
Regulators of epigenetic change in ferroptosis‑associated cancer (Review)
- Authors:
- Jiaming Wu
- Shuang Zhu
- Peng Wang
- Jinge Wang
- Jingjing Huang
- Tong Wang
- Lingfeng Guo
- Desen Liang
- Qinghui Meng
- Huayang Pan
-
Affiliations: Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, Ministry of Education, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China, Department of Mental Health Institute, First Affiliated Hospital Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China, Nursing Department, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China - Published online on: October 20, 2022 https://doi.org/10.3892/or.2022.8430
- Article Number: 215
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Subramanian S, Geng H and Tan XD: Cell death of intestinal epithelial cells in intestinal diseases. Sheng Li Xue Bao. 72:308–324. 2020.PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI | |
D'Arcy MS: Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 43:582–592. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H and Vandenabeele P: Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 15:135–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hirschhorn T and Stockwell BR: The development of the concept of ferroptosis. Free Radic Biol Med. 133:130–143. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S and Zheng X: Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 235:3425–3437. 2020. View Article : Google Scholar : PubMed/NCBI | |
Deans C and Maggert KA: What do you mean, ‘epigenetic’? Genetics. 199:887–896. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Xiong Y, Zhang Y, Wen J, Cai N, Cheng K, Liang H and Zhang W: The molecular mechanisms of regulating oxidative stress-induced ferroptosis and therapeutic strategy in tumors. Oxid Med Cell Longev. 2020:88107852020. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Lv H, Shaikh AB, Han W, Hou H, Zhang Z, Wang S and Shang P: Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy. Biochim Biophys Acta Gen Subj. 1864:1295392020. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bogdan AR, Miyazawa M, Hashimoto K and Tsuji Y: Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem Sci. 41:274–286. 2016. View Article : Google Scholar : PubMed/NCBI | |
Anderson CP, Shen M, Eisenstein RS and Leibold EA: Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta. 1823:1468–1483. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kato J, Kobune M, Ohkubo S, Fujikawa K, Tanaka M, Takimoto R, Takada K, Takahari D, Kawano Y, Kohgo Y and Niitsu Y: Iron/IRP-1-dependent regulation of mRNA expression for transferrin receptor, DMT1 and ferritin during human erythroid differentiation. Exp Hematol. 35:879–887. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bolotta A, Abruzzo PM, Baldassarro VA, Ghezzo A, Scotlandi K, Marini M and Zucchini C: New insights into the hepcidin-ferroportin axis and iron homeostasis in iPSC-derived cardiomyocytes from friedreich's ataxia patient. Oxid Med Cell Longev. 2019:76230232019. View Article : Google Scholar : PubMed/NCBI | |
Gao G, Li J, Zhang Y and Chang YZ: Cellular iron metabolism and regulation. Adv Exp Med Biol. 1173:21–32. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arruda SF, Ramos LV, Barbosa JLA, Hankins NAC, Rodrigues PAM and Cunha MSBD: The action of JAK/STAT3 and BMP/HJV/SMAD signaling pathways on hepcidin suppression by tucum-do-cerrado in a normal and iron-enriched diets. Nutrients. 12:15152020. View Article : Google Scholar : PubMed/NCBI | |
Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, et al: Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet. 38:531–539. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD and Peterson RT: Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol. 4:33–41. 2008. View Article : Google Scholar : PubMed/NCBI | |
Truksa J, Lee P and Beutler E: Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter are critical for BMP, SMAD1, and HJV responsiveness. Blood. 113:688–695. 2009. View Article : Google Scholar : PubMed/NCBI | |
Srole DN and Ganz T: Erythroferrone structure, function, and physiology: Iron homeostasis and beyond. J Cell Physiol. 236:4888–4901. 2021. View Article : Google Scholar : PubMed/NCBI | |
Duan L, Yin X, Meng H, Fang X, Min J and Wang F: Progress on epigenetic regulation of iron homeostasis. Zhejiang Da Xue Xue Bao Yi Xue Ban. 49:58–70. 2020.(In Chinese). PubMed/NCBI | |
Patnaik MM and Tefferi A: Myelodysplastic syndromes with ring sideroblasts (MDS-RS) and MDS/myeloproliferative neoplasm with RS and thrombocytosis (MDS/MPN-RS-T)-‘2021 update on diagnosis, risk-stratification, and management’. Am J Hematol. 96:379–394. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rawat PS, Jaiswal A, Khurana A, Bhatti JS and Navik U: Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 139:1117082021. View Article : Google Scholar : PubMed/NCBI | |
Blackledge NP and Klose R: CpG island chromatin: A platform for gene regulation. Epigenetics. 6:147–152. 2011. View Article : Google Scholar : PubMed/NCBI | |
Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R and Bird AP: Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 6:e10011342010. View Article : Google Scholar : PubMed/NCBI | |
Grand RS, Burger L, Gräwe C, Michael AK, Isbel L, Hess D, Hoerner L, Iesmantavicius V, Durdu S, Pregnolato M, et al: BANP opens chromatin and activates CpG-island-regulated genes. Nature. 596:133–137. 2021. View Article : Google Scholar : PubMed/NCBI | |
Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, et al: Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 466:253–257. 2010. View Article : Google Scholar : PubMed/NCBI | |
Horvath S and Raj K: DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 19:371–384. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Trivedi M, Zhang Y, Böhlke M, Alsulimani H, Chang J, Maher T, Deth R and Kim J: Brain iron loading impairs DNA methylation and alters GABAergic function in mice. FASEB J. 33:2460–2471. 2019. View Article : Google Scholar : PubMed/NCBI | |
Macková E, Hrušková K, Bendová P, Vávrová A, Jansová H, Hašková P, Kovaříková P, Vávrová K and Simůnek T: Methyl and ethyl ketone analogs of salicylaldehyde isonicotinoyl hydrazone: Novel iron chelators with selective antiproliferative action. Chem Biol Interact. 197:69–79. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang WC, Lin SF, Wang SC, Tsai WC, Wu CC and Wu SC: The effects of human BDH2 on the cell cycle, differentiation, and apoptosis and associations with leukemia transformation in myelodysplastic syndrome. Int J Mol Sci. 21:30332020. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI | |
Kajarabille N and Latunde-Dada GO: Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Luo T and Wang J: Gene interfered-ferroptosis therapy for cancers. Nat Commun. 12:53112021. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wang J, Shen Y, Li H, Rausch WD and Huang X: Iron dyshomeostasis and ferroptosis: A new Alzheimer's disease hypothesis? Front Aging Neurosci. 14:8305692022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhang S, Wang X, Guo W, Wang L, Zhang D, Yuan L, Zhang Z, Xu Y and Liu S: Disordered signaling governing ferroportin transcription favors breast cancer growth. Cell Signal. 27:168–176. 2015. View Article : Google Scholar : PubMed/NCBI | |
Udali S, Castagna A, Corbella M, Ruzzenente A, Moruzzi S, Mazzi F, Campagnaro T, De Santis D, Franceschi A, Pattini P, et al: Hepcidin and DNA promoter methylation in hepatocellular carcinoma. Eur J Clin Invest. 48:e128702018. View Article : Google Scholar : PubMed/NCBI | |
Al-Amer O and Alsharif KF: Frequency of the HAMP (c.-582 A>G) polymorphism in iron deficiency in Saudi Arabia. Pak J Biol Sci. 24:146–150. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sies H: Oxidative stress: A concept in redox biology and medicine. Redox Biol. 4:180–183. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Liu Y, He M and Bu W: Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew Chem Int Ed Engl. 58:946–956. 2019. View Article : Google Scholar : PubMed/NCBI | |
Miller CJ, Rose AL and Waite TD: Importance of iron complexation for fenton-mediated hydroxyl radical production at circumneutral pH. Front Mar Sci. 3:1342016. View Article : Google Scholar | |
Yu L, Lin Z, Cheng X, Chu J, Li X, Chen C, Zhu T, Li W, Lin W and Tang W: Thorium inhibits human respiratory chain complex IV (cytochrome c oxidase). J Hazard Mater. 424:1275462022. View Article : Google Scholar : PubMed/NCBI | |
Rattanawong K, Koiso N, Toda E, Kinoshita A, Tanaka M, Tsuji H and Okamoto T: Regulatory functions of ROS dynamics via glutathione metabolism and glutathione peroxidase activity in developing rice zygote. Plant J. 108:1097–1115. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peoples JN, Saraf A, Ghazal N, Pham TT and Kwong JQ: Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 51:1–13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prasad S, Gupta SC and Tyagi AK: Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Kang KA, Kim KC, Na SY, Chang WY, Kim GY, Kim HS and Hyun JW: Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene. 524:214–219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J and Bazhin AV: Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy. J Cell Physiol. 231:2570–2581. 2016. View Article : Google Scholar : PubMed/NCBI | |
Islam MT: Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 39:73–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang XJ, Wang H, Du Y, Guan J, Wang X and Fu J: NAD+ improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation. 18:2072021. View Article : Google Scholar : PubMed/NCBI | |
Uittenbogaard M, Baxter KK and Chiaramello A: The neurogenic basic helix-loop-helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass. ASN Neuro. 2:e000342010. View Article : Google Scholar : PubMed/NCBI | |
Hou K, Chen Y, Zhu D, Chen G, Chen F, Xu N, Barakat K, Zheng J, Xie X and Chen R: Curcumin inhibits high glucose oxidative stress and apoptosis in pancreatic beta cells via CHOP/PCG-1a and pERK1/2. Front Biosci (Landmark Ed). 25:1974–1984. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang G, Li S, Zhang C, Chen H, Wang N and Feng Y: Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm Sin B. 11:2749–2767. 2021. View Article : Google Scholar : PubMed/NCBI | |
Su X, Chu Y, Kordower JH, Li B, Cao H, Huang L, Nishida M, Song L, Wang D and Federoff HJ: PGC-1α promoter methylation in Parkinson's disease. PLoS One. 10:e01340872015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen M, Xu Y, Yu X, Xiong T, Du M, Sun J, Liu L, Tang Y and Yao P: Iron-mediated lysosomal membrane permeabilization in ethanol-induced hepatic oxidative damage and apoptosis: Protective effects of quercetin. Oxid Med Cell Longev. 2016:41476102016.PubMed/NCBI | |
Park E and Chung SW: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 10:8222019. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Xu C, Yu Q, Zhong C, Peng Y, Chen J and Chen G: Comprehensive landscape of STEAP family functions and prognostic prediction value in glioblastoma. J Cell Physiol. 236:2988–3000. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Peng S, Sun Z, Heng X and Zhu X: Temozolomide drives ferroptosis via a DMT1-dependent pathway in glioblastoma cells. Yonsei Med J. 62:843–849. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cheung EC and Vousden KH: The role of ROS in tumour development and progression. Nat Rev Cancer. 22:280–297. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, et al: Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater. 384:1213902020. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G and Tang D: Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 66:89–100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhuang Y, Li T, Xiao H, Wu J, Su S, Dong X, Hu X, Hua Q, Liu J, Shang W, et al: LncRNA-H19 drives cardiomyocyte senescence by targeting miR-19a/socs1/p53 axis. Front Pharmacol. 12:6318352021. View Article : Google Scholar : PubMed/NCBI | |
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, He Y, Wang JX, Chen MH, Xu JJ, Jiang MH, Feng YL and Gu YF: miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol. 29:1014022020. View Article : Google Scholar : PubMed/NCBI | |
Liu MR, Zhu WT and Pei DS: System Xc−: A key regulatory target of ferroptosis in cancer. Invest New Drugs. 39:1123–1131. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27:662–675. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kong R, Wang N, Han W, Bao W and Lu J: IFNγ-mediated repression of system xc− drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol. 110:301–314. 2021. View Article : Google Scholar : PubMed/NCBI | |
Floros KV, Cai J, Jacob S, Kurupi R, Fairchild CK, Shende M, Coon CM, Powell KM, Belvin BR, Hu B, et al: MYCN-amplified neuroblastoma is addicted to iron and vulnerable to inhibition of the system Xc-/glutathione axis. Cancer Res. 81:1896–1908. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y and Zhang Q: Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol. 14:192021. View Article : Google Scholar : PubMed/NCBI | |
Imai H, Matsuoka M, Kumagai T, Sakamoto T and Koumura T: Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 403:143–170. 2017.PubMed/NCBI | |
Li H, Liu W, Zhang X, Wu F, Sun D and Wang Z: Ketamine suppresses proliferation and induces ferroptosis and apoptosis of breast cancer cells by targeting KAT5/GPX4 axis. Biochem Biophys Res Commun. 585:111–116. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Ding H, Liang M, Chen X, Yan Y, Wan N, Chen Q, Zhang J and Cao J: Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer. 12:1219–1230. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Kong Y, Ma Y, Ni S, Wikerholmen T, Xi K, Zhao F, Zhao Z, Wang J, Huang B, et al: Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines. Oncogene. 40:1425–1439. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang CX, Chen LH, Zhuang HB, Shi ZS, Chen ZC, Pan JP and Hong ZS: Auriculasin enhances ROS generation to regulate colorectal cancer cell apoptosis, ferroptosis, oxeiptosis, invasion and colony formation. Biochem Biophys Res Commun. 587:99–106. 2022. View Article : Google Scholar : PubMed/NCBI | |
Santoro MM: The antioxidant role of non-mitochondrial CoQ10: mystery solved! Cell Metab. 31:13–15. 2020. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng J and Conrad M: The metabolic underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Wei W, Wu D, Huang F, Li M, Li W, Yin J, Peng Y, Lu Y, Zhao Q and Liu L: Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis. Front Cell Dev Biol. 10:8103272022. View Article : Google Scholar : PubMed/NCBI | |
Qiu C, Liu T, Luo D, Luan D, Cheng L and Wang S: Novel therapeutic savior for osteosarcoma: The endorsement of ferroptosis. Front Oncol. 12:7460302022. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Fan K, Chen Y, Zhang G, Chen J and Zhang Y: Understanding the mechanistic regulation of ferroptosis in cancer: The gene matters. J Genet Genomics. S1673-8527(22)00160-6. 2022.(Epub ahead of print). View Article : Google Scholar | |
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chew GT and Watts GF: Coenzyme Q10 and diabetic endotheliopathy: Oxidative stress and the ‘recoupling hypothesis’. QJM. 97:537–548. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ilango S, Paital B, Jayachandran P, Padma PR and Nirmaladevi R: Epigenetic alterations in cancer. Front Biosci (Landmark Ed). 25:1058–1109. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu SC and Zhang Y: Active DNA demethylation: Many roads lead to Rome. Nat Rev Mol Cell Biol. 11:607–620. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goll MG and Bestor TH: Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 74:481–514. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu F, Liu Y, Jiang L, Yamaguchi S and Zhang Y: Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28:2103–2119. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Yan T and Guo F: Global DNA 5hmC and CK195hmC+ contents: A promising biomarker for predicting prognosis in small hepatocellular carcinoma. Curr Oncol. 28:3758–3770. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C and Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 333:1300–1303. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto H, Vertino PM and Cheng X: Molecular coupling of DNA methylation and histone methylation. Epigenomics. 2:657–669. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jara-Espejo M and Line SR: DNA G-quadruplex stability, position and chromatin accessibility are associated with CpG island methylation. FEBS J. 287:483–495. 2020. View Article : Google Scholar : PubMed/NCBI | |
Horii T and Hatada I: Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells. J Reprod Dev. 62:331–335. 2016. View Article : Google Scholar : PubMed/NCBI | |
Van Tongelen A, Loriot A and De Smet C: Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett. 396:130–137. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klutstein M, Nejman D, Greenfield R and Cedar H: DNA methylation in cancer and aging. Cancer Res. 76:3446–3450. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RW, Baylin SB and Schuebel KE: De novo CpG island methylation in human cancer cells. Cancer Res. 66:682–692. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mendoza-Pérez J, Gu J, Herrera LA, Tannir NM, Matin SF, Karam JA, Huang M, Chang DW, Wood CG and Wu X: Genomic DNA hypomethylation and risk of renal cell carcinoma: A case-control study. Clin Cancer Res. 22:2074–2082. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xiao X and Xu ZC: iPromoter-5mC: A novel fusion decision predictor for the identification of 5-methylcytosine sites in genome-wide DNA promoters. Front Cell Dev Biol. 8:6142020. View Article : Google Scholar : PubMed/NCBI | |
Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A and MacLeod AR: DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet. 33:61–65. 2003. View Article : Google Scholar : PubMed/NCBI | |
Choi SJ, Jung SW, Huh S, Chung YS, Cho H and Kang H: Alteration of DNA methylation in gastric cancer with chemotherapy. J Microbiol Biotechnol. 27:1367–1378. 2017. View Article : Google Scholar : PubMed/NCBI | |
Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, Laukens K, Godderis L, Dhaenens M, Deforce D and Vanden Berghe W: Ferroptosis induction in multiple myeloma cells triggers DNA methylation and histone modification changes associated with cellular senescence. Int J Mol Sci. 22:122342021. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Hong M, Kong D, Deng J, Zhong Z and Liang J: Ferroptosis-associated DNA methylation signature predicts overall survival in patients with head and neck squamous cell carcinoma. BMC Genomics. 23:632022. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, Shi Y, Shen Y, Liu X, Lai W, et al: A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 78:3484–3496. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, Lai W, Liu Y, Wang X, Xiao D, et al: EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics. 7:3293–3305. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X, Huang B, Shan Z, Liu J, Fan S, et al: Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med. 160:552–565. 2020. View Article : Google Scholar : PubMed/NCBI | |
van Roy F: Beyond E-cadherin: Roles of other cadherin superfamily members in cancer. Nat Rev Cancer. 14:121–134. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tan L and Shi YG: Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development. 139:1895–1902. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Li C, Zhang YJ and Wu ZH: Ferroptosis-related long non-coding RNA signature predicts the prognosis of Head and neck squamous cell carcinoma. Int J Biol Sci. 17:702–711. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu S, Meng N, He Y, Lu R and Yan GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther. 27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI | |
Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI | |
Mishra S, Yadav T and Rani V: Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 98:12–23. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sengupta D, Deb M, Kar S, Pradhan N, Parbin S, Kirtana R, Singh SP, Suma SG, Niharika, Roy A, et al: Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin Cancer Biol. 72:46–64. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lande K, Gupta J, Ranjan R, Kiran M, Torres Solis LF, Solís Herrera A, Aliev G and Karnati R: Exosomes: Insights from retinoblastoma and other eye cancers. Int J Mol Sci. 21:70552020. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O'Connell D, Zhang P, Li Y, Gao T, et al: miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 25:1457–1472. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tomita K, Nagasawa T, Kuwahara Y, Torii S, Igarashi K, Roudkenar MH, Roushandeh AM, Kurimasa A and Sato T: MiR-7-5p is involved in ferroptosis signaling and radioresistance thru the generation of ROS in radioresistant HeLa and SAS cell lines. Int J Mol Sci. 22:83002021. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY and Savaskan N: ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 36:5593–5608. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gomaa A, Peng D, Chen Z, Soutto M, Abouelezz K, Corvalan A and El-Rifai W: Epigenetic regulation of AURKA by miR-4715-3p in upper gastrointestinal cancers. Sci Rep. 9:169702019. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Yao J, Lyu P, Zhou J, Chen X, Liu X and Xiao S: XPG is modulated by miR-4715-3p and rs873601 genotypes in lung cancer. Cancer Manag Res. 13:3417–3427. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhuang ST, Cai YJ, Liu HP, Qin Y and Wen JF: LncRNA NEAT1/miR-185-5p/IGF2 axis regulates the invasion and migration of colon cancer. Mol Genet Genomic Med. 8:e11252020. View Article : Google Scholar : PubMed/NCBI | |
Marengo B, Pulliero A, Izzotti A and Domenicotti C: miRNA regulation of glutathione homeostasis in cancer initiation, progression and therapy resistance. Microrna. 9:187–197. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Miao J, Zhang M, Wang X, Wang Z, Han J, Tong D and Huang C: miRNA-103a-3p promotes human gastric cancer cell proliferation by targeting and suppressing ATF7 in vitro. Mol Cells. 41:390–400. 2018.PubMed/NCBI | |
Zhi Y, Gao L, Wang B, Ren W, Liang KX and Zhi K: Ferroptosis holds novel promise in treatment of cancer mediated by non-coding RNAs. Front Cell Dev Biol. 9:6869062021. View Article : Google Scholar : PubMed/NCBI | |
Bridges MC, Daulagala AC and Kourtidis A: LNCcation: lncRNA localization and function. J Cell Biol. 220:e2020090452021. View Article : Google Scholar : PubMed/NCBI | |
Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, et al: Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 26:2329–2343. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li X, Chen W and Wu W: The common region of lncRNAs UCA1 and UCA1α contributes to the bladder cancer tumorigenesis. Eur J Cancer Prev. 30:389–392. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Kim JE, Kim YH, Hwang T, Kim SK, Xu WJ, Shin JY, Kim JI, Choi H, Kim HC, et al: Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma. Sci Rep. 7:122212017. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Hu Q, Zhang BF, Liu XP, Yang S and Jiang H: Long noncoding RNA UCA1 inhibits ischaemia/reperfusion injury induced cardiomyocytes apoptosis via suppression of endoplasmic reticulum stress. Genes Genomics. 41:803–810. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shin D, Kim EH, Lee J and Roh JL: Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 129:454–462. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Tian Q, Wu S, Li Y, Yang K, Yan Y, Shang L, Li A and Zhang L: Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy. Biomaterials. 271:1207392021. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Hou H, Luo D, An R, Zhao Y and Qiu C: ROS-dependent lipid peroxidation and reliant antioxidant ferroptosis-suppressor-protein 1 in rheumatoid arthritis: A covert clue for potential therapy. Inflammation. 44:35–47. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Luo X, He W, Chen G, Li Y, Li W, Wang X, Lai Y and Ye Y: Long non-coding RNA PVT1/miR-150/HIG2 axis regulates the proliferation, invasion and the balance of iron metabolism of hepatocellular carcinoma. Cell Physiol Biochem. 49:1403–1419. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Zhou Z, Qiu Y, Wang M, Yu H, Wu Z, Wang X and Jiang X: A prognostic ferroptosis-related lncRNAs signature associated with immune landscape and radiotherapy response in glioma. Front Cell Dev Biol. 9:6755552021. View Article : Google Scholar : PubMed/NCBI | |
Qi W, Li Z, Xia L, Dai J, Zhang Q, Wu C and Xu S: LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep. 9:161852019. View Article : Google Scholar : PubMed/NCBI | |
Hu T, Zhang C, Tang Q, Su Y, Li B, Chen L, Zhang Z, Cai T and Zhu Y: Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model. BMC Cancer. 13:2512013. View Article : Google Scholar : PubMed/NCBI | |
Su X, Yang Y, Yang Q, Pang B, Sun S, Wang Y, Qiao Q, Guo C, Liu H and Pang Q: NOX4-derived ROS-induced overexpression of FOXM1 regulates aerobic glycolysis in glioblastoma. BMC Cancer. 21:11812021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, Wang L, Piao M, Chi G, Luo Y and Ge P: Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett. 428:21–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Wang H, Lv C, Mao C and Cui Y: Long non-coding RNA H19 protects against intracerebral hemorrhage injuries via regulating microRNA-106b-5p/acyl-CoA synthetase long chain family member 4 axis. Bioengineered. 12:4004–4015. 2021. View Article : Google Scholar : PubMed/NCBI | |
He GN, Bao NR, Wang S, Xi M, Zhang TH and Chen FS: Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther. 15:3965–3978. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, Li Z, Pu L, Zhao X, Zhang T and Dong Z: lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY). 12:9085–9102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y and Wong G: The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform. 22:1706–1728. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhao X, Wang Y, Ren F, Sun D, Yan Y, Kong X, Bu J, Liu M and Xu S: circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis. 11:322020. View Article : Google Scholar : PubMed/NCBI | |
Li R, Jiang J, Shi H, Qian H, Zhang X and Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci. 77:1661–1680. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wang Q, Wang X, Xu Z, Wei X and Li J: Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov. 6:722020. View Article : Google Scholar : PubMed/NCBI | |
Zhang HY, Zhang BW, Zhang ZB and Deng QJ: Circular RNA TTBK2 regulates cell proliferation, invasion and ferroptosis via miR-761/ITGB8 axis in glioma. Eur Rev Med Pharmacol Sci. 24:2585–2600. 2020.PubMed/NCBI | |
Zhang S, Sun J, Gu M, Wang G and Wang X: Circular RNA: A promising new star for the diagnosis and treatment of colorectal cancer. Cancer Med. 10:8725–8740. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qiao G, Zhang W and Dong K: Regulation of ferroptosis by noncoding RNAs: A novel promise treatment in esophageal squamous cell carcinoma. Mol Cell Biochem. 477:2193–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita C and Aoyama K: The role of non-coding RNAs in the neuroprotective effects of glutathione. Int J Mol Sci. 22:42452021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Koppula P and Gan B: Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle. 18:773–783. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liu K, Gong H, Li D, Chu W, Zhao D, Wang X and Xu D: Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis. Toxicol Appl Pharmacol. 410:1153632021. View Article : Google Scholar : PubMed/NCBI | |
He C, Wang C, Liu H and Shan B: Kayadiol exerted anticancer effects through p53-mediated ferroptosis in NKTCL cells. BMC Cancer. 22:7242022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao Y, Wang H, Zhang C, Wang M, Yang Y, Xu X and Hu Z: Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Bio. 10:637–643. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. Jun 6–2021.(Epub ahead of print). View Article : Google Scholar | |
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Kroemer G and Tang D: The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 133:162–168. 2019. View Article : Google Scholar : PubMed/NCBI | |
Galván I, Inácio Â, Dañino M, Corbí-Llopis R, Monserrat MT and Bernabeu-Wittel J: High SLC7A11 expression in normal skin of melanoma patients. Cancer Epidemiol. 62:1015822019. View Article : Google Scholar : PubMed/NCBI | |
Sui S, Zhang J, Xu S, Wang Q, Wang P and Pang D: Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis. 10:3312019. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Jiang L, Tavana O and Gu W: The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res. 79:1913–1924. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Lu L, Deng S, Meng J, Wan C, Huang J, Sun Y, Hu Y, Wu B, Wu G, et al: USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer. Theranostics. 10:9332–9347. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yang L, Zhang X, Cui W, Liu Y, Sun QR, He Q, Zhao S, Zhang GA, Wang Y and Chen S: Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep. 20:e475632019. View Article : Google Scholar : PubMed/NCBI | |
Lin PL, Tang HH, Wu SY, Shaw NS and Su CL: Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells. Antioxidants (Basel). 9:6822020. View Article : Google Scholar : PubMed/NCBI | |
Xiao S, Liu X, Yuan L and Wang F: A ferroptosis-related lncRNAs signature predicts prognosis and therapeutic response of gastric cancer. Front Cell Dev Biol. 9:7366822021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhang X, Tian X, Yang Y, Ma L, Wang J and Yu Y: CREB stimulates GPX4 transcription to inhibit ferroptosis in lung adenocarcinoma. Oncol Rep. 45:882021. View Article : Google Scholar : PubMed/NCBI | |
Zilka O, Poon JF and Pratt DA: Radical-trapping antioxidant activity of copper and nickel Bis(Thiosemicarbazone) complexes underlies their potency as inhibitors of ferroptotic cell death. J Am Chem Soc. 143:19043–19057. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hassannia B, Vandenabeele P and Vanden Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell. 35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
Poon JF and Pratt DA: Recent insights on hydrogen atom transfer in the inhibition of hydrocarbon autoxidation. Acc Chem Res. 51:1996–2005. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang SJ, Li D, Ou Y, Jiang L, Chen Y, Zhao Y and Gu W: Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17:366–373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Naguro I and Ichijo H: Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj. 1863:1398–1409. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Huang Q, He B, Liu Y, Huang S and Xiao J: Regulation of ferroptosis by non-coding RNAs in the development and treatment of cancer (Review). Oncol Rep. 45:29–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pei Y, Qian Y, Wang H and Tan L: Epigenetic regulation of ferroptosis-associated genes and its implication in cancer therapy. Front Oncol. 12:7718702022. View Article : Google Scholar : PubMed/NCBI | |
Moloney JN and Cotter TG: ROS signalling in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhang S, Gong X, Tam S, Xiao D, Liu S and Tao Y: The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer. 19:392020. View Article : Google Scholar : PubMed/NCBI |