|
1
|
Ali Z, Yousaf N and Larkin J: Melanoma
epidemiology, biology and prognosis. EJC Suppl. 11:81–91. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liu Y and Sheikh MS: Melanoma: Molecular
pathogenesis and therapeutic management. Mol Cell Pharmacol.
6:2282014.PubMed/NCBI
|
|
4
|
Shore R: Radiation-induced skin cancer in
humans. Med Pediatr Oncol. 36:549–554. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wu Q, Fung AHY, Xu ML, Poon K, Liu EY,
Kong XP, Yao P, Xiong QP, Dong TTX and Tsim KWK:
Microphthalmia-associated transcription factor up-regulates
acetylcholinesterase expression during melanogenesis of murine
melanoma cells. J Biol Chem. 293:14417–14428. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Netcharoensirisuk P, Abrahamian C, Tang R,
Chen CC, Rosato AS, Beyers W, Chao YK, Filippini A, Di Pietro S,
Bartel K, et al: Flavonoids increase melanin production and reduce
proliferation, migration and invasion of melanoma cells by blocking
endolysosomal/melanosomal TPC2. Sci Rep. 11:85152021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
D'Amore A, Hanbashi AA, Di Agostino S,
Palombi F, Sacconi A, Voruganti A, Taggi M, Canipari R, Blandino G,
Parrington J and Filippini A: Loss of two-pore channel 2 (TPC2)
expression increases the metastatic traits of melanoma cells by a
mechanism involving the Hippo signalling pathway and store-operated
calcium entry. Cancers (Basel). 12:23912020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lim JCW, Kwan YP, Tan MS, Teo MHY, Chiba
S, Wahli W and Wang X: The role of PPARβ/δ in melanoma metastasis.
Int J Mol Sci. 19:28602018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen J, Huang L, Quan J and Xiang D:
TRIM14 regulates melanoma malignancy via PTEN/PI3K/AKT and STAT3
pathways. Aging (Albany NY). 13:13225–13238. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Slominski RM, Zmijewski MA and Slominski
AT: The role of melanin pigment in melanoma. Exp Dermatol.
24:258–259. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Martin T, Ye L, Sanders AJ, Lane J and
Jiang WG: Cancer invasion and metastasis: Molecular and cellular
perspective. In Madame Curie Bioscience Database [Internet].
Jandial R: Landes Bioscience: Austin; TX, USA: pp. 2000–2013.
2013
|
|
12
|
Pachmayr E, Treese C and Stein U:
Underlying mechanisms for distant metastasis-molecular biology.
Visc Med. 33:11–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Damsky WE, Rosenbaum LE and Bosenberg M:
Decoding melanoma metastasis. Cancers (Basel). 3:126–163. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jiang E, Yan T, Xu Z and Shang Z: Tumour
microenvironment and cell fusion. Biomed Res Int. 2019:50135922019.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fernandes C, Prabhu P, Juvale K, Suares D
and Yc M: Cancer cell fusion: A potential target to tackle
drug-resistant and metastatic cancer cells. Drug Discov Today.
24:1836–1844. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang HF, Xiang W, Xue BZ, Wang YH, Yi DY,
Jiang XB, Zhao HY and Fu P: Cell fusion in cancer hallmarks:
Current research status and future indications (Review). Oncol
Lett. 22:5302021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Xu MH, Gao X, Luo D, Zhou XD, Xiong W and
Liu GX: EMT and acquisition of stem cell-like properties are
involved in spontaneous formation of tumorigenic hybrids between
lung cancer and bone marrow-derived mesenchymal stem cells. PLoS
One. 9:e878932014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Imodoye SO, Adedokun KA, Muhammed AO,
Bello IO, Muhibi MA, Oduola T and Oyenike MA: Understanding the
complex milieu of epithelial-mesenchymal transition in cancer
metastasis: New insight into the roles of transcription factors.
Front Oncol. 11:7628172021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Parri M and Chiarugi P: Rac and Rho
GTPases in cancer cell motility control. Cell Commun Signal.
8:232010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gener P, Seras-Franzoso J, Callejo PG,
Andrade F, Rafael D, Martínez F, Montero S, Arango D, Sayós J,
Abasolo I and Schwartz S Jr: Dynamism, sensitivity, and
consequences of mesenchymal and stem-like phenotype of cancer
cells. Stem Cells Int. 2018:45164542018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ribatti D, Tamma R and Annese T:
Epithelial-mesenchymal transition in cancer: A historical overview.
Transl Oncol. 13:1007732020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Vandyck HH, Hillen LM, Bosisio FM, van den
Oord J, Zur Hausen A and Winnepenninckx V: Rethinking the biology
of metastatic melanoma: A holistic approach. Cancer Metastasis Rev.
40:603–624. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dilshat R, Fock V, Kenny C, Gerritsen I,
Lasseur RM, Travnickova J, Eichhoff OM, Cerny P, Möller K,
Sigurbjörnsdóttir S, et al: MITF reprograms the extracellular
matrix and focal adhesion in melanoma. Elife. 10:e630932021.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen T, Zhao B, Liu Y, Wang R, Yang Y,
Yang L and Dong C: MITF-M regulates melanogenesis in mouse
melanocytes. J Dermatol Sci. 90:253–262. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Shakhova O, Zingg D, Schaefer SM, Hari L,
Civenni G, Blunschi J, Claudinot S, Okoniewski M, Beermann F,
Mihic-Probst D, et al: Sox10 promotes the formation and maintenance
of giant congenital naevi and melanoma. Nat Cell Biol. 14:882–890.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yun CY, Mi Ko S, Pyo Choi Y, Kim BJ, Lee
J, Mun Kim J, Kim JY, Song JY, Kim SH, Hwang BY, et al: α-Viniferin
improves facial hyperpigmentation via accelerating feedback
termination of cAMP/PKA-signaled phosphorylation circuit in
facultative melanogenesis. Theranostics. 8:2031–2043. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Choi MH, Jo HG, Yang JH, Ki SH and Shin
HJ: Antioxidative and anti-melanogenic activities of bamboo stems
(phyllostachys nigra variety henosis) via PKA/CREB-mediated MITF
downregulation in B16F10 melanoma cells. Int J Mol Sci. 19:4092018.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kaur A, Webster MR and Weeraratna AT: In
the Wnt-er of life: Wnt signalling in melanoma and ageing. Br J
Cancer. 115:1273–1279. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Goding CR and Arnheiter H: MITF-the first
25 years. Genes Dev. 33:983–1007. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Javelaud D, Alexaki VI, Pierrat MJ, Hoek
KS, Dennler S, Van Kempen L, Bertolotto C, Ballotti R, Saule S,
Delmas V and Mauviel A: GLI2 and M-MITF transcription factors
control exclusive gene expression programs and inversely regulate
invasion in human melanoma cells. Pigment Cell Melanoma Res.
24:932–943. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fane ME, Chhabra Y, Smith AG and Sturm RA:
BRN2, a POUerful driver of melanoma phenotype switching and
metastasis. Pigment Cell Melanoma Res. 32:9–24. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kawakami A and Fisher DE: The master role
of microphthalmia-associated transcription factor in melanocyte and
melanoma biology. Lab Invest. 97:649–656. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ghiorzo P, Pastorino L, Queirolo P, Bruno
W, Tibiletti MG, Nasti S and Andreotti V; Genoa Pancreatic Cancer
Study Group, . Paillerets BB and Bianchi Scarrà G: Prevalence of
the E318K MITF germline mutation in Italian melanoma patients:
Associations with histological subtypes and family cancer history.
Pigment Cell Melanoma Res. 26:259–262. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Primot A, Mogha A, Corre S, Roberts K,
Debbache J, Adamski H, Dreno B, Khammari A, Lesimple T, Mereau A,
et al: ERK-regulated differential expression of the Mitf 6a/b
splicing isoforms in melanoma. Pigment Cell Melanoma Res.
23:93–102. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ennen M, Keime C, Gambi G, Kieny A,
Coassolo S, Thibault-Carpentier C, Margerin-Schaller F, Davidson G,
Vagne C, Lipsker D and Davidson I: MITF-high and MITF-low cells and
a novel subpopulation expressing genes of both cell states
contribute to intra- and intertumoral heterogeneity of primary
melanoma. Clin Cancer Res. 23:7097–7107. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lister JA, Capper A, Zeng Z, Mathers ME,
Richardson J, Paranthaman K, Jackson IJ and Elizabeth Patton E: A
conditional zebrafish MITF mutation reveals MITF levels are
critical for melanoma promotion vs regression in vivo. J Invest
Dermatol. 134:133–140. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bianchi-Smiraglia A, Bagati A, Fink EE,
Moparthy S, Wawrzyniak JA, Marvin EK, Battaglia S, Jowdy P,
Kolesnikova M, Foley CE, et al: Microphthalmia-associated
transcription factor suppresses invasion by reducing intracellular
GTP pools. Oncogene. 36:84–96. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Simmons JL, Pierce CJ, Al-Ejeh F and Boyle
GM: MITF and BRN2 contribute to metastatic growth after
dissemination of melanoma. Sci Rep. 7:109092017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Swoboda A, Soukup R, Eckel O, Kinslechner
K, Wingelhofer B, Schörghofer D, Sternberg C, Pham HTT, Vallianou
M, Horvath J, et al: STAT3 promotes melanoma metastasis by
CEBP-induced repression of the MITF pathway. Oncogene.
40:1091–1105. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
D'Alba L and Shawkey MD: Melanosomes:
Biogenesis, properties, and evolution of an ancient organelle.
Physiol Rev. 99:1–19. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Slominski A, Zmijewski MA and Pawelek J:
L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators
of melanocyte functions. Pigment Cell Melanoma Res. 25:14–27. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
D'Mello SA, Finlay GJ, Baguley BC and
Askarian-Amiri ME: Signaling pathways in melanogenesis. Int J Mol
Sci. 17:11442016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Morgan AM, Lo J and Fisher DE: How does
pheomelanin synthesis contribute to melanomagenesis?: Two distinct
mechanisms could explain the carcinogenicity of pheomelanin
synthesis. Bioessays. 35:672–676. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Del Bino S, Ito S, Sok J, Nakanishi Y,
Bastien P, Wakamatsu K and Bernerd F: Chemical analysis of
constitutive pigmentation of human epidermis reveals constant
eumelanin to pheomelanin ratio. Pigment Cell Melanoma Res.
28:707–717. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hida T, Kamiya T, Kawakami A, Ogino J,
Sohma H, Uhara H and Jimbow K: Elucidation of melanogenesis cascade
for identifying pathophysiology and therapeutic approach of
pigmentary disorders and melanoma. Int J Mol Sci. 21:61292020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wakamatsu K, Nagao A, Watanabe M, Nakao K
and Ito S: Pheomelanogenesis is promoted at a weakly acidic pH.
Pigment Cell Melanoma Res. 30:372–377. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Carletti G, Nervo G and Cattivelli L:
Flavonoids and melanins: A common strategy across two kingdoms. Int
J Biol Sci. 10:1159–1170. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ju KY, Degan S, Fischer MC, Zhou KC, Jia
X, Yu J and Warren WS: Unraveling the molecular nature of melanin
changes in metastatic cancer. J Biomed Opt. 24:1–13. 2019.
View Article : Google Scholar
|
|
50
|
Premi S: Role of melanin chemiexcitation
in melanoma progression and drug resistance. Front Oncol.
10:13052020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sarna M, Zadlo A, Czuba-Pelech B and
Urbanska K: Nanomechanical phenotype of melanoma cells depends
solely on the amount of endogenous pigment in the cells. Int J Mol
Sci. 19:6072018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sarna M, Krzykawska-Serda M, Jakubowska M,
Zadlo A and Urbanska K: Melanin presence inhibits melanoma cell
spread in mice in a unique mechanical fashion. Sci Rep. 9:92802019.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Fürst K, Steder M, Logotheti S, Angerilli
A, Spitschak A, Marquardt S, Schumacher T, Engelmann D,
Herchenröder O, Rupp RAW and Pützer BM: DNp73-induced degradation
of tyrosinase links depigmentation with EMT-driven melanoma
progression. Cancer Lett. 442:299–309. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Brouwer NJ, Marinkovic M, Luyten GP,
Shields CL and Jager MJ: Lack of tumour pigmentation in
conjunctival melanoma is associated with light iris colour and
worse prognosis. Br J Ophthalmol. 103:332–337. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Brouwer NJ, Marinkovic M, Luyten GPM,
Shields CL and Jager MJ: Pigmentation of conjunctival melanoma
recurrences and outcome. Graefes Arch Clin Exp Ophthalmol.
257:1783–1788. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Huayllani MT, Boczar D, Saleem HY,
Spaulding AC, Bagaria SP, Lu X, Kassis S, Perdikis G and Forte AJ:
Amelanotic melanoma of the head and neck: Analysis of tumor
characteristics from the national cancer database. Int J Dermatol.
60:347–351. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xie C, Pan Y, McLean C, Mar V, Wolfe R and
Kelly JW: Scalp melanoma: Distinctive high risk clinical and
histological features. Australas J Dermatol. 58:181–188. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu G, Wang Y, Fei F, Wang X, Li C, Liu K,
Du J, Cao Y and Zhang S: Clinical characteristics and preliminary
morphological observation of 47 cases of primary anorectal
malignant melanomas. Melanoma Res. 28:592–599. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fernández-Cortés M, Delgado-Bellido D and
Oliver FJ: Vasculogenic mimicry: Become an endothelial cell ‘but
not so much’. Front Oncol. 9:8032019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Nasti TH and Timares L: MC1R, eumelanin
and pheomelanin: Their role in determining the susceptibility to
skin cancer. Photochem Photobiol. 91:188–200. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Galván I, Jorge A and García-Gil M:
Pheomelanin molecular vibration is associated with mitochondrial
ROS production in melanocytes and systemic oxidative stress and
damage. Integr Biol (Camb). 9:751–761. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Arai E, Hasegawa M, Wakamatsu K and Ito S:
Males with more pheomelanin have a lower oxidative balance in Asian
barn swallows (Hirundo rustica gutturalis). Zoolog Sci.
35:505–513. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rodríguez-Martínez S, Wakamatsu K and
Galván I: Increase of the benzothiazole moiety content of
pheomelanin pigment after endogenous free radical inducement. Dyes
Pigm. 180:1085162020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Panzella L, Leone L, Greco G, Vitiello G,
D'Errico G, Napolitano A and d'Ischia M: Red human hair pheomelanin
is a potent pro-oxidant mediating UV-independent contributory
mechanisms of melanomagenesis. Pigment Cell Melanoma Res.
27:244–252. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mitra D, Luo X, Morgan A, Wang J, Hoang
MP, Lo J, Guerrero CR, Lennerz JK, Mihm MC, Wargo JA, et al: An
ultraviolet-radiation-independent pathway to melanoma
carcinogenesis in the red hair/fair skin background. Nature.
491:449–453. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Piskounova E, Agathocleous M, Murphy MM,
Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ
and Morrison SJ: Oxidative stress inhibits distant metastasis by
human melanoma cells. Nature. 527:186–191. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Le Gal K, Ibrahim MX, Wiel C, Sayin VI,
Akula MK, Karlsson C, Dalin MG, Akyürek LM, Lindahl P, Nilsson J
and Bergo MO: Antioxidants can increase melanoma metastasis in
mice. Sci Transl Med. 7:308re82015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huang HC, Yen H, Lu JY, Chang TM and Hii
CH: Theophylline enhances melanogenesis in B16F10 murine melanoma
cells through the activation of the MEK 1/2, and Wnt/β-catenin
signaling pathways. Food Chem Toxicol. 137:1111652020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cordella M, Tabolacci C, Senatore C, Rossi
S, Mueller S, Lintas C, Eramo A, D'Arcangelo D, Valitutti S,
Facchiano A and Facchiano F: Theophylline induces differentiation
and modulates cytoskeleton dynamics and cytokines secretion in
human melanoma-initiating cells. Life Sci. 230:121–131. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ye Y, Wang C, Zhang X, Hu Q, Zhang Y, Liu
Q, Wen D, Milligan J, Bellotti A, Huang L, et al: A
melanin-mediated cancer immunotherapy patch. Sci Immunol.
2:eaan56922017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hartman ML and Czyz M: MITF in melanoma:
Mechanisms behind its expression and activity. Cell Mol Life Sci.
72:1249–1260. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Huijser A, Pezzella A and Sundström V:
Functionality of epidermal melanin pigments: Current knowledge on
UV-dissipative mechanisms and research perspectives. Phys Chem Chem
Phys. 13:9119–9127. 2011. View Article : Google Scholar : PubMed/NCBI
|