Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
May-2022 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2022 Volume 47 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review)

  • Authors:
    • Hideya Onishi
    • Katsuya Nakamura
    • Kosuke Yanai
    • Shuntaro Nagai
    • Kazunori Nakayama
    • Yasuhiro Oyama
    • Akiko Fujimura
    • Keigo Ozono
    • Akio Yamasaki
  • View Affiliations / Copyright

    Affiliations: Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
  • Article Number: 93
    |
    Published online on: March 18, 2022
       https://doi.org/10.3892/or.2022.8304
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Recently, the cancer microenvironment (CME) has received significant attention. At the local site of the tumor, cancer progression is affected by secreted cytokines and conditions derived from the CME and stimulation by cancer‑induced cytokines in an autocrine manner. The CME is characterized by various types of conditions, such as hypoxia, inflammation stimulation, and angiogenesis, and contains various components, such as reactive oxygen species, cancer‑associated fibroblasts, infiltrated immune cells, exosomes, and cancer stem cells (CSCs). These conditions and components complicate the progression of cancer. The Hedgehog (HH) signaling pathway is a morphogenesis signaling pathway that is reactivated in some cancers. In these cancers, reactivated HH signaling is involved in the induction of the malignant phenotype. HH signaling is also activated under hypoxic conditions and is considered to be strongly correlated with the CME, including the induction of cancer fibrosis and maintenance of CSCs. The aim of the present review was to elucidate a cancer therapy that targets HH signaling by considering the CME, particularly focusing on hypoxia.
View Figures

Figure 1

Figure 2

View References

1 

Balkwill FR, Capasso M and Hagemann T: The tumor microenvironment at a glance. J Cell Sci. 125:5591–5596. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Rakhshandehroo T, Smith BR, Glockner HJ, Rashidian M and Pandit-Taskar N: Molecular immune targeted imaging of tumor microenvironment. Nanotheranostics. 6:286–305. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, et al: Role of tumor microenvironment in tumorigenesis. J Cancer. 8:761–773. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Onishi H, Kai M, Odate S, Iwasaki H, Morifuji Y, Ogino T, Morisaki T, Nakashima Y and Katano M: Hypoxia activates the hedgehog signaling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer. Cancer Sci. 102:1144–1150. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Onishi H and Katano M: Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci. 102:1756–1760. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Ingham PW and McMahon AP: Hedgehog signaling in animal development: Paradigms and principles. Genes Dev. 15:3059–3087. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Low JA and de Sauvage FJ: Clinical experience with hedgehog pathway inhibitors. J Clin Oncol. 28:5321–5326. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Gailani MR and Bale AE: Developmental genes and cancer: Role of patched in basal cell carcinoma of the skin. J Natl Cancer Inst. 89:1103–1109. 1997. View Article : Google Scholar : PubMed/NCBI

9 

Zurawel RH, Allen C, Chiappa S, Cato W, Biegel J, Cogen P, de Sauvage F and Raffel C: Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer. 27:44–51. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Tostar U, Malm CJ, Meis-Kindblom JM, Kindblom LG, Toftgård R and Undén AB: Deregulation of the hedgehog signalling pathway: A possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol. 208:17–25. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Kinzler KW, Bigner SH, Binger DD, Trent JM, Law ML, O'Brien SJ, Wong AJ and Vogelstein B: Identification of an amplified, highly expressed gene in a human glioma. Science. 236:70–73. 1987. View Article : Google Scholar : PubMed/NCBI

12 

Thayer SP, di Magliano MP, Heiser PW, Nielson CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Castillo CF, Yajnik V, et al: Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 425:851–856. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Qualtrough D, Buda A, Gaffield W, Williams AC and Paraskeva C: Hedgehog signalling in colorectal tumour cells: Induction of apoptosis with cyclopamine treatment. Int J Cancer. 110:831–837. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Cheng WT, Xu K, Tian DY, Zhang ZG, Liu LJ and Chen Y: Role of Hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells. Int J Oncol. 34:829–836. 2009.PubMed/NCBI

15 

Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA and Baylin SB: Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 422:313–317. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Chen X, Horiuchi A, Kikuchi N, Osada R, Yoshida J, Shiozawa T and Konishi I: Hedgehog signal pathway is activated in ovarian carcinomas, correlating with cell proliferation: It's inhibition leads to growth suppression and apoptosis. Cancer Sci. 98:68–76. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Ma X, Chen K, Huang S, Zhang X, Adegboyega PA, Evers BM, Zhang H and Xie J: Frequent activation of the hedgehog pathway in advanced gastric adenocarcinomas. Carcinogenesis. 26:1698–1705. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Fan L, Pepicelli CV and Dibble CC: Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology. 145:3961–3970. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Yamasaki A, Kameda C, Xu R, Tanaka H, Tasaka T, Chikazawa N, Suzuki H, Morisaki T, Kubo M, Onishi H, et al: Nuclear factor kappaB-activated monocytes contribute to pancreatic cancer progression through the production of Shh. Cancer Immunol Immunother. 59:675–686. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Hockel S, Schlenger K, Vaupel P and Hockel M: Association between host tissue vascularity and the prognostically relevant tumor vascularity in human cervical cancer. Int J Oncol. 19:827–832. 2001.PubMed/NCBI

21 

Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q, Duan W, Sun Q, Xu J, Wu Z and Wu E: Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol Cancer. 12:662013. View Article : Google Scholar : PubMed/NCBI

22 

Onishi H, Yamasaki A, Kawamoto M, Imaizumi A and Katano M: Hypoxia but not normoxia promotes Smoothened transcription through upregulation of RBPJ and Mastermind-like 3 in pancreatic cancer. Cancer Lett. 371:143–150. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Ables JL, Breunig JJ, Eisch AJ and Rakic P: Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci. 12:269–283. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Onishi H, Ichimiya S, Yanai K, Umebayashi M, Nakamura K, Yamasaki A, Imaizumi A, Nagai S, Murahashi M, Ogata H and Morisaki T: RBPJ and MAML3: Potential therapeutic targets for small cell lung cancer. Anticancer Res. 38:4543–4547. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Tai H, Wu Z, Sun S, Zhang Z and Xu C: FGFRL1 promotes ovarian cancer progression by crosstalk with hedgehog signaling. J Immunol Res. 2018:74386082018. View Article : Google Scholar : PubMed/NCBI

26 

Cao Y, Lin SH, Wang Y, Chin YE, Kang L and Mi J: Gultamic pyruvate transaminase GPT2 promotes tumorigenesis of breast cancer cells by activating sonic hedgehog signaling. Theranostics. 7:3021–3033. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Xu QH, Xiao Y, Li XQ, Fan L, Zhou CC, Cheng L, Jiang ZD and Wang GH: Resveratrol counteracts hypoxia-induced gastric cancer invasion and EMT through hedgehog pathway suppression. Anticancer Agents Med Chem. 20:1105–1114. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Wei M, Ma R, Huang S, Liao Y, Ding Y, Li Z, Guo Q, Tan R, Zhang L and Zhao L: Oroxylin A increases the sensitivity of temozolomide on glioma cells by hypoxia-inducible factor 1α/hedgehog pathway under hypoxia xia. J Cell Physiol. 234:17392–17404. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Sarighieh MA, Montazeri V, Shadboorestan A, Ghahremani MH and Ostad SN: The inhibitory effect on hypoxia inducer (Hifs) as a regulatory factor in the growth of tumor cells in breast cancer stem-like cells. Drug Res. 70:512–518. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Cao L, Xiao X, Lei J, Duan W, Ma Q and Li W: Curcumin inhibits hypoxia-induced epithelial-mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway. Oncol Rep. 35:3728–3734. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Fu Z, Chen D, Cheng H and Wang F: Hypoxia-inducible factor-1α protects cervical carcinoma cells from apoptosis induced by radiation via modulation of vascular endothelial growth factor and p53 under hypoxia. Med Sci Monit. 21:319–325. 2015.

32 

Meng X, Cai J, Liu J, Han B, Gao F, Gao W, Zhang Y, Zhang J, Zhao Z and Jiang C: Curcumin increases efficiency of γ-irradiation in gliomas by inhibiting Hedgehog signaling pathway. Cell Cycle. 16:1181–1192. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Zhang F, Hao M, Jin H, Yao Z, Lian N, Wu L, Shao J, Chen A and Zheng S: Canonical hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis. Br J Pharmacol. 175:409–423. 2017. View Article : Google Scholar

34 

Zhang Q, Lou Y, Zhang J, Fu Q, Wei T, Sun X, Chen Q, Yang J, Bai X and Liang T: Hypoxia-inducible factor-2α promotes tumor progression and has crosstalk with Wnt/β-catenin signaling in pancreatic cancer. Mol Cancer. 16:1192017. View Article : Google Scholar : PubMed/NCBI

35 

Criscimanna A, Duan LJ, Rhodes JA, Fendrich V, Wickline E, Hartman DJ, Monga SP, Lotze MT, Gittes GK, Fong GH and Esni F: PanIN-specific regulation of Wnt signaling by HIF2α during early pancreatic tumorigenesis. Cancer Res. 73:4781–4790. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Moriyama H, Moriyama M, Ozawa T, Ttsuruta D, Iguchi T, Tamada S, Nakatani T, Nakagawa K and Hayakawa T: Notch signaling enhances stemness by regulating metabolic pathways through modifying p53, NF-κB, and HIF-1α. Stem Cells Dev. 27:935–947. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Tian Q, Xue Y, Zheng W, Sun R, Ji W, Wang X and An R: Overexpression of hypoxia-inducible factor 1α induces migration and invasion through Notch signaling. Int J Oncol. 47:728–738. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Kroon ME, Koolwijk P, van der Vecht B and van Hinsbergh VW: Hypoxia in combination with FGF-2 induces tube formation by human microvascular endothelial cells in a fibrin matrix: Involvement of at least two signal transduction pathways. J Cell Sci. 114:825–833. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Le TBU, Vu TC, Ho RZW, Prawira A, Wang L, Goh BC and Huynh H: Bevacizumab augments the antitumor efficacy of infigratinib in hepatocellular carcinoma. Int J Mol Sci. 21:94052020. View Article : Google Scholar : PubMed/NCBI

40 

Gupta SC, Singh R, Pochampally R, Watabe K and Mo YY: Acidosis promotes invasiveness of vreast cancer cells through ROS-AKT-NF-kB pathway. Oncotarget. 5:12070–12082. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Prasad S, Gupta SC and Tyagi AK: Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Eyrich NW, Potts CR, Robinson MH, Maximov V and Kenney AM: Reactive oxygen species signaling promotes hypoxia-inducible factor 1 α stabilization in sonic hedgehog-driven cerebellar progenitor cell proliferation. Mol Cell Biol. 39:e00268–18. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Liu Z, Tu K, Wang Y, Yao B, Li Q, Wang L, Dou C, Liu Q and Zheng X: Hypoxia accelerates aggressiveness of hepatocellular carcinoma cells involving oxidative stress, epithelial-mesenchymal transition and non-canonical hedgehog signaling. Cell Physiol Biochem. 44:1856–1868. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Li W, Cao L, Chen Y, Lei J and Ma Q: Resveratrol inhibits hypoxia-driven ROS-induced invasive and migratory ability of pancreatic cancer cells via suppression of the hedgehog signaling pathway. Oncol Rep. 35:1718–1726. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Morifuji Y, Onishi H, Iwasaki H, Imaizumi A, Nakano K, Tanaka M and Katano M: Reoxygenation from chronic hypoxia promotes metastatic processes in pancreatic cancer through the Hedgehog signaling. Cancer Sci. 105:324–333. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Zhang RY, Qiao ZY, Liu HJ and Ma JW: Sonic hedgehog signaling regulates hypoxia/reoxygenation-induced H9C2 myocardial cell apoptosis. Exp Ther Med. 16:4193–4200. 2018.PubMed/NCBI

47 

Fang Q, Zhang Y, Siang DS and Chen Y: Hydroxytyosol inhibits apoptosis in ischemia/reperfusion-induced acute kidney injury via activating sonic edgehog signaling pathway. Eur Rev Med Pharmacol Sci. 24:12380–12388. 2020.PubMed/NCBI

48 

Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, et al: The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int. 21:622021. View Article : Google Scholar : PubMed/NCBI

49 

Chapouly C, Guimbal S, Hollier PL and Renault MA: Role of hedgehog signaling in vasculature development, differentiation, and maintenance. Int J Mol Sci. 20:30762019. View Article : Google Scholar : PubMed/NCBI

50 

Yang X, Wang Z, Kai J, Wang F, Jia Y, Wang S, Tan S, Shen X, Chen A, Shao J, et al: Curcumol attenuates liver sinusoidal endothelial cell angiogenesis via regulating Glis-PROX1-HIF-1 α in liver fibrosis. Cell Prolif. 53:e127622020. View Article : Google Scholar : PubMed/NCBI

51 

Pinter M, Sieghart W, Schmid M, Dauser B, Prager G, Dienes HP, Trauner M and Peck-Radosavljevic M: Hedgehog inhibition reduces angiogenesis by downregulation of tumoral VEGF-A expression in hepatocellular carcinoma. United European Gastroenterol J. 1:265–275. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Zhu XQ, Yang H, Lin MH, Shang HX, Peng J, Chen WJ, Chen XZ and Lin JM: Qingjie fuzheng granules regulates cancer cell proliferation, apoptosis and tumor angiogenesis in colorectal cancer xenograft mice via sonic hedgehog pathway. J Gastrointest Oncl. 11:1123–1134. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Zhu ZX, Sun CC, Zhu YT, Wang Y, Wang T, Chi LS, Cai WH, Zheng JY, Zhou X, Cong WT, et al: Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration. Exp Cell Res. 355:83–94. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Yao Q, Renault MA, Chapouly C, Vandierdonck S, Belloc I, Jaspard-Vinassa B, Daniel-Lamaziere JM, Laffargue M, Merched A, Desgranges C and Gadeau AP: Sonic hedgehog mediates a novel pathway of PDGF-BB-dependent vessel maturation. Blood. 123:2529–2437. 2014. View Article : Google Scholar

55 

Hsieh A, Ellsworth R and Hsieh D: Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. J Cell Physiol. 226:1118–1127. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Maroufy V, Shah P, Asghari A, Deng N, Le RNU, Ramirez JC, Yaseen A, Zheng WJ, Umetami M and Wu H: Gene expression dynamic analysis reveals co-activation of sonic hedgehog and epidermal growth factor followed by dynamic silencing. Oncotarget. 11:1358–1372. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Bausch D, Fritz S, Bolm L, Wellner UF, Fernandez-Del-Castillo C, Warshaw AL, Thayer SP and Liss AS: Hedgehog signaling promotes angiogenesis directly and indirectly in pancreatic cancer. Angiogenesis. 23:479–492. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Stewart GA, Hoyne GF, Ahmad SA, Jarman E, Wallace WAH, Harrison DJ, Haslett C, Lamb JR and Howie SEM: Expression of the developmental sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J Pathol. 199:488–495. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Omenetti A, Porrello A, Jung Y, Yang L, Popov Y, Choi SS, Witek RP, Alpini G, Venter J, Vandongen HM, et al: Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest. 118:3331–3342. 2008.PubMed/NCBI

60 

Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery TC, Ouellette MM and Hollingsworth MA: Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 14:5995–6004. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Spivak-Kroizman TR, Hostetter G, Posner R, Ariz M, Hu C, Demeure MJ, Hoff DV, Hingorani SR, Palculict TB, Izzo J, et al: Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer. Cancer Res. 73:3235–3247. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Katagiri T, Kobayashi M, Yoshimura M, Morinibu A, Itasaka S, Hiraoka M and Harada H: HIF-1 maintains a functional relationship between pancreatic cancer cells and stromal fibroblasts by upregulating expression and secretion of sonic hedgehog. Oncotarget. 9:10525–10535. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, et al: Inhibition of hedgehog signaling enhances delivery of chemotherapy in mouse model of pancreatic cancer. Science. 324:1457–1461. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Oyama Y, Onishi H, Koga S, Murahashi M, Ichimiya S, Nakayama K, Fujimura A, Kawamoto M, Imaizumi A, Umebayashi M, et al: Patched 1-interacting peptide represses fibrosis in pancreatic cancer to augment the effectiveness of immunotherapy. J Immunother. 43:121–133. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D, Syu L, Hao Y, Oni TE, Brosnan E, Elyada E, et al: Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Cancer Res. 27:2023–2037. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Xue J, Jsharma V, Hsieh MH, Chawla A, Murali R, Pandol SJ and Habtezion A: Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 6:71582015. View Article : Google Scholar : PubMed/NCBI

67 

Ueshima E, Fujimori M, Kodama H, Felsen D, Chen J, Duack JC, Solomon SB, Coleman JA and Srimathveeravalli G: Macrophage-secreted TGF-β 1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renol Physiol. 317:F52–F64. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Javelaud D, Pierrat MJ and Mauviel A: Crosstalk between TGF-β and hedgehog signaling in cancer. FEBS Lett. 586:2016–2025. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Dennler S, Andre J, Alexaki I, Li A, Magnaldo T, ten Dijke P, Wang XJ, Verrecchia F and Mauviel A: Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res. 67:6981–6986. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Zhou X, Wang P, Ma Z, Li M, Teng X, Sun L, Wan G, Li Y, Guo L and Liu H: Novel interplay between sonic hedgehog and transforming growth factor-β1 in human nonalcoholic steatohepatitis. Appl Immunohistochem Mol Morphol. 28:154–160. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Jiayuan S, Junyan Y, Xiangzhen W, Zuping W, Jian N, Baowei H and Lifang J: Gant61 ameliorates CCl4-induced liver fibrosis by inhibition of hedgehog signaling activity. Toxicol Appl Pharmcol. 387:1148532020. View Article : Google Scholar : PubMed/NCBI

72 

Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B and Chouaib S: Hypoxia: A key player in antitumor immune response. A review in the theme: Cellular responses to hypoxia. Am J Physiol Cell Physiol. 309:C569–C579. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Onishi H, Morisaki T, Kiyota A, Koya N, Tanaka H, Umebayashi M and Katano M: The Hedgehog inhibitor cyclopamine impairs the benefits of immunotherapy with activated T and NK lymphocytes derived from patients with advanced cancer. Cancer Immunol Immunother. 62:1029–1039. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Winning S and Fandrey J: Dendritic cells under hypoxia: How oxygen shortage affects the linkage between innate and adaptive immunity. J Immunol Res. 2016:51343292016. View Article : Google Scholar : PubMed/NCBI

75 

Ogino T, Onishi H, Suzuki H, Morisaki T, Tanaka M and Katano M: Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions. Cancer Immunol Immunother. 61:409–424. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Bosco MC, Pierobon D, Blengio F, Raggi F, Vanni C, Gattorno M, Eva A, Novelli F, Cappello P, Giovarelli M and Varesio L: Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: Identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood. 117:2625–2639. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Pierobon D, Bosco MC, Blengio F, Raggi F, Eva A, Filippi M, Musso T, Novelli F, Cappello P, Varesio L and Giovarelli M: Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression. Eur J Immunol. 43:949–966. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Liu B and Wei C: Hypoxia induces overexpression of CCL28 to recruit Treg cells to enhance angiogenesis in lung adenocarcinoma. J Environ Pathol Toxicol Oncol. 40:65–74. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Westendorf AM, Skibbe K, Adamczyk A, Buer J, Geffers R, Hansen W, Pastille E and Jendrossek V: Hypoxia enhances immunosuppression by inhibiting CD4+ Effector T cell function and promoting treg activity. Cell Physiol Biochem. 41:1271–1284. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL, Koh HY, Li LL, Lee D, Lo RC, Wong CM, et al: Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology. 64:797–813. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Elia AR, Cappello P, Puppo M, Fraone T, Vanni C, Eva A, Musso T, Novelli F, Varesio L and Giovarelli M: Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J Leukoc Biol. 84:1472–1482. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Burke B, Giannoudis A, Corke KP, Gill D, Wells M, Ziegler-Heitbrock L and Lewis CE: Hypoxia-induced gene expression in human macrophages: Implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol. 163:1233–1243. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Fingleton B, Vargo-Gogola T, Crawford HC and Matrisian LM: Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia. 3:459–468. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Sureshbabu SK, Chaukar D and Chiplunkar SV: Hypoxia regulates the differentiation and anti-tumor effector functions of γδT cells in oral cancer. Clin Exp Immunol. 201:40–57. 2020. View Article : Google Scholar : PubMed/NCBI

85 

de la Roche M, Ritter AT, Angus KL, Dinsmore C, Earnshaw CH, Reiter JF and Griffiths GM: Hedgehog signaling controls T cell killing at the immunological synapse. Science. 342:1247–1250. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Petty AJ, Li A, Wang X, Dai R, Heyman B, Hsu D, Huang X and Yang YJ: Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. Clin Invest. 129:5151–5162. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Yánez DC, Lau CI, Chawda MM, Ross S, Furmanski AL and Crompton TJ: Hedgehog signaling promotes T H 2 differentiation in naive human CD4 T cells. Allergy Clin Immunol. 144:1419–1423.e1. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Merchant JL and Ding L: Hedgehog signaling links chronic inflammation to gastric cancer precursor lesions. Cell Mol Gastroenterol Hepatol. 3:201–210. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Onishi H, Morisaki T, Kiyota A, Koya N, Tanaka H, Umebayashi M and Katano M: The Hedgehog inhibitor suppresses the function of monocyte-derived dendritic cells from patients with advanced cancer under hypoxia. Biochem Biophys Res Commun. 436:53–59. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Ichimiya S, Fujimura A, Masuda M, Masuda S, Yasumatsu R, Umebayashi M, Tanaka H, Koya N, Nakagawa S, Yoshimura S, Onishi H, Nakamura M, Nakamura Y and Morisaki T: Contribution of pre-existing neoantigen-specific T cells to durable complete responses after tumor-pulsed dendritic cell vaccine plus nivolumab therapy in a patient with metastatic salivary duct carcinoma. Immunol Invest. Sep 5–2021.(Epub ahead of print). doi: 10.1080/08820139.2021.1973491. View Article : Google Scholar : PubMed/NCBI

91 

Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct target of HIF-1α, and its blockade under ypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Cubillos-Zapata C, Avendaño-Ortiz J, Hernandez-Jimenez E, Toledano V, Casas-Martin J, Varela-Serrano A, Torres M, Almendros I, Casitas R, Fernández-Navarro I, et al: Hypoxia-induced PD-L1/PD-1 crosstalk impairs T-cell function in sleep apnoea. Eur Respir J. 50:17008332017. View Article : Google Scholar : PubMed/NCBI

93 

Chakrabarti J, Holokai L, Syu L, Steele NG, Chang J, Wang J, Ahmed S, Dlugosz A and Zavros Y: Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget. 9:37439–37457. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Onishi H, Fujimura A, Oyama Y, Yamasaki A, Imaizumi A, Kawamoto M, Katano M, Umebayashi M and Morisaki T: Hedgehog signaling regulates PDL-1 expression in cancer cells to induce anti-tumor activity by activated lymphocytes. Cell Immunol. 310:199–204. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Zhu X and Lang J: Soluble PD-1 and PD-L1: Predictive and prognostic significance in cancer. Oncotarget. 8:97671–97682. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Zhou K, Guo S, Li F, Sun Q and Liang G: Exosomal PD-L1: New insights into tumor immune escape mechanisms and therapeutic strategies. Front Cell Dev Biol. 8:5692192020. View Article : Google Scholar : PubMed/NCBI

97 

Mühlbauer M, Fleck M, Schütz C, Weiss T, Froh M, Blank C, Schölmerich J and Hellerbrand C: PD-L1 is induced hepatocytes by viral infection and interferon-alpha and -gamma and mediates T cell apoptosis. J Hepatol. 45:520–528. 2006. View Article : Google Scholar : PubMed/NCBI

98 

D'Alessandris N, Palaia I, Pernazza A, Tomao F, Di Pinto A, Musacchio L, Leopizzi M, Di Maio V, Pecorella I, Benedetti Panici P, et al: PD-L1 expression is associated with tumor infiltrating lymphocytes that predict response to NACT in squamous cell cervical cancer. Virchows Arch. 478:517–525. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Blank C and Mackensen A: Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: An update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother. 56:739–745. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Zeng X and Ju D: Hedgehog signaling pathway and autophagy in cancer. Int J Mol Sci. 19:22792018. View Article : Google Scholar : PubMed/NCBI

101 

Yamasaki A, Yanai K and Onishi H: Hypoxia and pancreatic ductal adenocarcinoma. Cancer Lett. 484:9–15. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Milla LA, González-Ramírez CN and Palma V: Sonic hedgehog in cancer stem cells: A novel link with autophagy. Biol Res. 45:223–230. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Wu X, Won H and Rubinsztein DC: Autophagy and mammalian development. Biochem Soc Trans. 41:1489–1494. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Fan J, Ju D, Li Y, Wang S and Wang Z: A novel approach to overcome non-small-cell lung cancer: Co-inhibition of autophagy and Hedgehog pathway. Ann Oncol. 26:vii106–vii151. 2015. View Article : Google Scholar

105 

Wang Y, Han C, Lu L, Magliato S and Wu T: Hedgehog signaling pathway regulates autophagy in human hepatocellular carcinoma cells. Hepatology. 58:995–1010. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Gagné-Sansfaçon J, Allaire JM, Jones C, Boudreau F and Perreault N: Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy. PLoS One. 9:e987512014. View Article : Google Scholar : PubMed/NCBI

107 

Albini A, Cesana E and Noonan DM: Cancer stem cells and the tumor microenvironment: Soloists or choral singers. Curr Pharm Biotechnol. 12:171–181. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Wu CP, Du HD, Gong HL, Li DW, Tao L, Tian J and Zhou L: Hypoxia promotes stem-like properties of laryngeal cancer cell lines by increasing the CD133+ stem cell fraction. Int J Oncol. 44:1652–1660. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Sun X, Lv X, Yan Y, Zhao Y, Ma R, He M and Wei M: Hypoxia-mediated cancer stem cell resistance and targeted therapy. Biomed. Pharmacother. 130:1106232020. View Article : Google Scholar : PubMed/NCBI

110 

Bhuria V, Xing J, Scholta T, Bui KC, Nguyen MLT, Malek NP, Bozko P and Plentz RR: Hypoxia induced Sonic Hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma. Exp Cell Res. 385:1116712019. View Article : Google Scholar : PubMed/NCBI

111 

Raghavan S, Snyder CS, Wang A, McLean K, Zamarin D, Buckanovich RJ and Mehta G: Carcinoma-associated mesenchymal stem cells promote chemoresistance in ovarian cancer stem cells via PDGF signaling. Cancers. 12:20632020. View Article : Google Scholar : PubMed/NCBI

112 

Mondal S, Bhattacharya K and Mandal C: Nutritional stress reprograms dedifferention in glioblastoma multiforme driven by PTEN/Wnt/Hedgehog axis: A stochastic model of cancer stem cells. Cell Death Discov. 4:1102018. View Article : Google Scholar : PubMed/NCBI

113 

Tanaka H, Nakamura M, Kameda C, Kubo M, Sato N, Kuroki S, Tanaka M and Katano M: The Hedgehog signaling pathway plays an essential role in maintaining the CD44+CD24-/low subpopulation and the side population of breast cancer cells. Anticancer Res. 29:2147–2157. 2009.PubMed/NCBI

114 

Bai JW, Wei M, Li JW and Zhang GJ: Notch signaling pathway and endocrine resistance in breast cancer. Front Pharmacol. 11:9242020. View Article : Google Scholar : PubMed/NCBI

115 

Shang C, Lang B and Meng LR: Blocking NOTCH pathway can enhance the effect of EGFR inhibitor through targeting CD133+ endometrial cancer cells. Cancer Biol Ther. 19:113–119. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Castagnoli L, Tagliabue E and Pupa SM: Inhibition of the Wnt signalling pathway: An avenue to control breast cancer aggressiveness. Int J Mol Sci. 21:90692020. View Article : Google Scholar : PubMed/NCBI

117 

Pandit H, Li Y, Li X, Zhang W, Li S and Martin RCG: Enrichment of cancer stem cells via β-catenin contributing to the tumorigenesis of hepatocellular carcinoma. BMC Cancer. 18:7832018. View Article : Google Scholar : PubMed/NCBI

118 

Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, Lancini C and van Lohuizen M: In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell. 23:660–676. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Ader T, Norel R, Levoci L and Rogler LE: Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts. Mech Dev. 123:177–194. 2006. View Article : Google Scholar : PubMed/NCBI

120 

Schartz NE, Chaput N, André F and Zitvogel L: From the antigen-presenting cell to the antigen-presenting vesicle: The exosomes. Curr Opin Mol Ther. 4:372–381. 2002.PubMed/NCBI

121 

Mignot G, Roux S, Thery C, Segura E and Zitvogel L: Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med. 10:376–388. 2006. View Article : Google Scholar : PubMed/NCBI

122 

Deep G and Panigrahi GK: Hypoxia-induced signaling promotes prostate cancer progression: Exosomes role as messenger of hypoxic response in tumor microenvironment. Crit Rev Oncog. 20:419–434. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Gradilla AC, González E, Seijo I, Andrés G, Bischoff M, González-Mendez L, Sánchez V, Callejo A, Ibáñez C, Guerra M, et al: Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 5:56492014. View Article : Google Scholar : PubMed/NCBI

124 

Qi J, Zhou Y, Jiao Z, Wang X, Zhao Y and Li Y, Chen H, Yang L, Zhu H and Li Y: Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol Biochem. 42:2242–2254. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Sharma A: Role of stem cell derived exosomes in tumor biology. Int J Cancer. 142:1086–1092. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Bhat A, Sharma A and Bharti AC: Upstream Hedgehog signaling components are exported in exosomes of cervical cancer cell lines. Nanomedicine. 13:2127–2138. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Zhao G, Li H, Guo Q, Zhou A, Wang X, Li P and Zhang S: Exosomal Sonic Hedgehog derived from cancer-associated fibroblasts promotes proliferation and migration of esophageal squamous cell carcinoma. Cancer Med. 9:2500–2513. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Wada J, Onishi H, Suzuki H, Yamasaki A, Nagai S, Morisaki T and Katano M: Surface-bound TGF-beta1 on effusion-derived exosomes participates in maintenance of number and suppressive function of regulatory T-cells in malignant effusions. Anticancer Res. 30:3747–3757. 2010.PubMed/NCBI

129 

Matsumoto K, Morisaki T, Kuroki H, Kubo M, Onishi H, Nakamura K, Nakahara C, Kuga H, Baba E, Nakamura M, et al: Exosomes secreted from monocyte-derived dendritic cells support in vitro naïve CD4+ T cell survival through NF-(kappa)B activation. Cell Immunol. 231:20–29. 2004. View Article : Google Scholar : PubMed/NCBI

130 

Onishi H, Kuroki H, Matsumoto K, Baba E, Sasaki N, Kuga H, Tanaka M, Katano M and Morisaki T: Monocyte-derived dendritic cells that capture dead tumor cells secrete IL-12 and TNF-alpha through IL-12/TNF-alpha/NF-kappaB autocrine loop. Cancer Immunol Immunother. 53:1093–1100. 2004. View Article : Google Scholar : PubMed/NCBI

131 

Nakashima H, Nakamura M, Yamaguchi H, Yamanaka N, Akiyoshi T, Koga K, Yamaguchi K, Tsuneyoshi M, Tanaka M and Katano M: Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res. 66:7041–7049. 2006. View Article : Google Scholar : PubMed/NCBI

132 

Kasperczyk H, Baumann B, Debatin KM and Fulda S: Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo. FASEB J. 23:21–33. 2009. View Article : Google Scholar : PubMed/NCBI

133 

Cai K, Na W, Guo M, Xu R, Wang X, Qin Y, Wu Y, Jiang J and Huang H: Targeting the cross-talk between the hedgehog and NF-κB signaling pathways in multiple myeloma. Leuk Lymphoma. 60:772–781. 2019. View Article : Google Scholar : PubMed/NCBI

134 

Nakayama K, Onishi H, Fujimura A, Imaizumi A, Kawamoto M, Oyama Y, Ichimiya S, Koga S, Fujimoto Y, Nakashima K and Nakamura M: NFκB and TGFβ contribute to the expression of PTPN3 in activated human lymphocytes. Cell Immunol. 358:1042372020. View Article : Google Scholar : PubMed/NCBI

135 

Fosko SW, Chu MB, Armbrecht E, Galperin T, Potts GA, Mattox A, Kurta A, Polito K, Slutsky JB, Burkemper NM, et al: Efficacy, rate of tumor response, and safety of a short course (12–24 weeks) of oral vismodegib in various histologic subtypes (infiltrative, nodular, and superficial) of high-risk or locally advanced basal cell carcinoma, in an open-label, prospective case series clinical trial. J Am Acad Dermatol. 82:946–954. 2020. View Article : Google Scholar : PubMed/NCBI

136 

De Jesus-Acosta A, Sugar EA, O'Dwyer PJ, Ramanathan RK, Von Hoff DD, Rasheed Z, Zheng L, Begum A, Anders R, Maitra A, et al: Phase 2 study of vismodegib, a hedgehog inhibitor, combined with gemcitabine and nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma. Br J Cancer. 122:498–505. 2020. View Article : Google Scholar : PubMed/NCBI

137 

Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T, Pujara K, Stinson J, Callahan CA, Tang T, et al: Smoothened mutation confere resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science. 326:572–574. 2009. View Article : Google Scholar : PubMed/NCBI

138 

Dijkgraaf GJ, Alicke B, Weinmann L, Januario T, West K, Modrusan Z, Burdick D, Goldsmith R, Robarge K, Sutherlin D, et al: Small molecule inhibition of GDC-0499 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res. 71:435–444. 2011. View Article : Google Scholar : PubMed/NCBI

139 

Onishi H and Katano M: The Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J Gastroenterol. 20:2335–2342. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Onishi H, Nakamura K, Yanai K, Nagai S, Nakayama K, Oyama Y, Fujimura A, Ozono K and Yamasaki A: Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review). Oncol Rep 47: 93, 2022.
APA
Onishi, H., Nakamura, K., Yanai, K., Nagai, S., Nakayama, K., Oyama, Y. ... Yamasaki, A. (2022). Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review). Oncology Reports, 47, 93. https://doi.org/10.3892/or.2022.8304
MLA
Onishi, H., Nakamura, K., Yanai, K., Nagai, S., Nakayama, K., Oyama, Y., Fujimura, A., Ozono, K., Yamasaki, A."Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review)". Oncology Reports 47.5 (2022): 93.
Chicago
Onishi, H., Nakamura, K., Yanai, K., Nagai, S., Nakayama, K., Oyama, Y., Fujimura, A., Ozono, K., Yamasaki, A."Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review)". Oncology Reports 47, no. 5 (2022): 93. https://doi.org/10.3892/or.2022.8304
Copy and paste a formatted citation
x
Spandidos Publications style
Onishi H, Nakamura K, Yanai K, Nagai S, Nakayama K, Oyama Y, Fujimura A, Ozono K and Yamasaki A: Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review). Oncol Rep 47: 93, 2022.
APA
Onishi, H., Nakamura, K., Yanai, K., Nagai, S., Nakayama, K., Oyama, Y. ... Yamasaki, A. (2022). Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review). Oncology Reports, 47, 93. https://doi.org/10.3892/or.2022.8304
MLA
Onishi, H., Nakamura, K., Yanai, K., Nagai, S., Nakayama, K., Oyama, Y., Fujimura, A., Ozono, K., Yamasaki, A."Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review)". Oncology Reports 47.5 (2022): 93.
Chicago
Onishi, H., Nakamura, K., Yanai, K., Nagai, S., Nakayama, K., Oyama, Y., Fujimura, A., Ozono, K., Yamasaki, A."Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review)". Oncology Reports 47, no. 5 (2022): 93. https://doi.org/10.3892/or.2022.8304
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team