Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
May-2022 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2022 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Tetraspanin CD9: A friend or foe of head and neck cancer (Review)

  • Authors:
    • Suhasini P.C.
    • Shilpa S. Shetty
    • Suchetha Kumari Nalilu
    • Praveen Kumar Shetty
    • Prakash Patil
  • View Affiliations / Copyright

    Affiliations: Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018, India, Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka 575018, India
    Copyright: © P.C. et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 88
    |
    Published online on: March 9, 2022
       https://doi.org/10.3892/or.2022.8299
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Head and neck cancers are diverse and complex diseases characterised by unregulated growth of tumour cells in various parts of the head and neck region, such as in the buccal mucosa, floor of the mouth, tongue, oropharynx, hypopharynx, oesophagus, nasopharynx and salivary glands. Partial or total glossectomy, radiation or chemotherapy greatly affect patient quality of life. However, even following treatment, patients may relapse. Nicotine‑derived nitrosamines and alcohol are the major etiological factors underlying this deadly disease. These compounds induce DNA damage that may lead to mutation in crucial genes, such as p53 and p21, which are important to regulate cell proliferation, thus leading to cancer. CD9 is a tetraspanin, which are a group of transmembrane proteins that have a role in cell motility and adhesion. The present review aimed to explore the role of CD9 in head and neck cancer. Epidermal growth factor receptor activity and cell proliferation are regulated by the CD9‑integrin/CD9‑transforming growth factor interaction. Hence, CD9 can play a dual role in various types of cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Grandis JR, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, Drenning SD and Tweardy DJ: Levels of TGF-α and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 90:824–832. 1998. View Article : Google Scholar : PubMed/NCBI

2 

National Comprehensive Cancer Network: Clinical Practice Guidelines in Oncology. Head and Neck Cancer. v1:2017.Available from. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site

3 

Lo Nigro C, Denaro N, Merlotti A and Merlano M: Head and neck cancer: Improving outcomes with a multidisciplinary approach. Cancer Manag Res. 9:363–371. 2017. View Article : Google Scholar : PubMed/NCBI

4 

https://www.cancer.net/cancer-types/head-and-neck-cancer/introduction

5 

https://www.uptodate.com/contents/epidemiology-and-risk-factors-for-head-and-neck-cancer?search=epidemiology-and-risk-factors-for-head-and-neck-cancer.&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1

6 

Hukkanen J, Jacob PII and Benowitz NL: Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 57:79–115. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Warren GW and Singh AK: Nicotine and lung cancer. J Carcinog. 12:12013. View Article : Google Scholar : PubMed/NCBI

8 

Hecht SS: Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer. 3:733–744. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Doll R and Peto R: The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 66:1191–1308. 1981. View Article : Google Scholar : PubMed/NCBI

10 

US Department of Health and Human Services, . Reducing the Health Consequences of Smoking: 25 Years of Progress. A Report of the Surgeon General; Centers for Disease Control and Prevention; Atlanta, GA: 1989

11 

Secretan B, Straif K, Baan R, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, et al: A review of human carcinogens-Part E: Tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 10:1033–1034. 2009. View Article : Google Scholar : PubMed/NCBI

12 

https://www.cancer.net/cancer-types/head-and-neck-cancer/risk-factors-and-prevention

13 

US Department of Health and Human Services, . How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-attributable Disease. A Report of the Surgeon General; Centers for Disease Control and Prevention; Atlanta, GA: 2010

14 

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, . Smokeless tobacco and some tobacco-specific N-nitrosamines. IARC Monogr Eval Carcinog Risks Hum. 89:1–592. 2007.PubMed/NCBI

15 

Takahashi H, Ogata H, Nishigaki R, Broide DH and Karin M: Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. Cancer Cell. 17:89–97. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Boyland E, Roe FJ and Gorrod JW: Induction of Pulmonary tumors in mice by nitrosonornicotine, a possible constituent of tobacco smoke. Nature. 202:11261964. View Article : Google Scholar : PubMed/NCBI

17 

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, . Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum. 83:1–1438. 2004.PubMed/NCBI

18 

Acetaldehyde. IARC Monogr Eval Carcinog Risk Chem Hum. 36:101–132. 1985.PubMed/NCBI

19 

Seitz HK and Stickel F: Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 7:599–612. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B and Persidsky Y: Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med. 45:1542–1550. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Wang F, Yang JL, Yu KK, Xu M, Xu YZ, Chen L, Lu YM, Fang HS, Wang XY, Hu ZQ, et al: Activation of the NF-κB pathway as a mechanism of alcohol enhanced progression and metastasis of human hepatocellular carcinoma. Mol Cancer. 14:102015. View Article : Google Scholar : PubMed/NCBI

22 

Shinohara M, Adachi Y, Mitsushita J, Kuwabara M, Nagasawa A, Harada S, Furuta S, Zhang Y, Seheli K, Miyazaki H and Kamata T: Reactive oxygen generated by NADPH oxidase 1 (NOX1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J Biol Chem. 285:4481–4488. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Ha PK, Chang SS, Glazer CA, Califano JA and Sidransky D: Molecular techniques and genetic alterations in head and neck cancer. Oral Oncol. 45:335–339. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Suh Y, Amelio I, Guerrero Urbano T and Tavassoli M: Clinical update on cancer: Molecular oncology of head and neck cancer. Cell Death Dis. 5:e10182014. View Article : Google Scholar : PubMed/NCBI

25 

Leemans CR, Snijders PJF and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Warnakulasuriya S: Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 45:309–316. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Kawakita A, Yanamoto S, Yamada S, Naruse T, Takahashi H, Kawasaki G and Umeda M: Microrna-21 promotes oral cancer invasion via the Wnt/β-catenin pathway by targeting DKK2. Pathol Oncol Res. 20:253–261. 2014. View Article : Google Scholar : PubMed/NCBI

29 

IARC Monographs on the Evaluation of Carcinogenic Risk to Human. Vol 100C. International Agency for Research on Cancer; Lyon: 2012

30 

Bánfalvi G: Heavy metals, trace elements and their cellular effects. Cellular Effects of Heavy Metals. Banfalvi G: Springer; Dordrecht: 2011, View Article : Google Scholar

31 

Ercal N, Gurer-Orhan H and Aykin-Burns N: Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 1:529–539. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Grund SC, Hanusch K and Wolf HU: Arsenic and arsenic compounds, Ullmann's encyclopedia of industrial chemistry. Wiley-VCH; Weinheim: 2005

33 

Shi H, Shi X and Liu KJ: Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem. 255:67–78. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Flora SJ: Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med. 51:257–281. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Hartwig A and Schwerdtle T: Interactions by carcinogenic metal compounds with DNA repair processes: Toxicological implications. Toxicol Lett. 127:47–54. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Mass MJ, Tennant A, Roop BC, Cullen WR, Styblo M, Thomas DJ and Kligerman AD: Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol. 14:355–361. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Bau DT, Wang TS, Chung CH, Wang AS, Wang AS and Jan KY: Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ Health Perspect. 110 (Suppl 5):S753–S756. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Goering PL, Aposhian HV, Mass MJ, Cebrián M, Beck BD and Waalkes MP: The enigma of arsenic carcinogenesis: Role of metabolism. Toxicol Sci. 49:5–14. 1999. View Article : Google Scholar : PubMed/NCBI

39 

Wilson K, Yang H, Seo CW and Marshall WE: Select metal adsorption by activated carbon made from peanut shells. Bioresour Technol. 97:2266–2270. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Kim HS, Kim YJ and Seo YR: An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J Cancer Prev. 20:232–240. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Dayan AD and Paine AJ: Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Hum Exp Toxicol. 20:439–451. 2001. View Article : Google Scholar : PubMed/NCBI

42 

Eastmond DA, MacGregor JT and Slesinski RS: Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol. 38:173–190. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Katz SA and Salem H: The toxicology of chromium with respect to its chemical speciation: A review. J Appl Toxicol. 13:217–224. 1993. View Article : Google Scholar : PubMed/NCBI

44 

Khlifi R, Olmedo P, Gil F, Hammami B, Chakroun A, Rebai A and Hamza-Chaffai A: Arsenic, cadmium, chromium and nickel in cancerous and healthy tissues from patients with head and neck cancer. Sci Total Environ. 452:58–67. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Beddok A, Krieger S, Castera L, Stoppa-Lyonnet D and Thariat J: Management of fanconi anemia patients with head and neck carcinoma: Diagnosis and treatment adaptation. Oral Oncol. 108:1048162020. View Article : Google Scholar : PubMed/NCBI

46 

Gasparini G, Longobardi G, Boniello R, Di Petrillo A and Pelo S: Fanconi anemia manifesting as a squamous cell carcinoma of the hard palate: A case report. Head Face Med. 2:12006. View Article : Google Scholar : PubMed/NCBI

47 

Swift MR and Hirschhorn K: Fanconi's anemia. Inherited susceptibility to chromosome breakage in various tissues. Ann Intern Med. 65:496–503. 1966. View Article : Google Scholar : PubMed/NCBI

48 

Esparza A and Thompson WR: Familial hypoplastic anemia with multiple congenital anomalies (Fanconi's syndrome)-report of three cases. Cases presented are of two sisters and a female cousin with complete clinical and post mortem findings. R I Med J. 49:103–110. 1966.PubMed/NCBI

49 

Mahmood N, Mihalcioiu C and Rabbani SA: Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): Diagnostic, prognostic, and therapeutic applications. Front Oncol. 8:242018. View Article : Google Scholar : PubMed/NCBI

50 

Pavón MA, Arroyo-Solera I, Céspedes MV, Casanova I, León X and Mangues R: uPA/uPAR and SERPINE1 in head and neck cancer: Role in tumor resistance, metastasis, prognosis and therapy. Oncotarget. 7:57351–57366. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Ghiso JA, Kovalski K and Ossowski L: Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol. 147:89–104. 1999. View Article : Google Scholar : PubMed/NCBI

52 

Ghiso JA: Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene. 21:2513–2524. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Nagase H and Woessner JF Jr: Matrix metalloproteinases. J Biol Chem. 274:21491–21494. 1999. View Article : Google Scholar : PubMed/NCBI

54 

Liotta LA and Stetler-Stevenson WG: Metalloproteinases and cancer invasion. Semin Cancer Biol. 1:99–106. 1990.PubMed/NCBI

55 

Nelson AR, Fingleton B, Rothenberg ML and Matrisian LM: Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol. 18:1135–1149. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Shapiro SD: Matrix metalloproteinase degradation of extracellular matrix: Biological consequences. Curr Opin Cell Biol. 10:602–608. 1998. View Article : Google Scholar : PubMed/NCBI

57 

Stetler-Stevenson WG: Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 9:289–303. 1990. View Article : Google Scholar : PubMed/NCBI

58 

Stetler-Stevenson WG, Hewitt R and Corcoran M: Matrix metalloproteinases and tumor invasion: From correlation and causality to the clinic. Semin Cancer Biol. 7:147–154. 1996. View Article : Google Scholar : PubMed/NCBI

59 

Stetler-Stevenson WG and Anita EY: Proteases in invasion: Matrix metalloproteinases. Semin Cancer Biol. 11:143–152. 2001. View Article : Google Scholar : PubMed/NCBI

60 

Ruokolainen H, Pääkkö P and Turpeenniemi-Hujanen T: Expression of matrix metalloproteinase-9 in head and neck squamous cell carcinoma: A potential marker for prognosis. Clin Cancer Res. 10:3110–3116. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Angiero F, Gatta LB, Seramondi R, Berenzi A, Benetti A, Magistro S, Ordesi P, Grigolato P and Dessy E: Frequency and role of HPV in the progression of epithelial dysplasia to oral cancer. Anticancer Res. 30:3435–3440. 2010.PubMed/NCBI

62 

Zhang W, Zeng Z, Zhou Y, Xiong W, Fan S, Xiao L, Huang D, Li Z, Li D, Wu M, et al: Identification of aberrant cell cycle regulation in Epstein-Barr virus-associated nasopharyngeal carcinoma by cDNA microarray and gene set enrichment analysis. Acta Biochim Biophys Sin (Shanghai). 41:414–428. 2009. View Article : Google Scholar : PubMed/NCBI

63 

International Agency for Research on Cancer, . A review of human carcinogens: Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum. 100:169–211. 2012.PubMed/NCBI

64 

Prevention and Control Exchange (PACE) World Health Organization. Occupational and Environmental Health Team, . Hazard Prevention and Control in the Work Environment: Airborne Dust. World Health Organisation. 1999.Available from. https://apps.who.int/iris/handle/10665/66147

65 

Langevin SM, McClean MD, Michaud DS, Eliot M, Nelson HH and Kelsey KT: Occupational dust exposure and head and neck squamous cell carcinoma risk in a population-based case-control study conducted in the greater Boston area. Cancer Med. 2:978–986. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Panahi Y, Gholami N, Ghojazadeh M, Moslemi F, Naghavi-Behzad M, Azami-Aghdash S, Ghaffari A and Piri R: Complications and carcinogenic effects of mustard Gas-a systematic review and meta-analysis in Iran. Asian Pac J Cancer Prev. 16:7567–7573. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Safarinejad MR: Testicular effect of mustard gas. Urology. 58:90–94. 2001. View Article : Google Scholar : PubMed/NCBI

68 

McClintock SD, Till GO, Smith MG and Ward PA: Protection from half-mustard-gas-induced acute lung injury in the rat. J Appl Toxicol. 22:257–262. 2002. View Article : Google Scholar : PubMed/NCBI

69 

Thiagarajan A and Iyer NG: Radiation-induced sarcomas of the head and neck. World J Clin Oncol. 5:973–981. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Ho CM, Lam KH, Wei WI, Lau SK and Lam LK: Occult lymph node metastasis in small oral tongue cancers. Head Neck. 14:359–363. 1992. View Article : Google Scholar : PubMed/NCBI

71 

Spiro RH, Huvos AG, Wong GY, Spiro JD, Gnecco CA and Strong EW: Predictive value of tumor thickness in squamous carcinoma confined to the tongue and floor of the mouth. Am J Surg. 152:345–350. 1986. View Article : Google Scholar : PubMed/NCBI

72 

Kawano K and Yanagisawa S: Predictive value of laminin-5 and membrane type 1-matrix metalloproteinase expression for cervical lymph node metastasis in T1 and T2 squamous cell carcinomas of the tongue and floor of the mouth. Head Neck. 28:525–533. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Califf RM: Biomarker definitions and their applications. Exp Biol Med (Maywood). 243:213–221. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Kuropkat C, Plehn S, Herz U, Dunne AA, Renz H and Werner JA: Tumor marker potential of serum matrix metalloproteinases in patients with head and neck cancer. Anticancer Res. 22:2221–2227. 2002.PubMed/NCBI

75 

Li Y, St John MA, Zhou X, Kim Y, Sinha U, Jordan RC, Eisele D, Abemayor E, Elashoff D, Park NH and Wong DT: Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res. 10:8442–8450. 2004. View Article : Google Scholar : PubMed/NCBI

76 

St John MA, Li Y, Zhou X, Denny P, Ho CM, Montemagno C, Shi W, Qi F, Wu B, Sinha U, et al: Interleukin-6 and interleukin-8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 130:929–935. 2004. View Article : Google Scholar : PubMed/NCBI

77 

Toyoshima T, Vairaktaris E, Nkenke E, Schlegel KA, Neukam FW and Ries J: Cytokeratin 17 mRNA expression has potential for diagnostic marker of oral squamous cell carcinoma. J Cancer Res Clin Oncol. 134:515–521. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Cohen-Kerem R, Madah W, Sabo E, Rahat MA, Greenberg E and Elmalah I: Cytokeratin-17 as a potential marker for squamous cell carcinoma of the larynx. Ann Otol Rhinol Laryngol. 113:821–827. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E and Wong DT: Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 15:5473–5477. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR, Freeman GJ and Ferris RL: Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck cancer. Cancer Res. 76:1031–1043. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 8:793–800. 2002. View Article : Google Scholar : PubMed/NCBI

82 

Hira-Miyazawa M, Nakamura H, Hirai M, Kobayashi Y, Kitahara H, Bou-Gharios G and Kawashiri S: Regulation of programmed-death ligand in the human head and neck squamous cell carcinoma microenvironment is mediated through matrix metalloproteinase-mediated proteolytic cleavage. Int J Oncol. 52:379–388. 2018.PubMed/NCBI

83 

Yang WF, Wong MC, Thomson PJ, Li KY and Su YX: The prognostic role of PD-L1 expression for survival in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 86:81–90. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Goel R, Moore W, Sumer B, Khan S, Sher D and Subramaniam RM: Clinical practice in PET/CT for the management of head and neck squamous cell cancer. Am J Roentgenol. 209:289–303. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Hentschel M, Appold S, Schreiber A, Abolmaali N, Abramyuk A, Dörr W, Kotzerke J, Baumann M and Zöphel K: Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for locoregional control and overall survival in patients with head and neck cancer. Eur J Nucl Med Mol Imaging. 38:1203–1211. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Mohammed RN, Watson HA, Vigar M, Ohme J, Thomson A, Humphreys IR and Ager A: L-selectin is essential for delivery of activated CD8(+) T cells to virus-infected organs for protective immunity. Cell Rep. 14:760–771. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Resto VA, Burdick MM, Dagia NM, McCammon SD, Fennewald SM and Sackstein R: L-selectin-mediated lymphocyte-cancer cell interactions under low fluid shear conditions. J Biol Chem. 283:15816–15824. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Longo N, Yáñez-Mó M, Mittelbrunn M, de la Rosa G, Muñoz ML, Sánchez-Madrid F and Sánchez-Mateos P: Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood. 98:3717–3726. 2001. View Article : Google Scholar : PubMed/NCBI

89 

Kohmo S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, Nagatomo I, Takeda Y, Kida H, Goya S, et al: Cell surface tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res. 70:8025–8035. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Stipp CS, Kolesnikova TV and Hemler ME: Functional domains in tetraspanin proteins. Trends Biochem Sci. 28:106–112. 2003. View Article : Google Scholar : PubMed/NCBI

91 

Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G and Bolognesi M: CD81 extracellular domain 3D structure: Insight into the tetraspanin superfamily structural motifs. EMBO J. 20:12–18. 2001. View Article : Google Scholar : PubMed/NCBI

92 

Hemler ME: Specific tetraspanin functions. J Cell Biol. 155:1103–1107. 2001. View Article : Google Scholar : PubMed/NCBI

93 

Clark KL, Oelke A, Johnson ME, Eilert KD, Simpson PC and Todd SC: CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner. J Biol Chem. 279:19401–19406. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Kovalenko OV, Metcalf DG, degrado WF and Hemler ME: Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol. 5:112005. View Article : Google Scholar : PubMed/NCBI

95 

Fitter S, Seldin MF and Ashman LK: Characterisation of the mouse homologue of CD151 (PETA-3/SFA-1); genomic structure, chromosomal localisation and identification of 2 novel splice forms. Biochim Biophys Acta. 1398:75–85. 1998. View Article : Google Scholar : PubMed/NCBI

96 

Stipp CS, Kolesnikova TV and Hemler ME: EWI-2 regulates alpha3beta1 integrin-dependent cell functions on laminin-5. J Cell Biol. 163:1167–1177. 2003. View Article : Google Scholar : PubMed/NCBI

97 

Seigneuret M, Delaguillaumie A, Lagaudrière-Gesbert C and Conjeaud H: Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem. 276:40055–40064. 2001. View Article : Google Scholar : PubMed/NCBI

98 

Maecker HT, Todd SC and Levy S: The tetraspanin superfamily: Molecular facilitators. FASEB J. 11:428–442. 1997. View Article : Google Scholar : PubMed/NCBI

99 

Yanez-Mo M, Mittelbrunn M and Sanchez-Madrid F: Tetraspanins and intercellular interactions. Microcirculation. 8:153–168. 2001. View Article : Google Scholar : PubMed/NCBI

100 

Boucheix C and Rubinstein E: Tetraspanins. Cell Mol Life Sci. 58:1189–1205. 2001. View Article : Google Scholar : PubMed/NCBI

101 

Boucheix C, Benoit P, Frachet P, Billard M, Worthington RE, Gagnon J and Uzan G: Molecular cloning of the CD9 antigen. A new family of cell surface proteins. J Biol Chem. 266:117–122. 1991. View Article : Google Scholar : PubMed/NCBI

102 

Ovalle S, Gutiérrez-López MD, Olmo N, Turnay J, Lizarbe MA, Majano P, Molina-Jiménez F, López-Cabrera M, Yáñez-Mó M, Sánchez-Madrid F and Cabañas C: The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int J Cancer. 121:2140–2152. 2007. View Article : Google Scholar : PubMed/NCBI

103 

Kersey JH, LeBien TW, Abramson CS, Newman R, Sutherland R and Greaves M: P-24: A human leukemia-associated and lymphohemopoietic progenitor cell surface structure identified with monoclonal antibody. J Exp Med. 153:726–731. 1981. View Article : Google Scholar : PubMed/NCBI

104 

Wright MD, Moseley GW and van Spriel AB: Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens. 64:533–542. 2004. View Article : Google Scholar : PubMed/NCBI

105 

Hemler ME: Targeting of tetraspanin proteins-potential benefits and strategies. Nat Rev Drug Discov. 7:747–758. 2008. View Article : Google Scholar : PubMed/NCBI

106 

Baek J, Jang N, Choi JE, Kim JR and Bae YK: CD9 expression in tumor cells is associated with poor prognosis in patients with invasive lobular carcinoma. J Breast Cancer. 22:77–85. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Zöller M: Tetraspanins: Push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 9:40–55. 2009. View Article : Google Scholar : PubMed/NCBI

108 

Shi W, Fan H, Shum L and Derynck R: The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. J Cell Biol. 148:591–602. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Hwang JR, Jo K, Lee Y, Sung BJ, Park YW and Lee JH: Upregulation of CD9 in ovarian cancer is related to the induction of TNF-α gene expression and constitutive NF-κB activation. Carcinogenesis. 33:77–83. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Yáñez-Mó M, Alfranca A, Cabañas C, Marazuela M, Tejedor R, Ursa MA, Ashman LK, de Landázuri MO and Sánchez-Madrid F: Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-1 with a3b1 integrin localized at endothelial lateral junctions. J Cell Biol. 141:791–804. 1998. View Article : Google Scholar : PubMed/NCBI

111 

Okochi H, Kato M, Nashiro K, Yoshie O, Miyazono K and Furue M: Expression of tetra-spans transmembrane family (CD9, CD37, CD53, CD63, CD81 and CD82) in normal and neoplastic human keratinocytes: An association of CD9 with alpha 3 beta 1 integrin. Br J Dermatol. 137:856–863. 1997. View Article : Google Scholar : PubMed/NCBI

112 

Nishida M, Miyagawa J, Yamashita S, Higashiyama S, Nakata A, Ouchi N, Tamura R, Yamamori K, Kihara S, Taniguchi N and Matsuzawa Y: Localization of CD9, an enhancer protein for proheparin-binding epidermal growth factor-like growth factor, in human atherosclerotic plaques: Possible involvement of juxtacrine growth mechanism on smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol. 20:1236–1243. 2000. View Article : Google Scholar : PubMed/NCBI

113 

Klein-Soyer C, Azorsa DO, Cazenave JP and Lanza F: CD9 participates in endothelial cell migration during in vitro wound repair. Arterioscler Thromb Vasc Biol. 20:360–369. 2000. View Article : Google Scholar : PubMed/NCBI

114 

Peñas PF, García-Díez A, Sánchez-Madrid F and Yáñez-Mó M: Tetraspanins are localized at motility-related structures and involved in normal human keratinocyte wound healing migration. J Invest Dermatol. 114:1126–1135. 2000. View Article : Google Scholar : PubMed/NCBI

115 

Lijen HR, Lupu F, Collen D, Le Nour F and Boucheix C: CD9 gene deficiency does not affect smooth muscle cell migration and neointima formation after vascular injury in mice. Thromb Haemost. 83:956–961. 2000. View Article : Google Scholar : PubMed/NCBI

116 

Erovic BM, Pammer J, Hollemann D, Woegerbauer M, Geleff S, Fischer MB, Burian M, Frommlet F and Neuchrist C: Motility-related protein-1/CD9 expression in head and neck squamous cell carcinoma. Head Neck. 25:848–857. 2003. View Article : Google Scholar : PubMed/NCBI

117 

Lagaudrière-Gesbert C, Le Naour F, Lebel-Binay S, Billard M, Lemichez E, Boquet P, Boucheix C, Conjeaud H and Rubinstein E: Functional analysis of four tetraspans, CD9, CD53, CD81, and CD82, suggests a common role in costimulation, cell adhesion, and migration: Only CD9 upregulates HB-EGF activity. Cell Immunol. 182:105–112. 1997. View Article : Google Scholar : PubMed/NCBI

118 

Oren R, Takahashi S, Doss C, Levy R and Levy S: TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 10:4007–4015. 1990. View Article : Google Scholar : PubMed/NCBI

119 

Wice BM and Gordon JI: A tetraspan membrane glycoprotein produced in the human intestinal epithelium and liver that can regulate cell density-dependent proliferation. J Biol Chem. 270:21907–21918. 1995. View Article : Google Scholar : PubMed/NCBI

120 

Buim ME, Lourenço SV, Carvalho KC, Cardim R, Pereira C, Carvalho AL, Fregnani JH and Soares FA: Downregulation of CD9 protein expression is associated with aggressive behavior of oral squamous cell carcinoma. Oral Oncol. 46:166–171. 2010. View Article : Google Scholar : PubMed/NCBI

121 

Huang CI, Kohno N, Ogawa E, Adachi M, Taki T and Miyake M: Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients. Am J Pathol. 153:973–983. 1998. View Article : Google Scholar : PubMed/NCBI

122 

Mhawech P, Herrmann F, Coassin M, Guillou L and Iselin CE: Motility-related protein 1 (MRP-1/CD9) expression in urothelial bladder carcinoma and its relation to tumor recurrence and progression. Cancer. 98:1649–1657. 2003. View Article : Google Scholar : PubMed/NCBI

123 

Sauer G, Windisch J, Kurzeder C, Heilmann V, Kreienberg R and Deissler H: Progression of cervical carcinomas is associated with down-regulation of CD9 but strong local re-expression at sites of transendothelial invasion. Clin Cancer Res. 9:6426–6431. 2003.PubMed/NCBI

124 

Kusukawa J, Ryu F, Kameyama T and Mekada E: Reduced expression of CD9 in oral squamous cell carcinoma: CD9 expression inversely related to high prevalence of lymph node metastasis. J Oral Pathol Med. 30:73–79. 2001. View Article : Google Scholar : PubMed/NCBI

125 

Zhang BH, Liu W, Li L, Lu JG, Sun YN, Jin DJ and Xu XY: KAI1/CD82 and MRP1/CD9 serve as markers of infiltration, metastasis, and prognosis in laryngeal squamous cell carcinomas. Asian Pac J Cancer Prev. 14:3521–3526. 2013. View Article : Google Scholar : PubMed/NCBI

126 

Miyake M, Koyama M, Seno M and Ikeyama S: Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility. J Exp Med. 174:1347–1354. 1991. View Article : Google Scholar : PubMed/NCBI

127 

Ikeyama S, Koyama M, Yamaoko M, Sasada R and Miyake M: Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med. 177:1231–1237. 1993. View Article : Google Scholar : PubMed/NCBI

128 

Uchida S, Shimada Y, Watanabe G, Li ZG, Hong T, Miyake M and Imamura M: Motility-related protein (MRP-1/CD9) and KAI1/CD82 expression inversely correlate with lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer. 79:1168–1173. 1999. View Article : Google Scholar : PubMed/NCBI

129 

Higashiyama S, Iwamoto R, Goishi K, Raab G, Taniguchi N, Klagsbrun M and Mekada E: The membrane protein CD9/DRAP 27 potentiates the juxtacrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J Cell Biol. 128:929–938. 1995. View Article : Google Scholar : PubMed/NCBI

130 

Nakamura K, Iwamoto R and Mekada E: Membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) and diphtheria toxin receptor-associated protein (DRAP27)/CD9 form a complex with integrin alpha 3 beta 1 at cell-cell contact sites. J Cell Biol. 129:1691–1705. 1995. View Article : Google Scholar : PubMed/NCBI

131 

Hato T, Ikeda K, Yasukawa M, Watanabe A and Kobayashi Y: Exposure of platelet fibrinogen receptors by a monoclonal antibody to CD9 antigen. Blood. 72:224–229. 1988. View Article : Google Scholar : PubMed/NCBI

132 

Higashihara M, Takahata K, Yatomi Y, Nakahara K and Kurokawa K: Purification and partial characterization of CD9 antigen of human platelets. FEBS Lett. 264:270–274. 1990. View Article : Google Scholar : PubMed/NCBI

133 

Hirano C, Nagata M, Noman AA, Kitamura N, Ohnishi M, Ohyama T, Kobayashi T, Suzuki K, Yoshizawa M, Izumi N, et al: Tetraspanin gene expression levels as potential biomarkers for malignancy of gingival squamous cell carcinoma. Int J Cancer. 124:2911–2916. 2009. View Article : Google Scholar : PubMed/NCBI

134 

Nagata M, Fujita H, Ida H, Hoshina H, Inoue T, Seki Y, Ohnishi M, Ohyama T, Shingaki S, Kaji M, et al: Identification of potential biomarkers of lymph node metastasis in oral squamous cell carcinoma by cDNA microarray analysis. Int J Cancer. 106:683–689. 2003. View Article : Google Scholar : PubMed/NCBI

135 

Kurokawa A, Nagata M, Kitamura N, Noman AA, Ohnishi M, Ohyama T, Kobayashi T, Shingaki S and Takagi R; Oral, Maxillofacial Pathology, Surgery Group, : Diagnostic value of integrin alpha3, beta4, and beta5 gene expression levels for the clinical outcome of tongue squamous cell carcinoma. Cancer. 112:1272–1281. 2008. View Article : Google Scholar : PubMed/NCBI

136 

Sugiura T and Berditchevski F: Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol. 146:1375–1389. 1999. View Article : Google Scholar : PubMed/NCBI

137 

Huang CL, Ueno M, Liu D, Masuya D, Nakano J, Yokomise H, Nakagawa T and Miyake M: MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2. Oncogene. 25:6480–6488. 2006. View Article : Google Scholar : PubMed/NCBI

138 

Kim T, Kim Y and Kwon HJ: Expression of CD9 and CD82 in papillary thyroid microcarcinoma and its prognostic significance. Endokrynol Pol. 70:224–231. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Murayama Y, Oritani K and Tsutsui S: Novel CD9-targeted therapies in gastric cancer. World J Gastroenterol. 21:3206–3213. 2015. View Article : Google Scholar : PubMed/NCBI

140 

Murayama Y, Shinomura Y, Oritani K, Miyagawa JI, Yoshida H, Nishida M, Katsube F, Shiraga M, Miyazaki T, Nakamoto T, et al: The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol. 216:135–143. 2008. View Article : Google Scholar : PubMed/NCBI

141 

Wang GP and Han XF: CD9 modulates proliferation of human glioblastoma cells via epidermal growth factor receptor signaling. Mol Med Re. 12:1381–1386. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Halova I, Dráberová L, Bambousková M, Machyna M, Stegurová L, Smrž D and Dráber P: Cross-talk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis. J Biol Chem. 288:9801–9814. 2013. View Article : Google Scholar : PubMed/NCBI

143 

Huang CL, Liu D, Masuya D, Kameyama K, Nakashima T, Yokomise H, Ueno M and Miyake M: MRP-1/CD9 gene transduction downregulates Wnt signal pathways. Oncogene. 23:7475–7483. 2004. View Article : Google Scholar : PubMed/NCBI

144 

Podergajs N, Motaln H, Rajčević U, Verbovšek U, Koršič M, Obad N, Espedal H, Vittori M, Herold-Mende C, Miletic H, et al: Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget. 7:593–609. 2016. View Article : Google Scholar : PubMed/NCBI

145 

Higashiyama M, Taki T, Ieki Y, Adachi M, Huang CL, Koh T, Kodama K, Doi O and Miyake M: Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in non-small cell lung cancer. Cancer Res. 55:6040–6044. 1995.PubMed/NCBI

146 

Shi Y, Zhou W, Cheng L, Chen C, Huang Z, Fang X, Wu Q, He Z, Xu S, Lathia JD, et al: Tetraspanin CD9 stabilizes gp130 by preventing its ubiquitin-dependent lysosomal degradation to promote STAT3 activation in glioma stem cells. Cell Death Differ. 24:167–180. 2017. View Article : Google Scholar : PubMed/NCBI

147 

Funakoshi T, Tachibana I, Hoshida Y, Kimura H, Takeda Y, Kijima T, Nishino K, Goto H, Yoneda T, Kumagai T, et al: Expression of tetraspanins in human lung cancer cells: Frequent downregulation of CD9 and its contribution to cell motility in small cell lung cancer. Oncogene. 22:674–687. 2003. View Article : Google Scholar : PubMed/NCBI

148 

Yang H, Shen C, Zhang B, Chen H, Chen Z and Chen J: Expression and clinicopathological significance of CD9 in gastrointestinal stromal tumor. J Korean Med Sci. 28:1443–1448. 2013. View Article : Google Scholar : PubMed/NCBI

149 

Imhof I, Gasper WJ and Derynck R: Association of tetraspanin CD9 with transmembrane TGF{alpha} confers alterations in cell-surface presentation of TGF{alpha} and cytoskeletal organization. J Cell Sci. 121:2265–2274. 2008. View Article : Google Scholar : PubMed/NCBI

150 

Saito Y, Tachibana I, Takeda Y, Yamane H, He P, Suzuki M, Minami S, Kijima T, Yoshida M, Kumagai T, et al: Absence of CD9 enhances adhesion-dependent morphologic differentiation, survival, and matrix metalloproteinase-2 production in small cell lung cancer cells. Cancer Res. 66:9557–9565. 2006. View Article : Google Scholar : PubMed/NCBI

151 

Hashida H, Takabayashi A, Tokuhara T, Hattori N, Taki T, Hasegawa H, Satoh S, Kobayashi N, Yamaoka Y and Miyake M: Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer. 89:158–167. 2003. View Article : Google Scholar : PubMed/NCBI

152 

Ono M, Handa K, Withers DA and Hakomori SI: Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res. 59:2335–2339. 1999.PubMed/NCBI

153 

Yauch RL, Berditchevski F, Harler MB, Reichner J and Hemler ME: Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell. 9:2751–2765. 1998. View Article : Google Scholar : PubMed/NCBI

154 

Hemler ME, Mannion BA and Barditchevski F: Association of TM4SF proteins with integrins: Relevance to cancer. Biochim Biophys Acta. 1287:67–71. 1996.PubMed/NCBI

155 

Berditchevski F and Odintsova E: Characterization of integrin-tetraspanin adhesion complexes: Role of tetraspanins in integrin signaling. J Cell Biol. 146:477–492. 1999. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
P.C. S, Shetty SS, Nalilu SK, Shetty PK and Patil P: Tetraspanin CD9: A friend or foe of head and neck cancer (Review). Oncol Rep 47: 88, 2022.
APA
P.C., S., Shetty, S.S., Nalilu, S.K., Shetty, P.K., & Patil, P. (2022). Tetraspanin CD9: A friend or foe of head and neck cancer (Review). Oncology Reports, 47, 88. https://doi.org/10.3892/or.2022.8299
MLA
P.C., S., Shetty, S. S., Nalilu, S. K., Shetty, P. K., Patil, P."Tetraspanin CD9: A friend or foe of head and neck cancer (Review)". Oncology Reports 47.5 (2022): 88.
Chicago
P.C., S., Shetty, S. S., Nalilu, S. K., Shetty, P. K., Patil, P."Tetraspanin CD9: A friend or foe of head and neck cancer (Review)". Oncology Reports 47, no. 5 (2022): 88. https://doi.org/10.3892/or.2022.8299
Copy and paste a formatted citation
x
Spandidos Publications style
P.C. S, Shetty SS, Nalilu SK, Shetty PK and Patil P: Tetraspanin CD9: A friend or foe of head and neck cancer (Review). Oncol Rep 47: 88, 2022.
APA
P.C., S., Shetty, S.S., Nalilu, S.K., Shetty, P.K., & Patil, P. (2022). Tetraspanin CD9: A friend or foe of head and neck cancer (Review). Oncology Reports, 47, 88. https://doi.org/10.3892/or.2022.8299
MLA
P.C., S., Shetty, S. S., Nalilu, S. K., Shetty, P. K., Patil, P."Tetraspanin CD9: A friend or foe of head and neck cancer (Review)". Oncology Reports 47.5 (2022): 88.
Chicago
P.C., S., Shetty, S. S., Nalilu, S. K., Shetty, P. K., Patil, P."Tetraspanin CD9: A friend or foe of head and neck cancer (Review)". Oncology Reports 47, no. 5 (2022): 88. https://doi.org/10.3892/or.2022.8299
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team