Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July-2022 Volume 48 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2022 Volume 48 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review)

  • Authors:
    • Taruna Arora
    • Mohd. Adnan Kausar
    • Shimaa Mohammed Aboelnaga
    • Sadaf Anwar
    • Malik Asif Hussain
    • Sadaf Sadaf
    • Simran Kaur
    • Alaa Abdulaziz Eisa
    • Vyas Murti Madhavrao Shingatgeri
    • Mohammad Zeeshan Najm
    • Abdulaziz A. Aloliqi
  • View Affiliations / Copyright

    Affiliations: Division of Reproductive Biology, Maternal & Child Health, Department of Health Research, ICMR, MOHFW, Government of India, Ansari Nagar, New Delhi 110029, India, Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA‑2240, Saudi Arabia, Deanship of Preparatory Year, University of Hail, Hail, KSA‑2240, Saudi Arabia, Department of Pathology, University of Hail, Hail, KSA-2240, Saudi Arabia, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India, School of Biosciences, Apeejay Stya University, Sohna, Haryana 122103, India, Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina, KSA‑344, Saudi Arabia, Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
  • Article Number: 135
    |
    Published online on: June 10, 2022
       https://doi.org/10.3892/or.2022.8346
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is recognized as the leading cause of death worldwide. The hippo signaling pathway regulates organ size by balancing cell proliferation and cell death; hence dysregulation of the hippo pathway promotes cancer‑like conditions. miRNAs are a type of non‑coding RNA that have been shown to regulate gene expression. miRNA levels are altered in various classes of cancer. Researchers have also uncovered a crosslinking between miRNAs and the hippo pathway, which has been linked to cancer. The components of the hippo pathway regulate miRNA synthesis, and various miRNAs regulate the components of the hippo pathway both positively and negatively, which can lead to cancer‑like conditions. In the present review article, the mechanism behind the hippo signaling pathway and miRNAs biogenesis and crosslinks between miRNAs and the hippo pathway, which result in cancer, shall be discussed. Furthermore, the article will cover miRNA‑related therapeutics and provide an overview of the development of resistance to anticancer drugs. Understanding the underlying processes would improve the chances of developing effective cancer treatment therapies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A and Bray F: Cancer statistics for the year 2020: An overview. Int J Cancer. Apr 5–2021.(Epub ahead of print). View Article : Google Scholar

2 

Zygulska AL, Krzemieniecki K and Pierzchalski P: Hippo pathway-brief overview of its relevance in cancer. J Physiol Pharmacol. 68:311–335. 2017.PubMed/NCBI

3 

Zeng R and Dong J: The Hippo signaling pathway in drug resistance in cancer. Cancers (Basel). 13:3182021. View Article : Google Scholar : PubMed/NCBI

4 

Li N, Xie C and Lu N: Crosstalk between Hippo signaling and miRNAs in tumor progression. FEBS J. 284:1045–1055. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD and Gregory RI: Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell. 156:893–906. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Pfleger CM: The Hippo pathway: A master regulatory network important in development and dysregulated in disease. Curr Top Dev Biol. 123:181–228. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Dey A, Varelas X and Guan KL: Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 19:480–494. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Kaur S, Najm MZ, Khan MA, Akhter N, Shingatgeri VM, Sikenis M, Sadaf and Aloliqi AA: Drug-resistant breast cancer: Dwelling the Hippo pathway to manage the treatment. Breast Cancer (Dove Med Press). 13:691–700. 2021.PubMed/NCBI

9 

Praskova M, Xia F and Avruch J: MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol. 18:311–321. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Zheng Y and Pan D: The Hippo signaling pathway in development and disease. Dev Cell. 50:264–282. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Nguyen-Lefebvre AT, Selzner N, Wrana JL and Bhat M: The hippo pathway: A master regulator of liver metabolism, regeneration, and disease. FASEB J. 35:e215702021. View Article : Google Scholar : PubMed/NCBI

12 

Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–2761. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y and Guan KL: TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol. 28:2426–2436. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Najm MZ, Sadaf, Shingatgeri VM, Saha H, Bhattacharya H, Rath A, Verma V, Gupta A, Aloliqi AA, Kashyap P and Parveen F: Hippo pathway in cancer: Examining its potential. J Curr Oncol. 4:115–120. 2021. View Article : Google Scholar

15 

Badouel C and McNeill H: SnapShot: The hippo signaling pathway. Cell. 145:484.e12011.PubMed/NCBI

16 

Huang YT, Lan Q, Lorusso G, Duffey N and Rüegg C: The matricellular protein CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and suppressing anoikis. Oncotarget. 8:9200–9215. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Niu J, Ma J, Guan X, Zhao X, Li P and Zhang M: Correlation between Doppler ultrasound blood flow parameters and angiogenesis and proliferation activity in breast cancer. Med Sci Monit. 25:70352019. View Article : Google Scholar : PubMed/NCBI

18 

Yu FX and Guan KL: The Hippo pathway: Regulators and regulations. Genes Dev. 27:355–371. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Han Y: Analysis of the role of the Hippo pathway in cancer. J Transl Med. 17:1162019. View Article : Google Scholar : PubMed/NCBI

20 

Mo JS: The role of extracellular biophysical cues in modulating the Hippo-YAP pathway. BMB Rep. 50:71–78. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW and Wrana JL: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 10:837–848. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Beyer TA, Weiss A, Khomchuk Y, Huang K, Ogunjimi AA, Varelas X and Wrana JL: Switch enhancers interpret TGF-β and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep. 5:1611–1624. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Liu J, Kang R and Tang D: The KRAS-G12C inhibitor: Activity and resistance. Cancer Gene Ther. 2021 Sep 1;(Epub ahead of print). View Article : Google Scholar

24 

Shen Z and Stanger BZ: YAP regulates S-phase entry in endothelial cells. PLoS One. 10:e01175222015. View Article : Google Scholar : PubMed/NCBI

25 

Benham-Pyle BW, Pruitt BL and Nelson WJ: Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science. 348:1024–1027. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, Zhong Y, Wu CJ, Sadanandam A, Hu B, et al: Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell. 158:185–197. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Shibata M, Ham K and Hoque MO: A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. Int J Cancer. 143:2133–2144. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Mytsyk Y, Dosenko V, Skrzypczyk MA, Borys Y, Diychuk Y, Kucher A, Kowalskyy V, Pasichnyk S, Mytsyk O and Manyuk L: Potential clinical applications of microRNAs as biomarkers for renal cell carcinoma. Cent European J Urol. 71:295–303. 2018.PubMed/NCBI

29 

O'Brien J, Hayder H, Zayed Y and Peng C: Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI

30 

Bushati N and Cohen SM: MicroRNA functions. Annu Rev Cell Dev Biol. 23:175–205. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

32 

Wightman B, Ha I and Ruvkun G: Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI

33 

Hong Y, Lee RC and Ambros V: Structure and function analysis of LIN-14, a temporal regulator of postembryonic developmental events in Caenorhabditis elegans. Mol Cell Biol. 20:2285–2295. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Lau NC, Lim LP, Weinstein EG and Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294:858–862. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Croce CM and Calin GA: MiRNAs, cancer, and stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW and Ruohola-Baker H: Stem cell division is regulated by the microRNA pathway. Nature. 435:974–978. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Borchert GM, Lanier W and Davidson BL: RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 13:1097–1101. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI

41 

MacFarlane LA and R Murphy P: MicroRNA: Biogenesis, function and role in cancer. Curr Genomics. 11:537–561. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Pong SK and Gullerova M: Noncanonical functions of microRNA pathway enzymes-Drosha, DGCR 8, Dicer and Ago proteins. FEBS Lett. 592:2973–2986. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Han J, Lee Y, Yeom KH, Kim YK, Jin H and Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18:3016–3027. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Wong CM, Tsang FH and Ng IO: Non-coding RNAs in hepatocellular carcinoma: Molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol. 15:137–151. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Valinezhad Orang A, Safaralizadeh R and Kazemzadeh-Bavili M: Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics. 2014:9706072014. View Article : Google Scholar : PubMed/NCBI

46 

Zhang HN, Xu QQ, Thakur A, Alfred MO, Chakraborty M, Ghosh A and Yu XB: Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sci. 213:258–268. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Romano G and Kwong LN: MiRNAs, melanoma and microenvironment: An intricate network. Int J Mol Sci. 18:23542017. View Article : Google Scholar : PubMed/NCBI

48 

Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K, Mihara M, Naitou M, Endoh H, Nakamura T, et al: DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol. 9:604–611. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Davis BN, Hilyard AC, Lagna G and Hata A: SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 454:56–61. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi R and Rosenfeld MG: The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature. 459:1010–1014. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Dinami R, Ercolani C, Petti E, Piazza S, Ciani Y, Sestito R, Sacconi A, Biagioni F, le Sage C, Agami R, et al: MiR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res. 74:4145–4156. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C and Zhu G: Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 76:1770–1780. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Liu C, Kelnar K, Vlassov AV, Brown D, Wang J and Tang DG: Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res. 72:3393–3404. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Fu V, Plouffe SW and Guan KL: The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol. 49:99–107. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Harvey KF, Zhang X and Thomas DM: The Hippo pathway and human cancer. Nat Rev Cancer. 13:246–257. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR and Camargo FD: Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell. 144:782–795. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N and Shiekhattar R: The Microprocessor complex mediates the genesis of microRNAs. Nature. 432:235–240. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A and Mendell JT: Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Yu T, Ma P, Wu D, Shu Y and Gao W: Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother. 108:1162–1169. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M, et al: MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 120:1298–1309. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Wu Y, Li M, Lin J and Hu C: Hippo/TEAD4 signaling pathway as a potential target for the treatment of breast cancer. Oncol Lett. 21:3132021. View Article : Google Scholar : PubMed/NCBI

63 

Egawa H, Jingushi K, Hirono T, Ueda Y, Kitae K, Nakata W, Fujita K, Uemura M, Nonomura N and Tsujikawa K: The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci Rep. 6:205742016. View Article : Google Scholar : PubMed/NCBI

64 

Duan J, Zhang H, Qu Y, Deng T, Huang D, Liu R, Zhang L, Bai M, Zhou L, Ying G and Ba Y: Onco-miR-130 promotes cell proliferation and migration by targeting TGFβR2 in gastric cancer. Oncotarget. 7:44522–44533. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Zhang Y, Shen H, Withers HG, Yang N, Denson KE, Mussell AL, Truskinovsky A, Fan Q, Gelman IH, Frangou C and Zhang J: VGLL4 selectively represses YAP-dependent gene induction and tumorigenic phenotypes in breast cancer. Sci Rep. 7:61902017. View Article : Google Scholar : PubMed/NCBI

66 

Cheng L, Wang H and Han S: MiR-3910 promotes the growth and migration of cancer cells in the progression of hepatocellular carcinoma. Dig Dis Sci. 62:2812–2820. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Liu AM, Poon RT and Luk JM: MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties. Biochem Biophys Res Commun. 394:623–627. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Ruan T, He X, Yu J and Hang Z: MicroRNA-186 targets Yes-associated protein 1 to inhibit Hippo signaling and tumorigenesis in hepatocellular carcinoma. Oncol Lett. 11:2941–2945. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Deng J, Lei W, Xiang X, Zhang L, Lei J, Gong Y, Song M, Wang Y, Fang Z, Yu F, et al: Cullin 4A (CUL4A), a direct target of miR-9 and miR-137, promotes gastric cancer proliferation and invasion by regulating the Hippo signaling pathway. Oncotarget. 7:10037–10050. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Higashi T, Hayashi H, Ishimoto T, Takeyama H, Kaida T, Arima K, Taki K, Sakamoto K, Kuroki H, Okabe H, et al: MiR-9-3p plays a tumour-suppressor role by targeting TAZ (WWTR1) in hepatocellular carcinoma cells. Br J Cancer. 113:252–258. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Tan G, Cao X, Dai Q, Zhang B, Huang J, Xiong S, Zhang Yy, Chen W, Yang J and Li H: A novel role for microRNA-129-5p in inhibiting ovarian cancer cell proliferation and survival via direct suppression of transcriptional co-activators YAP and TAZ. Oncotarget. 6:8676–8686. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Yu S, Jing L, Yin XR, Wang MC, Chen YM, Guo Y, Nan KJ and Han LL: MiR-195 suppresses the metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by inhibiting YAP. Oncotarget. 8:99757–99771. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Abd-Aziz N, Kamaruzman NI and Poh CL: Development of microRNAs as potential therapeutics against cancer. J Oncol. 2020:80297212020. View Article : Google Scholar : PubMed/NCBI

74 

Wang V and Wu W: MicroRNA-based therapeutics for cancer. BioDrugs. 23:15–23. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Shah V and Shah J: Recent trends in targeting miRNAs for cancer therapy. J Pharm Pharmacol. 72:1732–1749. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Lu PY, Xie F and Woodle MC: In vivo application of RNA interference: From functional genomics to therapeutics. Adv Genet. 54:117–142. 2005.PubMed/NCBI

78 

Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W and Aebischer P: Lentiviral-mediated RNA interference. Hum Gene Ther. 13:2197–2201. 2002. View Article : Google Scholar : PubMed/NCBI

79 

Tong AW: Small RNAs and non-small cell lung cancer. Curr Mol Med. 6:339–349. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Hanna J, Hossain GS and Kocerha J: The potential for microRNA therapeutics and clinical research. Front Genet. 10:4782019. View Article : Google Scholar : PubMed/NCBI

81 

Si W, Shen J, Zheng H and Fan W: The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 11:252019. View Article : Google Scholar : PubMed/NCBI

82 

Samji P, Rajendran MK, Warrier VP, Ganesh A and Devarajan K: Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal. 78:1098582021. View Article : Google Scholar : PubMed/NCBI

83 

Wang ZX, Lu BB, Wang H, Cheng ZX and Yin YM: MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res. 42:281–290. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, Su F, Yao H and Song E: Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. Biol Chem. 286:19127–19137. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Zhou L, Qiu T, Xu J, Wang T, Wang J, Zhou X, Huang Z, Zhu W, Shu Y and Liu P: miR-135a/b modulate cisplatin resistance of human lung cancer cell line by targeting MCL1. Pathol Oncol Res. 19:677–683. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Sun C, Li N, Yang Z, Zhou B, He Y, Weng D, Fang Y, Wu P, Chen P, Yang X, et al: miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst. 105:1750–1758. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Xu H, Zhao L, Fang Q, Sun J, Zhang S, Zhan C, Liu S and Zhang Y: MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α. PLoS One. 9:e1155652014. View Article : Google Scholar : PubMed/NCBI

88 

Feng YH and Tsao CJ: Emerging role of microRNA-21 in cancer. Biomed Rep. 5:395–402. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE and Altman RB: Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet Genomics. 21:440–446. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Tai W, Mahato R and Cheng K: The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 146:264–275. 2010. View Article : Google Scholar : PubMed/NCBI

91 

González-Alonso P, Zazo S, Martín-Aparicio E, Luque M, Chamizo C, Sanz-Álvarez M, Minguez P, Gómez-López G, Cristóbal I, Caramés C, et al: The hippo pathway transducers YAP1/TEAD induce acquired resistance to trastuzumab in HER2-positive breast cancer. Cancers (Basel). 12:11082020. View Article : Google Scholar : PubMed/NCBI

92 

Lin CW, Chang YL, Chang YC, Lin JC, Chen CC, Pan SH, Wu CT, Chen HY, Yang SC, Hong TM and Yang PC: MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat Commun. 4:18772013. View Article : Google Scholar : PubMed/NCBI

93 

Mandati V, Del Maestro L, Dingli F, Lombard B, Loew D, Molinie N, Romero S, Bouvard D, Louvard D, Gautreau AM, et al: Phosphorylation of Merlin by Aurora A kinase appears necessary for mitotic progression. J Biol Chem. 294:12992–13005. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Dasari S and Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Gauthier A and Ho M: Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatol Res. 43:147–154. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Wu XZ, Xie GR and Chen D: Hypoxia and hepatocellular carcinoma: The therapeutic target for hepatocellular carcinoma. J Gastroenterol Hepatol. 22:1178–1182. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Tak E, Lee S, Lee J, Rashid MA, Kim YW, Park JH, Park WS, Shokat KM, Ha J and Kim SS: Human carbonyl reductase 1 upregulated by hypoxia renders resistance to apoptosis in hepatocellular carcinoma cells. J Hepatol. 54:328–339. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Trédan O, Galmarini CM, Patel K and Tannock IF: Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 99:1441–1454. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Arora T, Kausar MA, Aboelnaga SM, Anwar S, Hussain MA, Sadaf S, Kaur S, Eisa AA, Shingatgeri VM, Najm MZ, Najm MZ, et al: miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncol Rep 48: 135, 2022.
APA
Arora, T., Kausar, M.A., Aboelnaga, S.M., Anwar, S., Hussain, M.A., Sadaf, S. ... Aloliqi, A.A. (2022). miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncology Reports, 48, 135. https://doi.org/10.3892/or.2022.8346
MLA
Arora, T., Kausar, M. A., Aboelnaga, S. M., Anwar, S., Hussain, M. A., Sadaf, S., Kaur, S., Eisa, A. A., Shingatgeri, V. M., Najm, M. Z., Aloliqi, A. A."miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review)". Oncology Reports 48.1 (2022): 135.
Chicago
Arora, T., Kausar, M. A., Aboelnaga, S. M., Anwar, S., Hussain, M. A., Sadaf, S., Kaur, S., Eisa, A. A., Shingatgeri, V. M., Najm, M. Z., Aloliqi, A. A."miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review)". Oncology Reports 48, no. 1 (2022): 135. https://doi.org/10.3892/or.2022.8346
Copy and paste a formatted citation
x
Spandidos Publications style
Arora T, Kausar MA, Aboelnaga SM, Anwar S, Hussain MA, Sadaf S, Kaur S, Eisa AA, Shingatgeri VM, Najm MZ, Najm MZ, et al: miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncol Rep 48: 135, 2022.
APA
Arora, T., Kausar, M.A., Aboelnaga, S.M., Anwar, S., Hussain, M.A., Sadaf, S. ... Aloliqi, A.A. (2022). miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncology Reports, 48, 135. https://doi.org/10.3892/or.2022.8346
MLA
Arora, T., Kausar, M. A., Aboelnaga, S. M., Anwar, S., Hussain, M. A., Sadaf, S., Kaur, S., Eisa, A. A., Shingatgeri, V. M., Najm, M. Z., Aloliqi, A. A."miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review)". Oncology Reports 48.1 (2022): 135.
Chicago
Arora, T., Kausar, M. A., Aboelnaga, S. M., Anwar, S., Hussain, M. A., Sadaf, S., Kaur, S., Eisa, A. A., Shingatgeri, V. M., Najm, M. Z., Aloliqi, A. A."miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review)". Oncology Reports 48, no. 1 (2022): 135. https://doi.org/10.3892/or.2022.8346
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team