeong SM, Shin DW, Cho M, Cho JH
and Kim J: The associations of aspirin, statins, and metformin with
lung cancer risk and related mortality: A time-dependent analysis
of population-based nationally representative data. J Thorac Oncol.
16:76–88. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li C, Xue Y, Xi YR and Xie K: Progress in
the application and mechanism of metformin in treating non-small
cell lung cancer. Oncol Lett. 13:2873–2880. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Frasca F, Pandini G, Sciacca L, Pezzino V,
Squatrito S, Belfiore A and Vigneri R: The role of insulin
receptors and IGF-I receptors in cancer and other diseases. Arch
Physiol Biochem. 114:23–37. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mihaylova MM and Shaw RJ: The AMPK
signalling pathway coordinates cell growth, autophagy and
metabolism. Nat Cell Biol. 13:1016–1023. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kim KH, Song MJ, Yoo EJ, Choe SS, Park SD
and Kim JB: Regulatory role of glycogen synthase kinase 3 for
transcriptional activity of ADD1/SREBP1c. J Biol Chem.
279:51999–52006. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shaw RJ, Kosmatka M, Bardeesy N, Hurley
RL, Witters LA, DePinho RA and Cantley LC: The tumor suppressor
LKB1 kinase directly activates AMP-activated kinase and regulates
apoptosis in response to energy stress. Proc Natl Acad Sci USA.
101:3329–3335. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Woods A, Johnstone SR, Dickerson K, Leiper
FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M and
Carling D: LKB1 is the upstream kinase in the AMP-activated protein
kinase cascade. Curr Biol. 13:2004–2008. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Koo SH, Flechner L, Qi L, Zhang X,
Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P,
et al: The CREB coactivator TORC2 is a key regulator of fasting
glucose metabolism. Nature. 437:1109–1111. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Inoki K, Zhu T and Guan KL: TSC2 mediates
cellular energy response to control cell growth and survival. Cell.
115:577–590. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Forcet C and Billaud M: Dialogue between
LKB1 and AMPK: A hot topic at the cellular pole. Sci STKE.
2007:pe512007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Korsse SE, Peppelenbosch MP and van Veelen
W: Targeting LKB1 signaling in cancer. Biochim Biophys Acta.
1835:194–210. 2013.PubMed/NCBI
|
|
52
|
Shackelford DB and Shaw RJ: The LKB1-AMPK
pathway: Metabolism and growth control in tumour suppression. Nat
Rev Cancer. 9:563–575. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu B, Fan Z, Edgerton SM, Deng XS,
Alimova IN, Lind SE and Thor AD: Metformin induces unique
biological and molecular responses in triple negative breast cancer
cells. Cell Cycle. 8:2031–2040. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gwinn DM, Shackelford DB, Egan DF,
Mihaylova MM, Mery A, Vasquez DS, Turk BE and Shaw RJ: AMPK
phosphorylation of raptor mediates a metabolic checkpoint. Mol
Cell. 30:214–226. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Buzzai M, Jones RG, Amaravadi RK, Lum JJ,
DeBerardinis RJ, Zhao F, Viollet B and Thompson CB: Systemic
treatment with the antidiabetic drug metformin selectively impairs
p53-deficient tumor cell growth. Cancer Res. 67:6745–6752. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bolster DR, Crozier SJ, Kimball SR and
Jefferson LS: AMP-activated protein kinase suppresses protein
synthesis in rat skeletal muscle through down-regulated mammalian
target of rapamycin (mTOR) signaling. J Biol Chem. 277:23977–23980.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Guo Q, Liu Z, Jiang L, Liu M, Ma J, Yang
C, Han L, Nan K and Liang X: Metformin inhibits growth of human
non-small cell lung cancer cells via liver kinase B-1-independent
activation of adenosine monophosphate-activated protein kinase. Mol
Med Rep. 13:2590–2596. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Xiao X, He Q, Lu C, Werle KD, Zhao RX,
Chen J, Davis BC, Cui R, Liang J and Xu ZX: Metformin impairs the
growth of liver kinase B1-intact cervical cancer cells. Gynecol
Oncol. 127:249–255. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Storozhuk Y, Hopmans SN, Sanli T, Barron
C, Tsiani E, Cutz JC, Pond G, Wright J, Singh G and Tsakiridis T:
Metformin inhibits growth and enhances radiation response of
non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J
Cancer. 108:2021–2032. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Condon KJ and Sabatini DM: Nutrient
regulation of mTORC1 at a glance. J Cell Sci. 132:jcs2225702019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Saxton RA and Sabatini DM: mTOR signaling
in growth, metabolism, and disease. Cell. 168:960–976. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Düvel K, Yecies JL, Menon S, Raman P,
Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S,
et al: Activation of a metabolic gene regulatory network downstream
of mTOR complex 1. Mol Cell. 39:171–183. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Howell JJ, Ricoult SJ, Ben-Sahra I and
Manning BD: A growing role for mTOR in promoting anabolic
metabolism. Biochem Soc Trans. 41:906–912. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Schneider MB, Matsuzaki H, Haorah J,
Ulrich A, Standop J, Ding XZ, Adrian TE and Pour PM: Prevention of
pancreatic cancer induction in hamsters by metformin.
Gastroenterology. 120:1263–1270. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bussink J, van der Kogel AJ and Kaanders
JH: Activation of the PI3-K/AKT pathway and implications for
radioresistance mechanisms in head and neck cancer. Lancet Oncol.
9:288–296. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Dearden S, Stevens J, Wu YL and Blowers D:
Mutation incidence and coincidence in non small-cell lung cancer:
Meta-analyses by ethnicity and histology (mutMap). Ann Oncol.
24:2371–2376. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ma Y, Guo FC, Wang W, Shi HS, Li D and
Wang YS: K-ras gene mutation as a predictor of cancer cell
responsiveness to metformin. Mol Med Rep. 8:763–768. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kalender A, Selvaraj A, Kim SY, Gulati P,
Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, et
al: Metformin, independent of AMPK, inhibits mTORC1 in a rag
GTPase-dependent manner. Cell Metab. 11:390–401. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dong J, Peng H, Yang X, Wu W, Zhao Y, Chen
D, Chen L and Liu J: Metformin mediated microRNA-7 upregulation
inhibits growth, migration, and invasion of non-small cell lung
cancer A549 cells. Anticancer Drugs. 31:345–352. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Jin D, Guo J, Wu Y, Chen W, Du J, Yang L,
Wang X, Gong K, Dai J, Miao S, et al: Metformin-repressed
miR-381-YAP-snail axis activity disrupts NSCLC growth and
metastasis. J Exp Clin Cancer Res. 39:62020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fatehi Hassanabad A and MacQueen K:
Molecular mechanisms underlining the role of metformin as a
therapeutic agent in lung cancer. Cell Oncol (Dordr). 44:1–18.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhou X, Liu S, Lin X, Xu L, Mao X, Liu J,
Zhang Z, Jiang W and Zhou H: Metformin inhibit lung cancer cell
growth and invasion in vitro as well as tumor formation in vivo
partially by activating PP2A. Med Sci Monit. 25:836–846. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Moro M, Caiola E, Ganzinelli M, Zulato E,
Rulli E, Marabese M, Centonze G, Busico A, Pastorino U, de Braud
FG, et al: Metformin enhances cisplatin-induced apoptosis and
prevents resistance to cisplatin in Co-mutated KRAS/LKB1 NSCLC. J
Thorac Oncol. 13:1692–1704. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Luo Z, Zhu T, Luo W, Lv Y, Zhang L, Wang
C, Li M, Wu W and Shi S: Metformin induces apoptotic cytotoxicity
depending on AMPK/PKA/GSK-3β-mediated c-FLIPL
degradation in non-small cell lung cancer. Cancer Manag Res.
11:681–689. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Riaz MA, Sak A, Erol YB, Groneberg M,
Thomale J and Stuschke M: Metformin enhances the radiosensitizing
effect of cisplatin in non-small cell lung cancer cell lines with
different cisplatin sensitivities. Sci Rep. 9:12822019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim
HK, Shim YM and Kim DH: Metformin and tenovin-6 synergistically
induces apoptosis through LKB1-independent SIRT1 down-regulation in
non-small cell lung cancer cells. J Cell Mol Med. 23:2872–2889.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ko E, Baek S, Kim J, Park D and Lee Y:
Antitumor activity of combination therapy with metformin and
trametinib in non-small cell lung cancer cells. Dev Reprod.
24:113–123. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang JL, Lan YW, Tsai YT, Chen YC,
Staniczek T, Tsou YA, Yen CC and Chen CM: Additive
antiproliferative and antiangiogenic effects of metformin and
pemetrexed in a non-small-cell lung cancer xenograft model. Front
Cell Dev Biol. 9:6880622021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Akopyan G and Bonavida B: Understanding
tobacco smoke carcinogen NNK and lung tumorigenesis. Int J Oncol.
29:745–752. 2006.PubMed/NCBI
|
|
80
|
Memmott RM, Mercado JR, Maier CR, Kawabata
S, Fox SD and Dennis PA: Metformin prevents tobacco
carcinogen-induced lung tumorigenesis. Cancer Prev Res (Phila).
3:1066–1076. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
De Bruycker S, Vangestel C, Van den
Wyngaert T, Pauwels P, Wyffels L, Staelens S and Stroobants S:
18F-Flortanidazole Hypoxia PET holds promise as a
prognostic and predictive imaging biomarker in a lung cancer
xenograft model treated with metformin and radiotherapy. J Nucl
Med. 60:34–40. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Borzi C, Ganzinelli M, Caiola E, Colombo
M, Centonze G, Boeri M, Signorelli D, Caleca L, Rulli E, Busico A,
et al: LKB1 down-modulation by miR-17 identifies patients with
NSCLC having worse prognosis eligible for energy-stress-based
treatments. J Thorac Oncol. 16:1298–1311. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tseng CH: Metformin and lung cancer risk
in patients with type 2 diabetes mellitus. Oncotarget.
8:41132–41142. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xiao K, Liu F, Liu J, Xu J, Wu Q and Li X:
The effect of metformin on lung cancer risk and survival in
patients with type 2 diabetes mellitus: A meta-analysis. J Clin
Pharm Ther. 45:783–792. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Arrieta O, Varela-Santoyo E,
Soto-Perez-de-Celis E, Sánchez-Reyes R, De la Torre-Vallejo M,
Muñiz-Hernández S and Cardona AF: Metformin use and its effect on
survival in diabetic patients with advanced non-small cell lung
cancer. BMC Cancer. 16:6332016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Xu T, Li D, He Y, Zhang F, Qiao M and Chen
Y: Prognostic value of metformin for non-small cell lung cancer
patients with diabetes. World J Surg Oncol. 16:602018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lin JJ, Gallagher EJ, Sigel K, Mhango G,
Galsky MD, Smith CB, LeRoith D and Wisnivesky JP: Survival of
patients with stage IV lung cancer with diabetes treated with
metformin. Am J Respir Crit Care Med. 191:448–454. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cao X, Wen ZS, Wang XD, Li Y, Liu KY and
Wang X: The clinical effect of metformin on the survival of lung
cancer patients with diabetes: A comprehensive systematic review
and meta-analysis of retrospective studies. J Cancer. 8:2532–2541.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kim J, Hyun HJ, Choi EA, Yoo JW, Lee S,
Jeong N, Shen JJ, You HS, Kim YS and Kang HT: Diabetes, metformin,
and lung cancer: Retrospective study of the Korean NHIS-HEALS
Database. Clin Lung Cancer. 21:e551–e559. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Cruz-Bermúdez A, Laza-Briviesca R,
Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S,
Palacios-Zambrano S, Moreno-Villa MR, Ruiz-Valdepeñas AM, Lendinez
C, et al: Cisplatin resistance involves a metabolic reprogramming
through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS
inhibition. Free Radic Biol Med. 135:167–181. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Menendez JA, Oliveras-Ferraros C, Cufí S,
Corominas-Faja B, Joven J, Martin-Castillo B and Vazquez-Martin A:
Metformin is synthetically lethal with glucose withdrawal in cancer
cells. Cell Cycle. 11:2782–2792. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Elgendy M, Cirò M, Hosseini A, Weiszmann
J, Mazzarella L, Ferrari E, Cazzoli R, Curigliano G, DeCensi A,
Bonanni B, et al: Combination of hypoglycemia and metformin impairs
tumor metabolic plasticity and growth by modulating the
PP2A-GSK3β-MCL-1 Axis. Cancer Cell. 35:798–815.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hao W, Chang CP, Tsao CC and Xu J:
Oligomycin-induced bioenergetic adaptation in cancer cells with
heterogeneous bioenergetic organization. J Biol Chem.
285:12647–12654. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jose C, Bellance N and Rossignol R:
Choosing between glycolysis and oxidative phosphorylation: A
tumor's dilemma? Biochim Biophys Acta. 1807:552–561. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Birsoy K, Possemato R, Lorbeer FK,
Bayraktar EC, Thiru P, Yucel B, Wang T, Chen WW, Clish CB and
Sabatini DM: Metabolic determinants of cancer cell sensitivity to
glucose limitation and biguanides. Nature. 508:108–112. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Dykens JA, Jamieson J, Marroquin L,
Nadanaciva S, Billis PA and Will Y: Biguanide-induced mitochondrial
dysfunction yields increased lactate production and cytotoxicity of
aerobically-poised HepG2 cells and human hepatocytes in vitro.
Toxicol Appl Pharmacol. 233:203–210. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hou XB, Li TH, Ren ZP and Liu Y:
Combination of 2-deoxy d-glucose and metformin for synergistic
inhibition of non-small cell lung cancer: A reactive oxygen species
and P-p38 mediated mechanism. Biomed Pharmacother. 84:1575–1584.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lee C, Raffaghello L, Brandhorst S, Safdie
FM, Bianchi G, Martin-Montalvo A, Pistoia V, Wei M, Hwang S,
Merlino A, et al: Fasting cycles retard growth of tumors and
sensitize a range of cancer cell types to chemotherapy. Sci Transl
Med. 4:124ra272012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Javeshghani S, Zakikhani M, Austin S,
Bazile M, Blouin MJ, Topisirovic I, St-Pierre J and Pollak MN:
Carbon source and myc expression influence the antiproliferative
actions of metformin. Cancer Res. 72:6257–6267. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Vernieri C, Signorelli D, Galli G,
Ganzinelli M, Moro M, Fabbri A, Tamborini E, Marabese M, Caiola E,
Broggini M, et al: Exploiting FAsting-mimicking Diet and MEtformin
to improve the efficacy of platinum-pemetrexed chemotherapy in
advanced LKB1-inactivated lung adenocarcinoma: The FAME Trial. Clin
Lung Cancer. 20:e413–e417. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Arrieta O, Barrón F, Padilla M,
Avilés-Salas A, Ramírez-Tirado L, Arguelles Jiménez M, Vergara E,
Zatarain-Barrón Z, Hernández-Pedro N, Cardona A, et al: Effect of
metformin plus tyrosine kinase inhibitors compared with tyrosine
kinase inhibitors alone in patients with epidermal growth factor
receptor-mutated lung adenocarcinoma: A phase 2 randomized clinical
trial. JAMA Oncol. 5:e1925532019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Afzal MZ, Dragnev K, Sarwar T and Shirai
K: Clinical outcomes in non-small-cell lung cancer patients
receiving concurrent metformin and immune checkpoint inhibitors.
Lung Cancer Manag. 8:LMT112019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang J, Jiao K, Liu J and Xia Y:
Metformin reverses the resistance mechanism of lung adenocarcinoma
cells that knocks down the Nrf2 gene. Oncol Lett. 16:6071–6080.
2018.PubMed/NCBI
|
|
104
|
Wang J, Wang Y, Han J, Mei H, Yu D, Ding
Q, Zhang T, Wu G, Peng G and Lin Z: Metformin attenuates
radiation-induced pulmonary fibrosis in a murine model. Radiat Res.
188:105–113. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Huang S, He T, Yang S, Sheng H, Tang X,
Bao F, Wang Y, Lin X, Yu W, Cheng F, et al: Metformin reverses
chemoresistance in non-small cell lung cancer via accelerating
ubiquitination-mediated degradation of Nrf2. Transl Lung Cancer
Res. 9:2337–2355. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang X, Chen K, Yu Y, Xiang Y, Kim JH,
Gong W, Huang J, Shi G, Li Q, Zhou M, et al: Metformin sensitizes
lung cancer cells to treatment by the tyrosine kinase inhibitor
erlotinib. Oncotarget. 8:109068–109078. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Jacobi O, Landman Y, Reinhorn D, Icht O,
Sternschuss M, Rotem O, Finkel I, Allen AM, Dudnik E, Goldstein DA
and Zer A: The relationship of diabetes mellitus to efficacy of
immune checkpoint inhibitors in patients with advanced non-small
cell lung cancer. Oncology. 99:555–561. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Luo X, Chen X, Wang L, Yang B and Cai S:
Metformin adjunct with antineoplastic agents for the treatment of
lung cancer: A meta-analysis of randomized controlled trials and
observational cohort studies. Front Pharmacol. 12:6390162021.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Skinner H, Hu C, Tsakiridis T,
Santana-Davila R, Lu B, Erasmus JJ, Doemer AJ, Videtic GMM, Coster
J, Yang AX, et al: Addition of metformin to concurrent
chemoradiation in patients with locally advanced non-small cell
lung cancer: The NRG-LU001 phase 2 randomized clinical trial. JAMA
Oncol. 7:1324–1332. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Tsakiridis T, Pond GR, Wright J, Ellis PM,
Ahmed N, Abdulkarim B, Roa W, Robinson A, Swaminath A, Okawara G,
et al: Metformin in combination with chemoradiotherapy in locally
advanced non-small cell lung cancer: The OCOG-ALMERA randomized
clinical trial. JAMA Oncol. 7:1333–1341. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Eikawa S, Nishida M, Mizukami S, Yamazaki
C, Nakayama E and Udono H: Immune-mediated antitumor effect by type
2 diabetes drug, metformin. Proc Natl Acad Sci USA. 112:1809–1814.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Kim SH, Li M, Trousil S, Zhang Y, Pasca di
Magliano M, Swanson KD and Zheng B: Phenformin inhibits
myeloid-derived suppressor cells and enhances the anti-tumor
activity of PD-1 blockade in melanoma. J Invest Dermatol.
137:1740–1748. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Scharping NE, Menk AV, Whetstone RD, Zeng
X and Delgoffe GM: Efficacy of PD-1 blockade is potentiated by
metformin-induced reduction of tumor hypoxia. Cancer Immunol Res.
5:9–16. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wang JC, Sun X, Ma Q, Fu GF, Cong LL,
Zhang H, Fan DF, Feng J, Lu SY, Liu JL, et al: Metformin's
antitumour and anti-angiogenic activities are mediated by skewing
macrophage polarization. J Cell Mol Med. 22:3825–3836. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kubo T, Ninomiya T, Hotta K, Kozuki T,
Toyooka S, Okada H, Fujiwara T, Udono H and Kiura K: Study
protocol: Phase-Ib trial of nivolumab combined with metformin for
refractory/recurrent solid tumors. Clin Lung Cancer. 19:e861–e864.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Granja S, Marchiq I, Le Floch R, Moura CS,
Baltazar F and Pouysségur J: Disruption of BASIGIN decreases lactic
acid export and sensitizes non-small cell lung cancer to biguanides
independently of the LKB1 status. Oncotarget. 6:6708–6721. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Morgillo F, Sasso FC, Della Corte CM,
Festino L, Manzo A, Martinelli E, Troiani T, Capuano A and
Ciardiello F: Metformin in lung cancer: Rationale for a combination
therapy. Expert Opin Investig Drugs. 22:1401–1409. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Reinfeld BI, Madden MZ, Wolf MM, Chytil A,
Bader JE, Patterson AR, Sugiura A, Cohen AS, Ali A, Do BT, et al:
Cell-programmed nutrient partitioning in the tumour
microenvironment. Nature. 593:282–288. 2021. View Article : Google Scholar : PubMed/NCBI
|