|
1
|
Balkwill FR, Capasso M and Hagemann T: The
tumor microenvironment at a glance. J Cell Sci. 125:5591–5596.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rakhshandehroo T, Smith BR, Glockner HJ,
Rashidian M and Pandit-Taskar N: Molecular immune targeted imaging
of tumor microenvironment. Nanotheranostics. 6:286–305. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu
Y, Gong Z, Zhang S, Zhou J, Cao K, et al: Role of tumor
microenvironment in tumorigenesis. J Cancer. 8:761–773. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Onishi H, Kai M, Odate S, Iwasaki H,
Morifuji Y, Ogino T, Morisaki T, Nakashima Y and Katano M: Hypoxia
activates the hedgehog signaling pathway in a ligand-independent
manner by upregulation of Smo transcription in pancreatic cancer.
Cancer Sci. 102:1144–1150. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Onishi H and Katano M: Hedgehog signaling
pathway as a therapeutic target in various types of cancer. Cancer
Sci. 102:1756–1760. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ingham PW and McMahon AP: Hedgehog
signaling in animal development: Paradigms and principles. Genes
Dev. 15:3059–3087. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Low JA and de Sauvage FJ: Clinical
experience with hedgehog pathway inhibitors. J Clin Oncol.
28:5321–5326. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gailani MR and Bale AE: Developmental
genes and cancer: Role of patched in basal cell carcinoma of the
skin. J Natl Cancer Inst. 89:1103–1109. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zurawel RH, Allen C, Chiappa S, Cato W,
Biegel J, Cogen P, de Sauvage F and Raffel C: Analysis of
PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes
Cancer. 27:44–51. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tostar U, Malm CJ, Meis-Kindblom JM,
Kindblom LG, Toftgård R and Undén AB: Deregulation of the hedgehog
signalling pathway: A possible role for the PTCH and SUFU genes in
human rhabdomyoma and rhabdomyosarcoma development. J Pathol.
208:17–25. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kinzler KW, Bigner SH, Binger DD, Trent
JM, Law ML, O'Brien SJ, Wong AJ and Vogelstein B: Identification of
an amplified, highly expressed gene in a human glioma. Science.
236:70–73. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Thayer SP, di Magliano MP, Heiser PW,
Nielson CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Castillo CF,
Yajnik V, et al: Hedgehog is an early and late mediator of
pancreatic cancer tumorigenesis. Nature. 425:851–856. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Qualtrough D, Buda A, Gaffield W, Williams
AC and Paraskeva C: Hedgehog signalling in colorectal tumour cells:
Induction of apoptosis with cyclopamine treatment. Int J Cancer.
110:831–837. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cheng WT, Xu K, Tian DY, Zhang ZG, Liu LJ
and Chen Y: Role of Hedgehog signaling pathway in proliferation and
invasiveness of hepatocellular carcinoma cells. Int J Oncol.
34:829–836. 2009.PubMed/NCBI
|
|
15
|
Watkins DN, Berman DM, Burkholder SG, Wang
B, Beachy PA and Baylin SB: Hedgehog signalling within airway
epithelial progenitors and in small-cell lung cancer. Nature.
422:313–317. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen X, Horiuchi A, Kikuchi N, Osada R,
Yoshida J, Shiozawa T and Konishi I: Hedgehog signal pathway is
activated in ovarian carcinomas, correlating with cell
proliferation: It's inhibition leads to growth suppression and
apoptosis. Cancer Sci. 98:68–76. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ma X, Chen K, Huang S, Zhang X, Adegboyega
PA, Evers BM, Zhang H and Xie J: Frequent activation of the
hedgehog pathway in advanced gastric adenocarcinomas.
Carcinogenesis. 26:1698–1705. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fan L, Pepicelli CV and Dibble CC:
Hedgehog signaling promotes prostate xenograft tumor growth.
Endocrinology. 145:3961–3970. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yamasaki A, Kameda C, Xu R, Tanaka H,
Tasaka T, Chikazawa N, Suzuki H, Morisaki T, Kubo M, Onishi H, et
al: Nuclear factor kappaB-activated monocytes contribute to
pancreatic cancer progression through the production of Shh. Cancer
Immunol Immunother. 59:675–686. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hockel S, Schlenger K, Vaupel P and Hockel
M: Association between host tissue vascularity and the
prognostically relevant tumor vascularity in human cervical cancer.
Int J Oncol. 19:827–832. 2001.PubMed/NCBI
|
|
21
|
Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q, Duan
W, Sun Q, Xu J, Wu Z and Wu E: Hedgehog signaling regulates hypoxia
induced epithelial to mesenchymal transition and invasion in
pancreatic cancer cells via a ligand-independent manner. Mol
Cancer. 12:662013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Onishi H, Yamasaki A, Kawamoto M, Imaizumi
A and Katano M: Hypoxia but not normoxia promotes Smoothened
transcription through upregulation of RBPJ and Mastermind-like 3 in
pancreatic cancer. Cancer Lett. 371:143–150. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ables JL, Breunig JJ, Eisch AJ and Rakic
P: Not(ch) just development: Notch signalling in the adult brain.
Nat Rev Neurosci. 12:269–283. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Onishi H, Ichimiya S, Yanai K, Umebayashi
M, Nakamura K, Yamasaki A, Imaizumi A, Nagai S, Murahashi M, Ogata
H and Morisaki T: RBPJ and MAML3: Potential therapeutic targets for
small cell lung cancer. Anticancer Res. 38:4543–4547. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tai H, Wu Z, Sun S, Zhang Z and Xu C:
FGFRL1 promotes ovarian cancer progression by crosstalk with
hedgehog signaling. J Immunol Res. 2018:74386082018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cao Y, Lin SH, Wang Y, Chin YE, Kang L and
Mi J: Gultamic pyruvate transaminase GPT2 promotes tumorigenesis of
breast cancer cells by activating sonic hedgehog signaling.
Theranostics. 7:3021–3033. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xu QH, Xiao Y, Li XQ, Fan L, Zhou CC,
Cheng L, Jiang ZD and Wang GH: Resveratrol counteracts
hypoxia-induced gastric cancer invasion and EMT through hedgehog
pathway suppression. Anticancer Agents Med Chem. 20:1105–1114.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wei M, Ma R, Huang S, Liao Y, Ding Y, Li
Z, Guo Q, Tan R, Zhang L and Zhao L: Oroxylin A increases the
sensitivity of temozolomide on glioma cells by hypoxia-inducible
factor 1α/hedgehog pathway under hypoxia xia. J Cell Physiol.
234:17392–17404. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sarighieh MA, Montazeri V, Shadboorestan
A, Ghahremani MH and Ostad SN: The inhibitory effect on hypoxia
inducer (Hifs) as a regulatory factor in the growth of tumor cells
in breast cancer stem-like cells. Drug Res. 70:512–518. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cao L, Xiao X, Lei J, Duan W, Ma Q and Li
W: Curcumin inhibits hypoxia-induced epithelial-mesenchymal
transition in pancreatic cancer cells via suppression of the
hedgehog signaling pathway. Oncol Rep. 35:3728–3734. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Fu Z, Chen D, Cheng H and Wang F:
Hypoxia-inducible factor-1α protects cervical carcinoma cells from
apoptosis induced by radiation via modulation of vascular
endothelial growth factor and p53 under hypoxia. Med Sci Monit.
21:319–325. 2015.
|
|
32
|
Meng X, Cai J, Liu J, Han B, Gao F, Gao W,
Zhang Y, Zhang J, Zhao Z and Jiang C: Curcumin increases efficiency
of γ-irradiation in gliomas by inhibiting Hedgehog signaling
pathway. Cell Cycle. 16:1181–1192. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang F, Hao M, Jin H, Yao Z, Lian N, Wu
L, Shao J, Chen A and Zheng S: Canonical hedgehog signalling
regulates hepatic stellate cell-mediated angiogenesis in liver
fibrosis. Br J Pharmacol. 175:409–423. 2017. View Article : Google Scholar
|
|
34
|
Zhang Q, Lou Y, Zhang J, Fu Q, Wei T, Sun
X, Chen Q, Yang J, Bai X and Liang T: Hypoxia-inducible factor-2α
promotes tumor progression and has crosstalk with Wnt/β-catenin
signaling in pancreatic cancer. Mol Cancer. 16:1192017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Criscimanna A, Duan LJ, Rhodes JA,
Fendrich V, Wickline E, Hartman DJ, Monga SP, Lotze MT, Gittes GK,
Fong GH and Esni F: PanIN-specific regulation of Wnt signaling by
HIF2α during early pancreatic tumorigenesis. Cancer Res.
73:4781–4790. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Moriyama H, Moriyama M, Ozawa T, Ttsuruta
D, Iguchi T, Tamada S, Nakatani T, Nakagawa K and Hayakawa T: Notch
signaling enhances stemness by regulating metabolic pathways
through modifying p53, NF-κB, and HIF-1α. Stem Cells Dev.
27:935–947. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tian Q, Xue Y, Zheng W, Sun R, Ji W, Wang
X and An R: Overexpression of hypoxia-inducible factor 1α induces
migration and invasion through Notch signaling. Int J Oncol.
47:728–738. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kroon ME, Koolwijk P, van der Vecht B and
van Hinsbergh VW: Hypoxia in combination with FGF-2 induces tube
formation by human microvascular endothelial cells in a fibrin
matrix: Involvement of at least two signal transduction pathways. J
Cell Sci. 114:825–833. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Le TBU, Vu TC, Ho RZW, Prawira A, Wang L,
Goh BC and Huynh H: Bevacizumab augments the antitumor efficacy of
infigratinib in hepatocellular carcinoma. Int J Mol Sci.
21:94052020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gupta SC, Singh R, Pochampally R, Watabe K
and Mo YY: Acidosis promotes invasiveness of vreast cancer cells
through ROS-AKT-NF-kB pathway. Oncotarget. 5:12070–12082. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Prasad S, Gupta SC and Tyagi AK: Reactive
oxygen species (ROS) and cancer: Role of antioxidative
nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Eyrich NW, Potts CR, Robinson MH, Maximov
V and Kenney AM: Reactive oxygen species signaling promotes
hypoxia-inducible factor 1 α stabilization in sonic hedgehog-driven
cerebellar progenitor cell proliferation. Mol Cell Biol.
39:e00268–18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu Z, Tu K, Wang Y, Yao B, Li Q, Wang L,
Dou C, Liu Q and Zheng X: Hypoxia accelerates aggressiveness of
hepatocellular carcinoma cells involving oxidative stress,
epithelial-mesenchymal transition and non-canonical hedgehog
signaling. Cell Physiol Biochem. 44:1856–1868. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li W, Cao L, Chen Y, Lei J and Ma Q:
Resveratrol inhibits hypoxia-driven ROS-induced invasive and
migratory ability of pancreatic cancer cells via suppression of the
hedgehog signaling pathway. Oncol Rep. 35:1718–1726. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Morifuji Y, Onishi H, Iwasaki H, Imaizumi
A, Nakano K, Tanaka M and Katano M: Reoxygenation from chronic
hypoxia promotes metastatic processes in pancreatic cancer through
the Hedgehog signaling. Cancer Sci. 105:324–333. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang RY, Qiao ZY, Liu HJ and Ma JW: Sonic
hedgehog signaling regulates hypoxia/reoxygenation-induced H9C2
myocardial cell apoptosis. Exp Ther Med. 16:4193–4200.
2018.PubMed/NCBI
|
|
47
|
Fang Q, Zhang Y, Siang DS and Chen Y:
Hydroxytyosol inhibits apoptosis in ischemia/reperfusion-induced
acute kidney injury via activating sonic edgehog signaling pathway.
Eur Rev Med Pharmacol Sci. 24:12380–12388. 2020.PubMed/NCBI
|
|
48
|
Emami Nejad A, Najafgholian S, Rostami A,
Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy
Javanmard S, Taherian M, Ahmadlou M, et al: The role of hypoxia in
the tumor microenvironment and development of cancer stem cell: A
novel approach to developing treatment. Cancer Cell Int. 21:622021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chapouly C, Guimbal S, Hollier PL and
Renault MA: Role of hedgehog signaling in vasculature development,
differentiation, and maintenance. Int J Mol Sci. 20:30762019.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang X, Wang Z, Kai J, Wang F, Jia Y, Wang
S, Tan S, Shen X, Chen A, Shao J, et al: Curcumol attenuates liver
sinusoidal endothelial cell angiogenesis via regulating
Glis-PROX1-HIF-1 α in liver fibrosis. Cell Prolif. 53:e127622020.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pinter M, Sieghart W, Schmid M, Dauser B,
Prager G, Dienes HP, Trauner M and Peck-Radosavljevic M: Hedgehog
inhibition reduces angiogenesis by downregulation of tumoral VEGF-A
expression in hepatocellular carcinoma. United European
Gastroenterol J. 1:265–275. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhu XQ, Yang H, Lin MH, Shang HX, Peng J,
Chen WJ, Chen XZ and Lin JM: Qingjie fuzheng granules regulates
cancer cell proliferation, apoptosis and tumor angiogenesis in
colorectal cancer xenograft mice via sonic hedgehog pathway. J
Gastrointest Oncl. 11:1123–1134. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhu ZX, Sun CC, Zhu YT, Wang Y, Wang T,
Chi LS, Cai WH, Zheng JY, Zhou X, Cong WT, et al: Hedgehog
signaling contributes to basic fibroblast growth factor-regulated
fibroblast migration. Exp Cell Res. 355:83–94. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yao Q, Renault MA, Chapouly C,
Vandierdonck S, Belloc I, Jaspard-Vinassa B, Daniel-Lamaziere JM,
Laffargue M, Merched A, Desgranges C and Gadeau AP: Sonic hedgehog
mediates a novel pathway of PDGF-BB-dependent vessel maturation.
Blood. 123:2529–2437. 2014. View Article : Google Scholar
|
|
55
|
Hsieh A, Ellsworth R and Hsieh D:
Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma
stem cells. J Cell Physiol. 226:1118–1127. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Maroufy V, Shah P, Asghari A, Deng N, Le
RNU, Ramirez JC, Yaseen A, Zheng WJ, Umetami M and Wu H: Gene
expression dynamic analysis reveals co-activation of sonic hedgehog
and epidermal growth factor followed by dynamic silencing.
Oncotarget. 11:1358–1372. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bausch D, Fritz S, Bolm L, Wellner UF,
Fernandez-Del-Castillo C, Warshaw AL, Thayer SP and Liss AS:
Hedgehog signaling promotes angiogenesis directly and indirectly in
pancreatic cancer. Angiogenesis. 23:479–492. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Stewart GA, Hoyne GF, Ahmad SA, Jarman E,
Wallace WAH, Harrison DJ, Haslett C, Lamb JR and Howie SEM:
Expression of the developmental sonic hedgehog (Shh) signalling
pathway is up-regulated in chronic lung fibrosis and the Shh
receptor patched 1 is present in circulating T lymphocytes. J
Pathol. 199:488–495. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Omenetti A, Porrello A, Jung Y, Yang L,
Popov Y, Choi SS, Witek RP, Alpini G, Venter J, Vandongen HM, et
al: Hedgehog signaling regulates epithelial-mesenchymal transition
during biliary fibrosis in rodents and humans. J Clin Invest.
118:3331–3342. 2008.PubMed/NCBI
|
|
60
|
Bailey JM, Swanson BJ, Hamada T, Eggers
JP, Singh PK, Caffery TC, Ouellette MM and Hollingsworth MA: Sonic
hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer
Res. 14:5995–6004. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Spivak-Kroizman TR, Hostetter G, Posner R,
Ariz M, Hu C, Demeure MJ, Hoff DV, Hingorani SR, Palculict TB, Izzo
J, et al: Hypoxia triggers hedgehog-mediated tumor-stromal
interactions in pancreatic cancer. Cancer Res. 73:3235–3247. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Katagiri T, Kobayashi M, Yoshimura M,
Morinibu A, Itasaka S, Hiraoka M and Harada H: HIF-1 maintains a
functional relationship between pancreatic cancer cells and stromal
fibroblasts by upregulating expression and secretion of sonic
hedgehog. Oncotarget. 9:10525–10535. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Olive KP, Jacobetz MA, Davidson CJ,
Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA,
Caldwell ME, Allard D, et al: Inhibition of hedgehog signaling
enhances delivery of chemotherapy in mouse model of pancreatic
cancer. Science. 324:1457–1461. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Oyama Y, Onishi H, Koga S, Murahashi M,
Ichimiya S, Nakayama K, Fujimura A, Kawamoto M, Imaizumi A,
Umebayashi M, et al: Patched 1-interacting peptide represses
fibrosis in pancreatic cancer to augment the effectiveness of
immunotherapy. J Immunother. 43:121–133. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Steele NG, Biffi G, Kemp SB, Zhang Y,
Drouillard D, Syu L, Hao Y, Oni TE, Brosnan E, Elyada E, et al:
Inhibition of hedgehog signaling alters fibroblast composition in
pancreatic cancer. Clin Cancer Res. 27:2023–2037. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Xue J, Jsharma V, Hsieh MH, Chawla A,
Murali R, Pandol SJ and Habtezion A: Alternatively activated
macrophages promote pancreatic fibrosis in chronic pancreatitis.
Nat Commun. 6:71582015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ueshima E, Fujimori M, Kodama H, Felsen D,
Chen J, Duack JC, Solomon SB, Coleman JA and Srimathveeravalli G:
Macrophage-secreted TGF-β 1 contributes to fibroblast activation
and ureteral stricture after ablation injury. Am J Physiol Renol
Physiol. 317:F52–F64. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Javelaud D, Pierrat MJ and Mauviel A:
Crosstalk between TGF-β and hedgehog signaling in cancer. FEBS
Lett. 586:2016–2025. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dennler S, Andre J, Alexaki I, Li A,
Magnaldo T, ten Dijke P, Wang XJ, Verrecchia F and Mauviel A:
Induction of sonic hedgehog mediators by transforming growth
factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression
in vitro and in vivo. Cancer Res. 67:6981–6986. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhou X, Wang P, Ma Z, Li M, Teng X, Sun L,
Wan G, Li Y, Guo L and Liu H: Novel interplay between sonic
hedgehog and transforming growth factor-β1 in human nonalcoholic
steatohepatitis. Appl Immunohistochem Mol Morphol. 28:154–160.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jiayuan S, Junyan Y, Xiangzhen W, Zuping
W, Jian N, Baowei H and Lifang J: Gant61 ameliorates CCl4-induced
liver fibrosis by inhibition of hedgehog signaling activity.
Toxicol Appl Pharmcol. 387:1148532020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Noman MZ, Hasmim M, Messai Y, Terry S,
Kieda C, Janji B and Chouaib S: Hypoxia: A key player in antitumor
immune response. A review in the theme: Cellular responses to
hypoxia. Am J Physiol Cell Physiol. 309:C569–C579. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Onishi H, Morisaki T, Kiyota A, Koya N,
Tanaka H, Umebayashi M and Katano M: The Hedgehog inhibitor
cyclopamine impairs the benefits of immunotherapy with activated T
and NK lymphocytes derived from patients with advanced cancer.
Cancer Immunol Immunother. 62:1029–1039. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Winning S and Fandrey J: Dendritic cells
under hypoxia: How oxygen shortage affects the linkage between
innate and adaptive immunity. J Immunol Res. 2016:51343292016.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ogino T, Onishi H, Suzuki H, Morisaki T,
Tanaka M and Katano M: Inclusive estimation of complex antigen
presentation functions of monocyte-derived dendritic cells
differentiated under normoxia and hypoxia conditions. Cancer
Immunol Immunother. 61:409–424. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bosco MC, Pierobon D, Blengio F, Raggi F,
Vanni C, Gattorno M, Eva A, Novelli F, Cappello P, Giovarelli M and
Varesio L: Hypoxia modulates the gene expression profile of
immunoregulatory receptors in human mature dendritic cells:
Identification of TREM-1 as a novel hypoxic marker in vitro and in
vivo. Blood. 117:2625–2639. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pierobon D, Bosco MC, Blengio F, Raggi F,
Eva A, Filippi M, Musso T, Novelli F, Cappello P, Varesio L and
Giovarelli M: Chronic hypoxia reprograms human immature dendritic
cells by inducing a proinflammatory phenotype and TREM-1
expression. Eur J Immunol. 43:949–966. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu B and Wei C: Hypoxia induces
overexpression of CCL28 to recruit Treg cells to enhance
angiogenesis in lung adenocarcinoma. J Environ Pathol Toxicol
Oncol. 40:65–74. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Westendorf AM, Skibbe K, Adamczyk A, Buer
J, Geffers R, Hansen W, Pastille E and Jendrossek V: Hypoxia
enhances immunosuppression by inhibiting CD4+ Effector T cell
function and promoting treg activity. Cell Physiol Biochem.
41:1271–1284. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL,
Koh HY, Li LL, Lee D, Lo RC, Wong CM, et al: Hypoxia induces
myeloid-derived suppressor cell recruitment to hepatocellular
carcinoma through chemokine (C-C motif) ligand 26. Hepatology.
64:797–813. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Elia AR, Cappello P, Puppo M, Fraone T,
Vanni C, Eva A, Musso T, Novelli F, Varesio L and Giovarelli M:
Human dendritic cells differentiated in hypoxia down-modulate
antigen uptake and change their chemokine expression profile. J
Leukoc Biol. 84:1472–1482. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Burke B, Giannoudis A, Corke KP, Gill D,
Wells M, Ziegler-Heitbrock L and Lewis CE: Hypoxia-induced gene
expression in human macrophages: Implications for ischemic tissues
and hypoxia-regulated gene therapy. Am J Pathol. 163:1233–1243.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Fingleton B, Vargo-Gogola T, Crawford HC
and Matrisian LM: Matrilysin [MMP-7] expression selects for cells
with reduced sensitivity to apoptosis. Neoplasia. 3:459–468. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sureshbabu SK, Chaukar D and Chiplunkar
SV: Hypoxia regulates the differentiation and anti-tumor effector
functions of γδT cells in oral cancer. Clin Exp Immunol. 201:40–57.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
de la Roche M, Ritter AT, Angus KL,
Dinsmore C, Earnshaw CH, Reiter JF and Griffiths GM: Hedgehog
signaling controls T cell killing at the immunological synapse.
Science. 342:1247–1250. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Petty AJ, Li A, Wang X, Dai R, Heyman B,
Hsu D, Huang X and Yang YJ: Hedgehog signaling promotes
tumor-associated macrophage polarization to suppress intratumoral
CD8+ T cell recruitment. Clin Invest. 129:5151–5162. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yánez DC, Lau CI, Chawda MM, Ross S,
Furmanski AL and Crompton TJ: Hedgehog signaling promotes T H 2
differentiation in naive human CD4 T cells. Allergy Clin Immunol.
144:1419–1423.e1. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Merchant JL and Ding L: Hedgehog signaling
links chronic inflammation to gastric cancer precursor lesions.
Cell Mol Gastroenterol Hepatol. 3:201–210. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Onishi H, Morisaki T, Kiyota A, Koya N,
Tanaka H, Umebayashi M and Katano M: The Hedgehog inhibitor
suppresses the function of monocyte-derived dendritic cells from
patients with advanced cancer under hypoxia. Biochem Biophys Res
Commun. 436:53–59. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ichimiya S, Fujimura A, Masuda M, Masuda
S, Yasumatsu R, Umebayashi M, Tanaka H, Koya N, Nakagawa S,
Yoshimura S, Onishi H, Nakamura M, Nakamura Y and Morisaki T:
Contribution of pre-existing neoantigen-specific T cells to durable
complete responses after tumor-pulsed dendritic cell vaccine plus
nivolumab therapy in a patient with metastatic salivary duct
carcinoma. Immunol Invest. Sep 5–2021.(Epub ahead of print). doi:
10.1080/08820139.2021.1973491. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Noman MZ, Desantis G, Janji B, Hasmim M,
Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct
target of HIF-1α, and its blockade under ypoxia enhanced
MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cubillos-Zapata C, Avendaño-Ortiz J,
Hernandez-Jimenez E, Toledano V, Casas-Martin J, Varela-Serrano A,
Torres M, Almendros I, Casitas R, Fernández-Navarro I, et al:
Hypoxia-induced PD-L1/PD-1 crosstalk impairs T-cell function in
sleep apnoea. Eur Respir J. 50:17008332017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chakrabarti J, Holokai L, Syu L, Steele
NG, Chang J, Wang J, Ahmed S, Dlugosz A and Zavros Y: Hedgehog
signaling induces PD-L1 expression and tumor cell proliferation in
gastric cancer. Oncotarget. 9:37439–37457. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Onishi H, Fujimura A, Oyama Y, Yamasaki A,
Imaizumi A, Kawamoto M, Katano M, Umebayashi M and Morisaki T:
Hedgehog signaling regulates PDL-1 expression in cancer cells to
induce anti-tumor activity by activated lymphocytes. Cell Immunol.
310:199–204. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhu X and Lang J: Soluble PD-1 and PD-L1:
Predictive and prognostic significance in cancer. Oncotarget.
8:97671–97682. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhou K, Guo S, Li F, Sun Q and Liang G:
Exosomal PD-L1: New insights into tumor immune escape mechanisms
and therapeutic strategies. Front Cell Dev Biol. 8:5692192020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Mühlbauer M, Fleck M, Schütz C, Weiss T,
Froh M, Blank C, Schölmerich J and Hellerbrand C: PD-L1 is induced
hepatocytes by viral infection and interferon-alpha and -gamma and
mediates T cell apoptosis. J Hepatol. 45:520–528. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
D'Alessandris N, Palaia I, Pernazza A,
Tomao F, Di Pinto A, Musacchio L, Leopizzi M, Di Maio V, Pecorella
I, Benedetti Panici P, et al: PD-L1 expression is associated with
tumor infiltrating lymphocytes that predict response to NACT in
squamous cell cervical cancer. Virchows Arch. 478:517–525. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Blank C and Mackensen A: Contribution of
the PD-L1/PD-1 pathway to T-cell exhaustion: An update on
implications for chronic infections and tumor evasion. Cancer
Immunol Immunother. 56:739–745. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zeng X and Ju D: Hedgehog signaling
pathway and autophagy in cancer. Int J Mol Sci. 19:22792018.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yamasaki A, Yanai K and Onishi H: Hypoxia
and pancreatic ductal adenocarcinoma. Cancer Lett. 484:9–15. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Milla LA, González-Ramírez CN and Palma V:
Sonic hedgehog in cancer stem cells: A novel link with autophagy.
Biol Res. 45:223–230. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wu X, Won H and Rubinsztein DC: Autophagy
and mammalian development. Biochem Soc Trans. 41:1489–1494. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Fan J, Ju D, Li Y, Wang S and Wang Z: A
novel approach to overcome non-small-cell lung cancer:
Co-inhibition of autophagy and Hedgehog pathway. Ann Oncol.
26:vii106–vii151. 2015. View Article : Google Scholar
|
|
105
|
Wang Y, Han C, Lu L, Magliato S and Wu T:
Hedgehog signaling pathway regulates autophagy in human
hepatocellular carcinoma cells. Hepatology. 58:995–1010. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Gagné-Sansfaçon J, Allaire JM, Jones C,
Boudreau F and Perreault N: Loss of Sonic hedgehog leads to
alterations in intestinal secretory cell maturation and autophagy.
PLoS One. 9:e987512014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Albini A, Cesana E and Noonan DM: Cancer
stem cells and the tumor microenvironment: Soloists or choral
singers. Curr Pharm Biotechnol. 12:171–181. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wu CP, Du HD, Gong HL, Li DW, Tao L, Tian
J and Zhou L: Hypoxia promotes stem-like properties of laryngeal
cancer cell lines by increasing the CD133+ stem cell fraction. Int
J Oncol. 44:1652–1660. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sun X, Lv X, Yan Y, Zhao Y, Ma R, He M and
Wei M: Hypoxia-mediated cancer stem cell resistance and targeted
therapy. Biomed. Pharmacother. 130:1106232020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Bhuria V, Xing J, Scholta T, Bui KC,
Nguyen MLT, Malek NP, Bozko P and Plentz RR: Hypoxia induced Sonic
Hedgehog signaling regulates cancer stemness,
epithelial-to-mesenchymal transition and invasion in
cholangiocarcinoma. Exp Cell Res. 385:1116712019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Raghavan S, Snyder CS, Wang A, McLean K,
Zamarin D, Buckanovich RJ and Mehta G: Carcinoma-associated
mesenchymal stem cells promote chemoresistance in ovarian cancer
stem cells via PDGF signaling. Cancers. 12:20632020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Mondal S, Bhattacharya K and Mandal C:
Nutritional stress reprograms dedifferention in glioblastoma
multiforme driven by PTEN/Wnt/Hedgehog axis: A stochastic model of
cancer stem cells. Cell Death Discov. 4:1102018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Tanaka H, Nakamura M, Kameda C, Kubo M,
Sato N, Kuroki S, Tanaka M and Katano M: The Hedgehog signaling
pathway plays an essential role in maintaining the CD44+CD24-/low
subpopulation and the side population of breast cancer cells.
Anticancer Res. 29:2147–2157. 2009.PubMed/NCBI
|
|
114
|
Bai JW, Wei M, Li JW and Zhang GJ: Notch
signaling pathway and endocrine resistance in breast cancer. Front
Pharmacol. 11:9242020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Shang C, Lang B and Meng LR: Blocking
NOTCH pathway can enhance the effect of EGFR inhibitor through
targeting CD133+ endometrial cancer cells. Cancer Biol Ther.
19:113–119. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Castagnoli L, Tagliabue E and Pupa SM:
Inhibition of the Wnt signalling pathway: An avenue to control
breast cancer aggressiveness. Int J Mol Sci. 21:90692020.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Pandit H, Li Y, Li X, Zhang W, Li S and
Martin RCG: Enrichment of cancer stem cells via β-catenin
contributing to the tumorigenesis of hepatocellular carcinoma. BMC
Cancer. 18:7832018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Gargiulo G, Cesaroni M, Serresi M, de
Vries N, Hulsman D, Bruggeman SW, Lancini C and van Lohuizen M: In
vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress
pathways as key regulators of neural- and malignant glioma-stem
cell homeostasis. Cancer Cell. 23:660–676. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ader T, Norel R, Levoci L and Rogler LE:
Transcriptional profiling implicates TGFbeta/BMP and Notch
signaling pathways in ductular differentiation of fetal murine
hepatoblasts. Mech Dev. 123:177–194. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Schartz NE, Chaput N, André F and Zitvogel
L: From the antigen-presenting cell to the antigen-presenting
vesicle: The exosomes. Curr Opin Mol Ther. 4:372–381.
2002.PubMed/NCBI
|
|
121
|
Mignot G, Roux S, Thery C, Segura E and
Zitvogel L: Prospects for exosomes in immunotherapy of cancer. J
Cell Mol Med. 10:376–388. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Deep G and Panigrahi GK: Hypoxia-induced
signaling promotes prostate cancer progression: Exosomes role as
messenger of hypoxic response in tumor microenvironment. Crit Rev
Oncog. 20:419–434. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Gradilla AC, González E, Seijo I, Andrés
G, Bischoff M, González-Mendez L, Sánchez V, Callejo A, Ibáñez C,
Guerra M, et al: Exosomes as Hedgehog carriers in cytoneme-mediated
transport and secretion. Nat Commun. 5:56492014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Qi J, Zhou Y, Jiao Z, Wang X, Zhao Y and
Li Y, Chen H, Yang L, Zhu H and Li Y: Exosomes derived from human
bone marrow mesenchymal stem cells promote tumor growth through
hedgehog signaling pathway. Cell Physiol Biochem. 42:2242–2254.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Sharma A: Role of stem cell derived
exosomes in tumor biology. Int J Cancer. 142:1086–1092. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Bhat A, Sharma A and Bharti AC: Upstream
Hedgehog signaling components are exported in exosomes of cervical
cancer cell lines. Nanomedicine. 13:2127–2138. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhao G, Li H, Guo Q, Zhou A, Wang X, Li P
and Zhang S: Exosomal Sonic Hedgehog derived from cancer-associated
fibroblasts promotes proliferation and migration of esophageal
squamous cell carcinoma. Cancer Med. 9:2500–2513. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wada J, Onishi H, Suzuki H, Yamasaki A,
Nagai S, Morisaki T and Katano M: Surface-bound TGF-beta1 on
effusion-derived exosomes participates in maintenance of number and
suppressive function of regulatory T-cells in malignant effusions.
Anticancer Res. 30:3747–3757. 2010.PubMed/NCBI
|
|
129
|
Matsumoto K, Morisaki T, Kuroki H, Kubo M,
Onishi H, Nakamura K, Nakahara C, Kuga H, Baba E, Nakamura M, et
al: Exosomes secreted from monocyte-derived dendritic cells support
in vitro naïve CD4+ T cell survival through NF-(kappa)B activation.
Cell Immunol. 231:20–29. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Onishi H, Kuroki H, Matsumoto K, Baba E,
Sasaki N, Kuga H, Tanaka M, Katano M and Morisaki T:
Monocyte-derived dendritic cells that capture dead tumor cells
secrete IL-12 and TNF-alpha through IL-12/TNF-alpha/NF-kappaB
autocrine loop. Cancer Immunol Immunother. 53:1093–1100. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Nakashima H, Nakamura M, Yamaguchi H,
Yamanaka N, Akiyoshi T, Koga K, Yamaguchi K, Tsuneyoshi M, Tanaka M
and Katano M: Nuclear factor-kappaB contributes to hedgehog
signaling pathway activation through sonic hedgehog induction in
pancreatic cancer. Cancer Res. 66:7041–7049. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Kasperczyk H, Baumann B, Debatin KM and
Fulda S: Characterization of sonic hedgehog as a novel NF-kappaB
target gene that promotes NF-kappaB-mediated apoptosis resistance
and tumor growth in vivo. FASEB J. 23:21–33. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Cai K, Na W, Guo M, Xu R, Wang X, Qin Y,
Wu Y, Jiang J and Huang H: Targeting the cross-talk between the
hedgehog and NF-κB signaling pathways in multiple myeloma. Leuk
Lymphoma. 60:772–781. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Nakayama K, Onishi H, Fujimura A, Imaizumi
A, Kawamoto M, Oyama Y, Ichimiya S, Koga S, Fujimoto Y, Nakashima K
and Nakamura M: NFκB and TGFβ contribute to the expression of PTPN3
in activated human lymphocytes. Cell Immunol. 358:1042372020.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Fosko SW, Chu MB, Armbrecht E, Galperin T,
Potts GA, Mattox A, Kurta A, Polito K, Slutsky JB, Burkemper NM, et
al: Efficacy, rate of tumor response, and safety of a short course
(12–24 weeks) of oral vismodegib in various histologic subtypes
(infiltrative, nodular, and superficial) of high-risk or locally
advanced basal cell carcinoma, in an open-label, prospective case
series clinical trial. J Am Acad Dermatol. 82:946–954. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
De Jesus-Acosta A, Sugar EA, O'Dwyer PJ,
Ramanathan RK, Von Hoff DD, Rasheed Z, Zheng L, Begum A, Anders R,
Maitra A, et al: Phase 2 study of vismodegib, a hedgehog inhibitor,
combined with gemcitabine and nab-paclitaxel in patients with
untreated metastatic pancreatic adenocarcinoma. Br J Cancer.
122:498–505. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yauch RL, Dijkgraaf GJ, Alicke B, Januario
T, Ahn CP, Holcomb T, Pujara K, Stinson J, Callahan CA, Tang T, et
al: Smoothened mutation confere resistance to a Hedgehog pathway
inhibitor in medulloblastoma. Science. 326:572–574. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Dijkgraaf GJ, Alicke B, Weinmann L,
Januario T, West K, Modrusan Z, Burdick D, Goldsmith R, Robarge K,
Sutherlin D, et al: Small molecule inhibition of GDC-0499
refractory smoothened mutants and downstream mechanisms of drug
resistance. Cancer Res. 71:435–444. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Onishi H and Katano M: The Hedgehog
signaling pathway as a new therapeutic target in pancreatic cancer.
World J Gastroenterol. 20:2335–2342. 2014. View Article : Google Scholar : PubMed/NCBI
|