Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2022 Volume 48 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 48 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of interaction between autophagy and apoptosis in tumorigenesis (Review)

  • Authors:
    • Hongyan Xi
    • Shuo Wang
    • Beibei Wang
    • Xuelan Hong
    • Xueping Liu
    • Meichao Li
    • Ruxia Shen
    • Qixiu Dong
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Yancheng Hospital of Traditional Chinese Medicine, Yancheng, Jiangsu 224000, P.R. China, Department of Traditional Chinese Medicine, Traditional Chinese Medicine Cangzhou Integrated Traditional Chinese and Western Medicine Hospital, Cangzhou, Hebei 061000, P.R. China, School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei 050000, P.R. China, Department of Traditional Chinese Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi 545000, P.R. China, Department of Traditional Chinese Medicine, Heyi Community Health Service Center, Beijing 100000, P.R. China
    Copyright: © Xi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 208
    |
    Published online on: October 11, 2022
       https://doi.org/10.3892/or.2022.8423
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Autophagy is a highly conserved process that maintains cellular homeostasis during evolution. Autophagy can occur in the form of macroautophagy, microautophagy or molecular chaperone autophagy, among which macroautophagy is the most common. Apoptosis exists in all kinds of cell organisms, and is a kind of programmed cell death which is regulated by pro‑apoptotic factors and anti‑apoptotic signals. The main biological feature of apoptosis is the activation of caspase. Apoptosis is induced by a variety of cell signals, such as endoplasmic reticulum stress, induction of toxic substances, stimulation of pathogenic microorganisms and DNA damage. Inextricable links are found between autophagy and apoptosis. Studies have found that numerous of the autophagy molecules and autophagy signaling pathways involved in the process of autophagy are related to apoptosis. In addition to regulating autophagy, the autophagy signaling pathway also regulates apoptosis. The interaction between the two can achieve a dynamic balance to certain extent, which maintains the basic physiological functions of cells and reduces the damage to the body under stress. Disease occurs when the balance between autophagy and apoptosis is disrupted. Tumors form due to the ability of cells to avoid apoptosis. Autophagy is closely related to apoptosis, there must be a close connection between the three. In the present review, the mechanism between autophagy and apoptosis and the impact of their interaction on tumorigenesis shall be discussed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Zhang X, Wu D, Wang C, Luo Y, Ding X, Yang X, Silva F, Arenas S, Weaver JM, Mandell M, et al: Sustained activation of autophagy suppresses adipocyte maturation via a lipolysis-dependent mechanism. Autophagy. 16:1668–1682. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Varusai TM, Jupe S, Sevilla C, Matthews L, Gillespie M, Stein L, Wu G, D'Eustachio P, Metzakopian E and Hermjakob H: Using reactome to build an autophagy mechanism knowledgebase. Autophagy. 17:1543–1554. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Liu K, Guo C, Lao Y, Yang J, Chen F, Zhao Y, Yang Y, Yang J and Yi J: A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy. 16:975–990. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Thorburn A: A new mechanism for autophagy regulation of anti-tumor immune responses. Autophagy. 16:2282–2284. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Saleem M, Asif J, Asif M and Saleem U: Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: An updated review. Anticancer Agents Med Chem. 18:1650–1655. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Yang JY, Zhang YF, Meng XP and Kong XF: Delayed effects of autophagy on T-2 toxin-induced apoptosis in mouse primary leydig cells. Toxicol Ind Health. 35:256–263. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Girardot T, Rimmelé T, Venet F and Monneret G: Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis. 22:295–305. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Xu Z, Song Y and Wang F: Rational design of genetically encoded reporter genes for optical imaging of apoptosis. Apoptosis. 25:459–473. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, Motoyama N, Cao L and Finkel T: Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science. 336:225–228. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Saxton RA and Sabatini DM: mTOR signaling in growth, metabolism, and disease. Cell. 168:960–976. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Dossou AS and Basu A: The emerging roles of mTORC1 in macromanaging autophagy. Cancers (Basel). 11:14222019. View Article : Google Scholar : PubMed/NCBI

12 

Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, et al: RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell. 144:253–267. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Wang JF, Mei ZG, Fu Y, Yang SB, Zhang SZ, Huang WF, Xiong L, Zhou HJ, Tao W and Feng ZT: Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mTOR-ULK1 signaling pathway. Neural Regen Res. 13:989–998. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Chen WR, Yang JQ, Liu F, Shen XQ and Zhou YJ: Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ULK1 signaling pathway. Exp Cell Res. 389:1118832020. View Article : Google Scholar : PubMed/NCBI

15 

Wu X, Liu JM, Song HH, Yang QK, Ying H, Tong WL, Zhou Y and Liu ZL: Aurora-B knockdown inhibits osteosarcoma metastasis by inducing autophagy via the mTOR/ULK1 pathway. Cancer Cell Int. 20:5752020. View Article : Google Scholar : PubMed/NCBI

16 

Yang H, Wen Y, Zhang M, Liu Q, Zhang H, Zhang J, Lu L, Ye T, Bai X, Xiao G and Wang M: MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy. 16:271–288. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Das S, Shukla N, Singh SS, Kushwaha S and Shrivastava R: Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis. 26:512–533. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Song Y, Quach C and Liang C: UVRAG in autophagy, inflammation, and cancer. Autophagy. 16:387–388. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Zhong Y, Morris DH, Jin L, Patel MS, Karunakaran SK, Fu YJ, Matuszak EA, Weiss HL, Chait BT and Wang QJ: Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem. 289:26021–26037. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Itakura E, Kishi C, Inoue K and Mizushima N: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 19:5360–5372. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Kuijpers M and Haucke V: Neuronal autophagy controls the axonal endoplasmic reticulum to regulate neurotransmission in healthy neurons. Autophagy. 17:1049–1051. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T and Yamamoto A: A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 11:1433–1437. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Ylä-Anttila P, Vihinen H, Jokitalo E and Eskelinen EL: 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 5:1180–1185. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q and Guan KL: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 152:290–303. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Munson MJ, Allen GF, Toth R, Campbell DG, Lucocq JM and Ganley IG: mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 34:2272–2290. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N and Yue Z: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 11:468–476. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Funderburk SF, Wang QJ and Yue Z: The beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol. 20:355–362. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, et al: Two beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 11:385–396. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Wirth M, Joachim J and Tooze SA: Autophagosome formation-the role of ULK1 and beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol. 23:301–309. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Ma B, Cao W, Li W, Gao C, Qi Z, Zhao Y, Du J, Xue H, Peng J, Wen J, et al: Dapper1 promotes autophagy by enhancing the beclin1-Vps34-Atg14L complex formation. Cell Res. 24:912–924. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mulé JJ, et al: Bif-1 interacts with beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol. 9:1142–1151. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Hardie DG, Schaffer BE and Brunet A: AMPK: An energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26:190–201. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Hardie DG: AMPK-sensing energy while talking to other signaling pathways. Cell Metab. 20:939–952. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Jung TY, Ryu JE, Jang MM, Lee SY, Jin GR, Kim CW, Lee CY, Kim H, Kim E, Park S, et al: Naa20, the catalytic subunit of NatB complex, contributes to hepatocellular carcinoma by regulating the LKB1-AMPK-mTOR axis. Exp Mol Med. 52:1831–1844. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Li N, Wang Y, Neri S, Zhen Y, Fong LWR, Qiao Y, Li X, Chen Z, Stephan C, Deng W, et al: Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling. Nat Commun. 10:43632019. View Article : Google Scholar : PubMed/NCBI

36 

Chen W, Pan Y, Wang S, Liu Y, Chen G, Zhou L, Ni W, Wang A and Lu Y: Cryptotanshinone activates AMPK-TSC2 axis leading to inhibition of mTORC1 signaling in cancer cells. BMC Cancer. 17:342017. View Article : Google Scholar : PubMed/NCBI

37 

Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 331:456–461. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A and Guan KL: ULK1 induces autophagy by phosphorylating beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 15:741–750. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Gao X and Locasale JW: Serine metabolism links tumor suppression to the epigenetic landscape. Cell Metab. 24:777–779. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Cheong H, Nair U, Geng J and Klionsky DJ: The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in saccharomyces cerevisiae. Mol Biol Cell. 19:668–681. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Ganley IG, Lam du H, Wang J, Ding X, Chen S and Jiang X: ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 284:12297–12305. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M and Kim DH: ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 20:1992–2003. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Corona Velazquez A, Corona AK, Klein KA and Jackson WT: Poliovirus induces autophagic signaling independent of the ULK1 complex. Autophagy. 14:1201–1213. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Liu Y, Nguyen PT, Wang X, Zhao Y, Meacham CE, Zou Z, Bordieanu B, Johanns M, Vertommen D, Wijshake T, et al: TLR9 and beclin 1 crosstalk regulates muscle AMPK activation in exercise. Nature. 578:605–609. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y and Nakatogawa H: Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 522:359–362. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Fujita N, Itoh T, Omori H, Fukuda M, Noda T and Yoshimori T: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 19:2092–2100. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Vujić N, Bradić I, Goeritzer M, Kuentzel KB, Rainer S, Kratky D and Radović B: ATG7 is dispensable for LC3-PE conjugation in thioglycolate-elicited mouse peritoneal macrophages. Autophagy. 17:3402–3407. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Frudd K, Burgoyne T and Burgoyne JR: Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun. 9:952018. View Article : Google Scholar : PubMed/NCBI

50 

Nath S, Dancourt J, Shteyn V, Puente G, Fong WM, Nag S, Bewersdorf J, Yamamoto A, Antonny B and Melia TJ: Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat Cell Biol. 16:415–424. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Kuehl WM and Bergsagel PL: Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 122:3456–3463. 2012. View Article : Google Scholar : PubMed/NCBI

52 

He JP, Hou PP, Chen QT, Wang WJ, Sun XY, Yang PB, Li YP, Yao LM, Li X, Jiang XD, et al: Flightless-I blocks p62-mediated recognition of LC3 to impede selective autophagy and promote breast cancer progression. Cancer Res. 78:4853–4864. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Xu G, Wang X, Yu H, Wang C, Liu Y, Zhao R and Zhang G: Beclin 1, LC3, and p62 expression in paraquat-induced pulmonary fibrosis. Hum Exp Toxicol. 38:794–802. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Cao K and Tait SWG: Apoptosis and cancer: Force awakens, phantom menace, or both? Int Rev Cell Mol Biol. 337:135–152. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Boege Y, Malehmir M, Healy ME, Bettermann K, Lorentzen A, Vucur M, Ahuja AK, Böhm F, Mertens JC, Shimizu Y, et al: A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell. 32:342–359.e10. 2017. View Article : Google Scholar : PubMed/NCBI

56 

D'Orsi B, Mateyka J and Prehn JHM: Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int. 109:162–170. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Sunilkumar D, Drishya G, Chandrasekharan A, Shaji SK, Bose C, Jossart J, Perry JJP, Mishra N, Kumar GB and Nair BG: Oxyresveratrol drives caspase-independent apoptosis-like cell death in MDA-MB-231 breast cancer cells through the induction of ROS. Biochem Pharmacol. 173:1137242020. View Article : Google Scholar : PubMed/NCBI

59 

Roumane A, Berthenet K, El Fassi C and Ichim G: Caspase-independent cell death does not elicit a proliferative response in melanoma cancer cells. BMC Cell Biol. 19:112018. View Article : Google Scholar : PubMed/NCBI

60 

Chang WL, Cui L, Gu Y, Li M, Ma Q, Zhang Z, Ye J, Zhang F, Yu J and Gui Y: TBC1D20 deficiency induces Sertoli cell apoptosis by triggering irreversible endoplasmic reticulum stress in mice. Mol Hum Reprod. 25:773–786. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Xiong Y, Jin E, Yin Q, Che C and He S: Boron attenuates heat stress-induced apoptosis by inhibiting endoplasmic reticulum stress in mouse granulosa cells. Biol Trace Elem Res. 199:611–621. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Bromati CR, Lellis-Santos C, Yamanaka TS, Nogueira TC, Leonelli M, Caperuto LC, Gorjão R, Leite AR, Anhê GF and Bordin S: UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression. Am J Physiol Regul Integr Comp Physiol. 300:R92–R100. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Chen J, Xie JJ, Shi KS, Gu YT, Wu CC, Xuan J, Ren Y, Chen L, Wu YS, Zhang XL, et al: Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis. 9:2122018. View Article : Google Scholar : PubMed/NCBI

64 

Ohoka N, Yoshii S, Hattori T, Onozaki K and Hayashi H: TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J. 24:1243–1255. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Aimé P, Karuppagounder SS, Rao A, Chen Y, Burke RE, Ratan RR and Greene LA: The drug adaptaquin blocks ATF4/CHOP-dependent pro-death Trib3 induction and protects in cellular and mouse models of Parkinson's disease. Neurobiol Dis. 136:1047252020. View Article : Google Scholar : PubMed/NCBI

66 

Hu F, Duan M and Peng N: Knockdown of TRB3 improved the MPP+/MPTP-induced Parkinson's disease through the MAPK and AKT signaling pathways. Neurosci Lett. 709:1343522019. View Article : Google Scholar : PubMed/NCBI

67 

Han CW, Lee HN, Jeong MS, Park SY and Jang SB: Structural basis of the p53 DNA binding domain and PUMA complex. Biochem Biophys Res Commun. 548:39–46. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Rubinstein AD, Eisenstein M, Ber Y, Bialik S and Kimchi A: The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 44:698–709. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Kessel DH, Price M and Reiners JJ Jr: ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage. Autophagy. 8:1333–1341. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Lin TY, Chan HH, Chen SH, Sarvagalla S, Chen PS, Coumar MS, Cheng SM, Chang YC, Lin CH, Leung E and Cheung CHA: BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 16:1296–1313. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Rami A and Benz A: Exclusive activation of caspase-3 in mossy fibers and altered dynamics of autophagy markers in the mice hippocampus upon status epilepticus induced by kainic acid. Mol Neurobiol. 55:4492–4503. 2018.PubMed/NCBI

72 

Shravage BV, Hill JH, Powers CM, Wu L and Baehrecke EH: Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development. 140:1321–1329. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Qiu Y, Li C, Wang Q, Zeng X and Ji P: Tanshinone IIA induces cell death via beclin-1-dependent autophagy in oral squamous cell carcinoma SCC-9 cell line. Cancer Med. 7:397–407. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Chang CH, Lee CY, Lu CC, Tsai FJ, Hsu YM, Tsao JW, Juan YN, Chiu HY, Yang JS and Wang CC: Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol. 50:873–882. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Dagdeviren Ozsoylemez O and Ozcan G: Effects of colchicum baytopiorum leaf extract on cytotoxicity and cell death pathways in C-4 I and Vero cell lines. J BUON. 26:1135–1137. 2021.PubMed/NCBI

76 

Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, Li H, Li Q, Wang X, Uchiyama Y, et al: Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 12:410–423. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjørkøy G, Johansen T, Rusten TE, Brech A, Baehrecke EH and Stenmark H: Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol. 190:523–531. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Gump JM, Staskiewicz L, Morgan MJ, Bamberg A, Riches DW and Thorburn A: Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol. 16:47–54. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Doherty J and Baehrecke EH: Life, death and autophagy. Nat Cell Biol. 20:1110–1117. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S, Cecconi F, Fimia GM, Vandenabeele P, Corazzari M and Piacentini M: Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ. 19:1495–1504. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Toton E, Lisiak N, Sawicka P and Rybczynska M: Beclin-1 and its role as a target for anticancer therapy. J Physiol Pharmacol. 65:459–467. 2014.PubMed/NCBI

82 

Miller DR and Thorburn A: Autophagy and organelle homeostasis in cancer. Dev Cell. 56:906–918. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Morrione A, Giordano A and Cenciarelli C: p53 signaling in cancer progression and therapy. Cancer Cell Int. 21:7032021. View Article : Google Scholar : PubMed/NCBI

84 

Wilson AJ, Gupta VG, Liu Q, Yull F, Crispens MA and Khabele D: Panobinostat enhances olaparib efficacy by modifying expression of homologous recombination repair and immune transcripts in ovarian cancer. Neoplasia. 24:63–75. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Lopez J and Tait SW: Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer. 112:957–962. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Wang K, Zhan Y, Chen B, Lu Y, Yin T, Zhou S, Zhang W, Liu X, Du B, Wei X and Xiao J: Tubeimoside I-induced lung cancer cell death and the underlying crosstalk between lysosomes and mitochondria. Cell Death Dis. 11:7082020. View Article : Google Scholar : PubMed/NCBI

87 

Feng X, Yu Y, He S, Cheng J, Gong Y, Zhang Z, Yang X, Xu B, Liu X, Li CY, et al: Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett. 385:12–20. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Song P, Li Y, Dong Y, Liang Y, Qu H, Qi D, Lu Y, Jin X, Guo Y, Jia Y, et al: Estrogen receptor β inhibits breast cancer cells migration and invasion through CLDN6-mediated autophagy. J Exp Clin Cancer Res. 38:3542019. View Article : Google Scholar : PubMed/NCBI

89 

Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang XY, et al: Autophagy: Cancer's friend or foe? Adv Cancer Res. 118:61–95. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Vousden KH and Lane DP: p53 in health and disease. Nat Rev Mol Cell Biol. 8:275–283. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Wang F, Gómez-Sintes R and Boya P: Lysosomal membrane permeabilization and cell death. Traffic. 19:918–931. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Mariño G, Niso-Santano M, Baehrecke EH and Kroemer G: Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Timofeev O, Schlereth K, Wanzel M, Braun A, Nieswandt B, Pagenstecher A, Rosenwald A, Elsässer HP and Stiewe T: p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep. 3:1512–1525. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Della-Fazia MA, Castelli M, Piobbico D, Pieroni S and Servillo G: HOPS and p53: Thick as thieves in life and death. Cell Cycle. 19:2996–3003. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Lévy J, Cacheux W, Bara MA, L'Hermitte A, Lepage P, Fraudeau M, Trentesaux C, Lemarchand J, Durand A, Crain AM, et al: Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat Cell Biol. 17:1062–1073. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Mardenborough YSN, Nitsenko K, Laffeber C, Duboc C, Sahin E, Quessada-Vial A, Winterwerp HHK, Sixma TK, Kanaar R, Friedhoff P, et al: The unstructured linker arms of MutL enable GATC site incision beyond roadblocks during initiation of DNA mismatch repair. Nucleic Acids Res. 47:11667–11680. 2019. View Article : Google Scholar : PubMed/NCBI

97 

de Rosa N, Rodriguez-Bigas MA, Chang GJ, Veerapong J, Borras E, Krishnan S, Bednarski B, Messick CA, Skibber JM, Feig BW, et al: DNA mismatch repair deficiency in rectal cancer: Benchmarking its impact on prognosis, neoadjuvant response prediction, and clinical cancer genetics. J Clin Oncol. 34:3039–3046. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Zeng X, Yan T, Schupp JE, Seo Y and Kinsella TJ: DNA mismatch repair initiates 6-thioguanine-induced autophagy through p53 activation in human tumor cells. Clin Cancer Res. 13:1315–1321. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Zeng X and Kinsella TJ: A novel role for DNA mismatch repair and the autophagic processing of chemotherapy drugs in human tumor cells. Autophagy. 3:368–370. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Jacob S, Aguado M, Fallik D and Praz F: The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res. 61:6555–6562. 2001.PubMed/NCBI

101 

Kang C, Kang M, Han Y, Zhang T, Quan W and Gao J: 6-Gingerols (6G) reduces hypoxia-induced PC-12 cells apoptosis and autophagy through regulation of miR-103/BNIP3. Artif Cells Nanomed Biotechnol. 47:1653–1661. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Zeng X and Kinsella TJ: BNIP3 is essential for mediating 6-thioguanine- and 5-fluorouracil-induced autophagy following DNA mismatch repair processing. Cell Res. 20:665–675. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Burton TR and Gibson SB: The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ. 16:515–523. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Chen BC, Weng YJ, Shibu MA, Han CK, Chen YS, Shen CY, Lin YM, Viswanadha VP, Liang HY and Huang CY: Estrogen and/or estrogen receptor α inhibits BNIP3-induced apoptosis and autophagy in H9c2 cardiomyoblast cells. Int J Mol Sci. 19:12982018. View Article : Google Scholar : PubMed/NCBI

105 

Yuan J, Luo K, Zhang L, Cheville JC and Lou Z: USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 140:384–396. 2010. View Article : Google Scholar : PubMed/NCBI

106 

Yang R, Chen H, Xing L, Wang B, Hu M, Ou X, Chen H, Deng Y, Liu D, Jiang R and Chen J: Hypoxia-induced circWSB1 promotes breast cancer progression through destabilizing p53 by interacting with USP10. Mol Cancer. 21:882022. View Article : Google Scholar : PubMed/NCBI

107 

Cui L, Song Z, Liang B, Jia L, Ma S and Liu X: Radiation induces autophagic cell death via the p53/DRAM signaling pathway in breast cancer cells. Oncol Rep. 35:3639–3647. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Robin M, Issa AR, Santos CC, Napoletano F, Petitgas C, Chatelain G, Ruby M, Walter L, Birman S, Domingos PM, et al: Drosophila p53 integrates the antagonism between autophagy and apoptosis in response to stress. Autophagy. 15:771–784. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Jiang Y, Woosley AN, Sivalingam N, Natarajan S and Howe PH: Cathepsin-B-mediated cleavage of disabled-2 regulates TGF-β-induced autophagy. Nat Cell Biol. 18:851–863. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, Chen Y, Ying X, Chen C, Ye C, et al: The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 12:812019. View Article : Google Scholar : PubMed/NCBI

111 

Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC and Levine B: Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics. 59:59–65. 1999. View Article : Google Scholar : PubMed/NCBI

112 

Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, et al: Protein and mRNA expression of autophagy gene beclin 1 in human brain tumours. Int J Oncol. 30:429–436. 2007.PubMed/NCBI

113 

Wang ZH, Xu L, Duan ZL, Zeng LQ, Yan NH and Peng ZL: Beclin 1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells. Gynecol Oncol. 107:107–113. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Zhang J, Zhang S, Shi Q, Allen TD, You F and Yang D: The anti-apoptotic proteins Bcl-2 and Bcl-xL suppress beclin 1/Atg6-mediated lethal autophagy in polyploid cells. Exp Cell Res. 394:1121122020. View Article : Google Scholar : PubMed/NCBI

115 

Ma R, Yu D, Peng Y, Yi H, Wang Y, Cheng T, Shi B, Yang G, Lai W, Wu X, et al: Resveratrol induces AMPK and mTOR signaling inhibition-mediated autophagy and apoptosis in multiple myeloma cells. Acta Biochim Biophys Sin (Shanghai). 53:775–783. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C and Levine B: Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 128:931–946. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH and Lenardo MJ: Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 304:1500–1502. 2004. View Article : Google Scholar : PubMed/NCBI

118 

Almasi S, Long CY, Sterea A, Clements DR, Gujar S and El Hiani Y: TRPM2 silencing causes G2/M arrest and apoptosis in lung cancer cells via increasing intracellular ROS and RNS levels and activating the JNK pathway. Cell Physiol Biochem. 52:742–757. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Jing ZF, Bi JB, Li Z, Liu X, Li J, Zhu Y, Zhang XT, Zhang Z, Li Z and Kong CZ: Inhibition of miR-34a-5p can rescue disruption of the p53-DAPK axis to suppress progression of clear cell renal cell carcinoma. Mol Oncol. 13:2079–2097. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Wei F, Wu Y, Wang Z, Li Y, Wang J, Shao G, Yang Y and Shi B: Diagnostic significance of DNA methylation of PTEN and DAPK in thyroid tumors. Clin Endocrinol (Oxf). 93:187–195. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Chen Z, Fan Y, Liu X, Shang X, Qi K and Zhang S: Clinicopathological significance of DAPK gene promoter hypermethylation in non-small cell lung cancer: A meta-analysis. Int J Biol Markers. 37:47–57. 2022. View Article : Google Scholar : PubMed/NCBI

122 

Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R and Kimchi A: DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10:285–292. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Eisenberg-Lerner A and Kimchi A: PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ. 19:788–797. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Argyris PP, Slama Z, Malz C, Koutlas IG, Pakzad B, Patel K, Kademani D, Khammanivong A and Herzberg MC: Intracellular calprotectin (S100A8/A9) controls epithelial differentiation and caspase-mediated cleavage of EGFR in head and neck squamous cell carcinoma. Oral Oncol. 95:1–10. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T, Halayko AJ, McNeill KD, Hashemi M, Kerkhoff C and Los M: S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 20:314–331. 2010. View Article : Google Scholar : PubMed/NCBI

126 

Tang Z, Chen J, Zhang Z, Bi J, Xu R, Lin Q and Wang Z: HIF-1 α activation promotes luteolysis by enhancing ROS levels in the corpus luteum of pseudopregnant rats. Oxid Med Cell Longev. 2021:17649292021. View Article : Google Scholar : PubMed/NCBI

127 

Abdrakhmanov A, Yapryntseva MA, Kaminskyy VO, Zhivotovsky B and Gogvadze V: Receptor-mediated mitophagy rescues cancer cells under hypoxic conditions. Cancers (Basel). 13:40272021. View Article : Google Scholar : PubMed/NCBI

128 

Zhang J and Ney PA: Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16:939–946. 2009. View Article : Google Scholar : PubMed/NCBI

129 

Roßwag S, Sleeman JP and Thaler S: RASSF1A-mediated suppression of estrogen receptor alpha (ERα)-driven breast cancer cell growth depends on the hippo-kinases LATS1 and 2. Cells. 10:28682021. View Article : Google Scholar

130 

Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, et al: Mst1 inhibits autophagy by promoting the interaction between beclin1 and Bcl-2. Nat Med. 19:1478–1488. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Tan X, Thapa N, Sun Y and Anderson RA: A kinase-independent role for EGF receptor in autophagy initiation. Cell. 160:145–160. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Friedlaender A, Subbiah V, Russo A, Banna GL, Malapelle U, Rolfo C and Addeo A: EGFR and HER2 exon 20 insertions in solid tumours: From biology to treatment. Nat Rev Clin Oncol. 19:51–69. 2022. View Article : Google Scholar : PubMed/NCBI

133 

Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, et al: EGFR-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 154:1269–1284. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Feng Y, He D, Yao Z and Klionsky DJ: The machinery of macroautophagy. Cell Res. 24:24–41. 2014. View Article : Google Scholar : PubMed/NCBI

135 

Zhou K, Dichlberger A, Martinez-Seara H, Nyholm TKM, Li S, Kim YA, Vattulainen I, Ikonen E and Blom T: A ceramide-regulated element in the late endosomal protein LAPTM4B controls amino acid transporter interaction. ACS Cent Sci. 4:548–558. 2018. View Article : Google Scholar : PubMed/NCBI

136 

Li L, Shan Y, Yang H, Zhang S, Lin M, Zhu P, Chen XY, Yi J, McNutt MA, Shao GZ and Zhou RL: Upregulation of LAPTM4B-35 promotes malignant transformation and tumorigenesis in L02 human liver cell line. Anat Rec (Hoboken). 294:1135–1142. 2011. View Article : Google Scholar : PubMed/NCBI

137 

Yang H, Xiong F, Wei X, Yang Y, McNutt MA and Zhou R: Overexpression of LAPTM4B-35 promotes growth and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer Lett. 294:236–244. 2010. View Article : Google Scholar : PubMed/NCBI

138 

Singh AB: EGFR-signaling and autophagy: How they fit in the cancer landscape. J Adenocarcinoma. 1:92016. View Article : Google Scholar : PubMed/NCBI

139 

Yu JJ, Zhou DD, Cui B, Zhang C, Tan FW, Chang S, Li K, Lv XX, Zhang XW, Shang S, et al: Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling. Cancer Lett. 474:23–35. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Zhang P, Holowatyj AN, Roy T, Pronovost SM, Marchetti M, Liu H, Ulrich CM and Edgar BA: An SH3PX1-dependent endocytosis-autophagy network restrains intestinal stem cell proliferation by counteracting EGFR-ERK signaling. Dev Cell. 49:574–589.e5. 2019. View Article : Google Scholar : PubMed/NCBI

141 

Birkeland ES, Koch LM and Dechant R: Another consequence of the Warburg effect? Metabolic regulation of Na+/H+ exchangers may link aerobic glycolysis to cell growth. Front Oncol. 10:15612020. View Article : Google Scholar : PubMed/NCBI

142 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

143 

Wang L, Lin Y, Zhou X, Chen Y, Li X, Luo W, Zhou Y and Cai L: CYLD deficiency enhances metabolic reprogramming and tumor progression in nasopharyngeal carcinoma via PFKFB3. Cancer Lett. 532:2155862022. View Article : Google Scholar : PubMed/NCBI

144 

Zhao H, Li T, Wang K, Zhao F, Chen J, Xu G, Zhao J, Li T, Chen L, Li L, et al: AMPK-mediated activation of MCU stimulates mitochondrial Ca2+ entry to promote mitotic progression. Nat Cell Biol. 21:476–486. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Hardie DG, Ross FA and Hawley SA: AMP-activated protein kinase: A target for drugs both ancient and modern. Chem Biol. 19:1222–1236. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Doménech E, Maestre C, Esteban-Martínez L, Partida D, Pascual R, Fernández-Miranda G, Seco E, Campos-Olivas R, Pérez M, Megias D, et al: AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol. 17:1304–1316. 2015. View Article : Google Scholar : PubMed/NCBI

147 

Galluzzi L, Bravo-San Pedro JM and Kroemer G: Organelle-specific initiation of cell death. Nat Cell Biol. 16:728–736. 2014. View Article : Google Scholar : PubMed/NCBI

148 

Codogno P and Meijer AJ: Atg5: More than an autophagy factor. Nat Cell Biol. 8:1045–1047. 2006.García-Fernández M, Karras P, Checinska A, Cañón E, Calvo GT, Gómez-López G, Cifdaloz M, Colmenar A, Espinosa-Hevia L, Olmeda D and Soengas MS: Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of ATG5. Autophagy 12. 1776–1790. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Oh DS and Lee HK: Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy. 15:2091–2106. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Martinez JD, Mo Q, Xu Y, Qin L, Li Y and Xu J: Common genomic aberrations in mouse and human breast cancers with concurrent P53 deficiency and activated PTEN-PI3K-AKT pathway. Int J Biol Sci. 18:229–241. 2022. View Article : Google Scholar : PubMed/NCBI

151 

Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J and Levine B: Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation. Science. 338:956–959. 2012. View Article : Google Scholar : PubMed/NCBI

152 

Jian M, Yunjia Z, Zhiying D, Yanduo J and Guocheng J: Interleukin 7 receptor activates PI3K/Akt/mTOR signaling pathway via downregulation of Beclin-1 in lung cancer. Mol Carcinog. 58:358–365. 2019. View Article : Google Scholar : PubMed/NCBI

153 

Yang Z, Wu Y, Wang L, Qiu P, Zha W and Yu W: Prokineticin 2 (PK2) rescues cardiomyocytes from high glucose/high palmitic acid-induced damage by regulating the AKT/GSK3β pathway in vitro. Oxid Med Cell Longev. 2020:31636292020.PubMed/NCBI

154 

Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH and Jung JU: Autophagic and tumour suppressor activity of a novel beclin1-binding protein UVRAG. Nat Cell Biol. 8:688–699. 2006. View Article : Google Scholar : PubMed/NCBI

155 

Wechman SL, Pradhan AK, DeSalle R, Das SK, Emdad L, Sarkar D and Fisher PB: New insights into beclin-1: Evolution and pan-malignancy inhibitor activity. Adv Cancer Res. 137:77–114. 2018. View Article : Google Scholar : PubMed/NCBI

156 

Ren T, Takahashi Y, Liu X, Loughran TP, Sun SC, Wang HG and Cheng H: HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains. Oncogene. 34:334–345. 2015. View Article : Google Scholar : PubMed/NCBI

157 

Xie T, Li SJ, Guo MR, Wu Y, Wang HY, Zhang K, Zhang X, Ouyang L and Liu J: Untangling knots between autophagic targets and candidate drugs, in cancer therapy. Cell Prolif. 48:119–139. 2015. View Article : Google Scholar : PubMed/NCBI

158 

Lee JW, Jeong EG, Soung YH, Nam SW, Lee JY, Yoo NJ and Lee SH: Decreased expression of tumour suppressor Bax-interacting factor-1 (Bif-1), a Bax activator, in gastric carcinomas. Pathology. 38:312–315. 2006. View Article : Google Scholar : PubMed/NCBI

159 

Takahashi Y, Karbowski M, Yamaguchi H, Kazi A, Wu J, Sebti SM, Youle RJ and Wang HG: Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Mol Cell Biol. 25:9369–9382. 2005. View Article : Google Scholar : PubMed/NCBI

160 

Sheng JQ, Wang MR, Fang D, Liu L, Huang WJ, Tian DA, He XX and Li PY: LncRNA NBR2 inhibits tumorigenesis by regulating autophagy in hepatocellular carcinoma. Biomed Pharmacother. 133:1110232021. View Article : Google Scholar : PubMed/NCBI

161 

Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, et al: AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17:113–124. 2013. View Article : Google Scholar : PubMed/NCBI

162 

Ulitsky I and Bartel DP: lincRNAs: Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013. View Article : Google Scholar : PubMed/NCBI

163 

Manirujjaman M, Ozaki I, Murata Y, Guo J, Xia J, Nishioka K, Perveen R, Takahashi H, Anzai K and Matsuhashi S: Degradation of the tumor suppressor PDCD4 is impaired by the suppression of p62/SQSTM1 and autophagy. Cells. 9:2182020. View Article : Google Scholar : PubMed/NCBI

164 

Cui YH, Yang S, Wei J, Shea CR, Zhong W, Wang F, Shah P, Kibriya MG, Cui X, Ahsan H, et al: Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun. 12:21832021. View Article : Google Scholar : PubMed/NCBI

165 

Li P, He J, Yang Z, Ge S, Zhang H, Zhong Q and Fan X: ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression. Autophagy. 16:1186–1199. 2020. View Article : Google Scholar : PubMed/NCBI

166 

Yamamoto M, Gohda J, Akiyama T and Inoue JI: TNF receptor-associated factor 6 (TRAF6) plays crucial roles in multiple biological systems through polyubiquitination-mediated NF-κB activation. Proc Jpn Acad Ser B Phys Biol Sci. 97:145–160. 2021. View Article : Google Scholar : PubMed/NCBI

167 

Kim MJ, Min Y, Kwon J, Son J, Im JS, Shin J and Lee KY: p62 negatively regulates TLR4 signaling via functional regulation of the TRAF6-ECSIT complex. Immune Netw. 19:e162019. View Article : Google Scholar : PubMed/NCBI

168 

Xu Y, Liao C, Liu R, Liu J, Chen Z, Zhao H, Li Z, Chen L, Wu C, Tan H, et al: IRGM promotes glioma M2 macrophage polarization through p62/TRAF6/NF-κB pathway mediated IL-8 production. Cell Biol Int. 43:125–135. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xi H, Wang S, Wang B, Hong X, Liu X, Li M, Shen R and Dong Q: The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncol Rep 48: 208, 2022.
APA
Xi, H., Wang, S., Wang, B., Hong, X., Liu, X., Li, M. ... Dong, Q. (2022). The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncology Reports, 48, 208. https://doi.org/10.3892/or.2022.8423
MLA
Xi, H., Wang, S., Wang, B., Hong, X., Liu, X., Li, M., Shen, R., Dong, Q."The role of interaction between autophagy and apoptosis in tumorigenesis (Review)". Oncology Reports 48.6 (2022): 208.
Chicago
Xi, H., Wang, S., Wang, B., Hong, X., Liu, X., Li, M., Shen, R., Dong, Q."The role of interaction between autophagy and apoptosis in tumorigenesis (Review)". Oncology Reports 48, no. 6 (2022): 208. https://doi.org/10.3892/or.2022.8423
Copy and paste a formatted citation
x
Spandidos Publications style
Xi H, Wang S, Wang B, Hong X, Liu X, Li M, Shen R and Dong Q: The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncol Rep 48: 208, 2022.
APA
Xi, H., Wang, S., Wang, B., Hong, X., Liu, X., Li, M. ... Dong, Q. (2022). The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncology Reports, 48, 208. https://doi.org/10.3892/or.2022.8423
MLA
Xi, H., Wang, S., Wang, B., Hong, X., Liu, X., Li, M., Shen, R., Dong, Q."The role of interaction between autophagy and apoptosis in tumorigenesis (Review)". Oncology Reports 48.6 (2022): 208.
Chicago
Xi, H., Wang, S., Wang, B., Hong, X., Liu, X., Li, M., Shen, R., Dong, Q."The role of interaction between autophagy and apoptosis in tumorigenesis (Review)". Oncology Reports 48, no. 6 (2022): 208. https://doi.org/10.3892/or.2022.8423
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team