Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2022 Volume 48 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 48 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

MicroRNA profiling of paediatric AML with FLT-ITD or MLL-rearrangements: Expression signatures and in vitro modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors

  • Authors:
    • Pier Paolo Leoncini
    • Patrizia Vitullo
    • Sofia Reddel
    • Valeria Tocco
    • Valeria Paganelli
    • Francesca Stocchi
    • Elena Mariggiò
    • Michele Massa
    • Giovanni Nigita
    • Dario Veneziano
    • Paolo Fadda
    • Mario Scarpa
    • Martina Pigazzi
    • Alice Bertaina
    • Rossella Rota
    • Daria Pagliara
    • Pietro Merli
  • View Affiliations / Copyright

    Affiliations: Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, I-00146 Rome, Italy, Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, I-00161 Rome, Italy, Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1239, USA, Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1239, USA, Department of Biomedical Research, Urology Research Laboratory, University of Bern, CH-3008 Bern, Switzerland, Department of Women's and Children's Health (SDB), Hematology-Oncology Laboratory, University of Padova, I-35128 Padova, Italy
    Copyright: © Leoncini et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 221
    |
    Published online on: October 31, 2022
       https://doi.org/10.3892/or.2022.8436
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Novel therapeutic strategies are needed for paediatric patients affected by Acute Myeloid Leukaemia (AML), particularly for those at high-risk for relapse. MicroRNAs (miRs) have been extensively studied as biomarkers in cancer and haematological disorders, and their expression has been correlated to the presence of recurrent molecular abnormalities, expression of oncogenes, as well as to prognosis/clinical outcome. In the present study, expression signatures of different miRs related both to presence of myeloid/lymphoid or mixed-lineage leukaemia 1 and Fms like tyrosine kinase 3 internal tandem duplications rearrangements and to the clinical outcome of paediatric patients with AML were identified. Notably, miR-221-3p and miR-222-3p resulted as a possible relapse-risk related miR. Thus, miR-221-3p and miR-222-3p expression modulation was investigated by using a Bromodomain‑containing protein 4 (BRD4) inhibitor (JQ1) and a natural compound that acts as histone acetyl transferase inhibitor (curcumin), alone or in association, in order to decrease acetylation of histone tails and potentiate the effect of BRD4 inhibition. JQ1 modulates miR-221-3p and miR-222-3p expression in AML with a synergic effect when associated with curcumin. Moreover, changes were observed in the expression of CDKN1B, a known target of miR-221-3p and miR-222-3p, increase in apoptosis and downregulation of miR-221-3p and miR-222-3p expression in CD34+ AML primary cells. Altogether, these findings suggested that several miRs expression signatures at diagnosis may be used for risk stratification and as relapse prediction biomarkers in paediatric AML outlining that epigenetic drugs, could represent a novel therapeutic strategy for high-risk paediatric patients with AML. For these epigenetic drugs, additional research for enhancing activity, bioavailability and safety is needed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Pui CH, Carroll WL, Meshinchi S and Arceci RJ: Biology, risk stratification, and therapy of pediatric acute leukemias: An update. J Clin Oncol. 29:551–565. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E, Harbott J, Hasle H, Johnston D, Kinoshita A, et al: Diagnosis and management of acute myeloid leukemia in children and adolescents: Recommendations from an international expert panel. Blood. 120:3187–3205. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Rubnitz JE and Inaba H: Childhood acute myeloid leukaemia. Br J Haematol. 159:259–276. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Elgarten CW and Aplenc R: Pediatric acute myeloid leukemia: Updates on biology, risk stratification, and therapy. Curr Opin Pediatr. 32:57–66. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Buldini B, Rizzati F, Masetti R, Fagioli F, Menna G, Micalizzi C, Putti MC, Rizzari C, Santoro N, Zecca M, et al: Prognostic significance of flow-cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the AIEOP-AML 2002/01 study protocol. Br J Haematol. 177:116–126. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Manara E, Basso G, Zampini M, Buldini B, Tregnago C, Rondelli R, Masetti R, Bisio V, Frison M, Polato K, et al: Characterization of children with FLT3-ITD acute myeloid leukemia: A report from the AIEOP AML-2002 study group. Leukemia. 31:18–25. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Masetti R, Vendemini F, Zama D, Biagi C, Pession A and Locatelli F: Acute myeloid leukemia in infants: Biology and treatment. Front Pediatr. 3:372015. View Article : Google Scholar : PubMed/NCBI

8 

Balgobind BV, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A, Beverloo HB, Chang M, Creutzig U, Dworzak MN, et al: Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: Results of an international retrospective study. Blood. 114:2489–2496. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S, Chen P, He C, You D, Zhang S, et al: Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell. 22:524–535. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Di Leva G, Garofalo M and Croce CM: MicroRNAs in cancer. Annu Rev Pathol. 9:287–314. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Marcucci G, Mrózek K, Radmacher MD, Garzon R and Bloomfield CD: The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 117:1121–1129. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Obulkasim A, Katsman-Kuipers JE, Verboon L, Sanders M, Touw I, Jongen-Lavrencic M, Pieters R, Klusmann JH, Michel Zwaan C, van den Heuvel-Eibrink MM and Fornerod M: Classification of pediatric acute myeloid leukemia based on miRNA expression profiles. Oncotarget. 8:33078–33085. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Danen-van Oorschot AA, Kuipers JE, Arentsen-Peters S, Schotte D, de Haas V, Trka J, Baruchel A, Reinhardt D, Pieters R, Zwaan CM and van den Heuvel-Eibrink MM: Differentially expressed miRNAs in cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Pediatr Blood Cancer. 58:715–721. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Wallace JA and O'Connell RM: MicroRNAs and acute myeloid leukemia: Therapeutic implications and emerging concepts. Blood. 130:1290–1301. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Wu D, Qiu Y, Jiao Y, Qiu Z and Liu D: Small molecules targeting HATs, HDACs, and BRDs in cancer therapy. Front Oncol. 10:5604872020. View Article : Google Scholar : PubMed/NCBI

18 

Zhu R, Zhao W, Fan F, Tang L, Liu J, Luo T, Deng J and Hu Y: A 3-miRNA signature predicts prognosis of pediatric and adolescent cytogenetically normal acute myeloid leukemia. Oncotarget. 8:38902–38913. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Lim EL, Trinh DL, Ries RE, Wang J, Gerbing RB, Ma Y, Topham J, Hughes M, Pleasance E, Mungall AJ, et al: MicroRNA expression-based model indicates event-free survival in pediatric acute myeloid leukemia. J Clin Oncol. 35:3964–3977. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Brondfield S, Umesh S, Corella A, Zuber J, Rappaport AR, Gaillard C, Lowe SW, Goga A and Kogan SC: Direct and indirect targeting of MYC to treat acute myeloid leukemia. Cancer Chemother Pharmacol. 76:35–46. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Benetatos L and Vartholomatos G: MicroRNAs mark in the MLL-rearranged leukemia. Ann Hematol. 92:1439–1450. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Bretones G, Delgado MD and León J: Myc and cell cycle control. Biochim Biophys Acta. 1849:506–516. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Donati B, Lorenzini E and Ciarrocchi A: BRD4 and cancer: Going beyond transcriptional regulation. Mol Cancer. 17:1642018. View Article : Google Scholar : PubMed/NCBI

24 

Jiang G, Deng W, Liu Y and Wang C: General mechanism of JQ1 in inhibiting various types of cancer. Mol Med Rep. 21:1021–1034. 2020.PubMed/NCBI

25 

Wu T, Kamikawa YF and Donohoe ME: Brd4′s bromodomains mediate histone H3 acetylation and chromatin remodeling in pluripotent cells through P300 and Brg1. Cell Rep. 25:1756–1771. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Fiskus W, Sharma S, Qi J, Shah B, Devaraj SG, Leveque C, Portier BP, Iyer S, Bradner JE and Bhalla KN: BET protein antagonist JQ1 is synergistically lethal with FLT3 tyrosine kinase inhibitor (TKI) and overcomes resistance to FLT3-TKI in AML cells expressing FLT-ITD. Mol Cancer Ther. 13:2315–2327. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Mio C, Conzatti K, Baldan F, Allegri L, Sponziello M, Rosignolo F, Russo D, Filetti S and Damante G: BET bromodomain inhibitor JQ1 modulates microRNA expression in thyroid cancer cells. Oncol Rep. 39:582–588. 2018.PubMed/NCBI

28 

Schick M, Habringer S, Nilsson JA and Keller U: Pathogenesis and therapeutic targeting of aberrant MYC expression in haematological cancers. Br J Haematol. 179:724–738. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Chen H, Liu H and Qing G: Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 3:52018. View Article : Google Scholar : PubMed/NCBI

30 

Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, et al: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 146:904–917. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J and Neckers L: Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem. 2:169–174. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Kang SK, Cha SH and Jeon HG: Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 15:165–174. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T and Hasegawa K: The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest. 118:868–878. 2008.PubMed/NCBI

34 

Spriano F, Stathis A and Bertoni F: Targeting BET bromodomain proteins in cancer: The example of lymphomas. Pharmacol Ther. 215:1076312020. View Article : Google Scholar : PubMed/NCBI

35 

Wang X, Yang Y, Ren D, Xia Y, He W, Wu Q, Zhang J, Liu M, Du Y, Ren C, et al: JQ1, a bromodomain inhibitor, suppresses Th17 effectors by blocking p300-mediated acetylation of RORγt. Br J Pharmacol. 177:2959–2973. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

38 

Reich M, Liefeld T, Gould J, Lerner J, Tamayo P and Mesirov JP: GenePattern 2.0. Nat Genet. 38:500–501. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Heberle H, Meirelles GV, da Silva FR, Telles GP and Minghim R: InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 16:1692015. View Article : Google Scholar : PubMed/NCBI

40 

Dweep H and Gretz N: miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat Methods. 12:6972015. View Article : Google Scholar : PubMed/NCBI

41 

Haferlach C, Kern W, Schindela S, Kohlmann A, Alpermann T, Schnittger S and Haferlach T: Gene expression of BAALC, CDKN1B, ERG, and MN1 adds independent prognostic information to cytogenetics and molecular mutations in adult acute myeloid leukemia. Genes Chromosomes Cancer. 51:257–265. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS, Wu J, Zhou H, Qu LH, Xu L and Chen YQ: MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One. 4:e78262009. View Article : Google Scholar : PubMed/NCBI

43 

Gaur V, Chaudhary S, Tyagi A, Agarwal S, Sharawat SK, Sarkar S, Singh H, Bakhshi S, Sharma P and Kumar S: Dysregulation of miRNA expression and their prognostic significance in paediatric cytogenetically normal acute myeloid leukaemia. Br J Haematol. 188:e90–e94. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Zampini M, Bisio V, Leszl A, Putti MC, Menna G, Rizzari C, Pession A, Locatelli F, Basso G, Tregnago C and Pigazzi M: A three-miRNA-based expression signature at diagnosis can predict occurrence of relapse in children with t(8;21) RUNX1-RUNX1T1 acute myeloid leukaemia. Br J Haematol. 183:298–301. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Zhu R, Lin W, Zhao W, Fan F, Tang L and Hu Y: A 4-microRNA signature for survival prognosis in pediatric and adolescent acute myeloid leukemia. J Cell Biochem. 120:3958–3968. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X and Fu L: Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol. 12:512019. View Article : Google Scholar : PubMed/NCBI

47 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 35:180–188. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Yan W, Xu L, Sun Z, Lin Y, Zhang W, Chen J, Hu S and Shen B: MicroRNA biomarker identification for pediatric acute myeloid leukemia based on a novel bioinformatics model. Oncotarget. 6:26424–26436. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Palma CA, Al Sheikha D, Lim TK, Bryant A, Vu TT, Jayaswal V and Ma DD: MicroRNA-155 as an inducer of apoptosis and cell differentiation in acute myeloid leukaemia. Mol Cancer. 13:792014. View Article : Google Scholar : PubMed/NCBI

51 

Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu YZ, Mrózek K, Nicolet D, Kohlschmidt J, Whitman SP, Mendler JH, et al: Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol. 31:2086–2093. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Wallace JA, Kagele DA, Eiring AM, Kim CN, Hu R, Runtsch MC, Alexander M, Huffaker TB, Lee SH, Patel AB, et al: miR-155 promotes FLT3-ITD-induced myeloproliferative disease through inhibition of the interferon response. Blood. 129:3074–3086. 2017. View Article : Google Scholar : PubMed/NCBI

53 

O'Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL and Baltimore D: Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 205:585–594. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Narayan N, Morenos L, Phipson B, Willis SN, Brumatti G, Eggers S, Lalaoui N, Brown LM, Kosasih HJ, Bartolo RC, et al: Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia. Leukemia. 31:808–820. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Huang Y, Zou Y, Lin L, Ma X and Chen H: Identification of serum miR-34a as a potential biomarker in acute myeloid leukemia. Cancer Biomark. 22:799–805. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Chakraborty C, Sharma AR, Sharma G, Doss CGP and Lee SS: Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 8:132–143. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Frenquelli M, Muzio M, Scielzo C, Fazi C, Scarfò L, Rossi C, Ferrari G, Ghia P and Caligaris-Cappio F: MicroRNA and proliferation control in chronic lymphocytic leukemia: Functional relationship between miR-221/222 cluster and p27. Blood. 115:3949–3959. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Hussein K, Theophile K, Büsche G, Schlegelberger B, Göhring G, Kreipe H and Bock O: Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic syndrome. Leuk Res. 34:328–334. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Moses BS, Evans R, Slone WL, Piktel D, Martinez I, Craig MD and Gibson LF: Bone marrow microenvironment niche regulates miR-221/222 in acute lymphoblastic leukemia. Mol Cancer Res. 14:909–919. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Rommer A, Steinleitner K, Hackl H, Schneckenleithner C, Engelmann M, Scheideler M, Vlatkovic I, Kralovics R, Cerny-Reiterer S, Valent P, et al: Overexpression of primary microRNA 221/222 in acute myeloid leukemia. BMC Cancer. 13:3642013. View Article : Google Scholar : PubMed/NCBI

61 

Lee YG, Kim I, Oh S, Shin DY, Koh Y and Lee KW: Small RNA sequencing profiles of mir-181 and mir-221, the most relevant microRNAs in acute myeloid leukemia. Korean J Intern Med. 34:178–183. 2019. View Article : Google Scholar : PubMed/NCBI

62 

le Sage C, Nagel R and Agami R: Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle. 6:2742–2749. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Kohnken R, McNeil B, Wen J, McConnell K, Grinshpun L, Keiter A, Chen L, William B, Porcu P and Mishra A: Preclinical targeting of MicroRNA-214 in cutaneous T-cell lymphoma. J Invest Dermatol. 139:1966–1974.e3. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Mensah AA, Cascione L, Gaudio E, Tarantelli C, Bomben R, Bernasconi E, Zito D, Lampis A, Hahne JC, Rinaldi A, et al: Bromodomain and extra-terminal domain inhibition modulates the expression of pathologically relevant microRNAs in diffuse large B-cell lymphoma. Haematologica. 103:2049–2058. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Quentmeier H, Reinhardt J, Zaborski M and Drexler HG: FLT3 mutations in acute myeloid leukemia cell lines. Leukemia. 17:120–124. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Leoncini PP, Vitullo P, Reddel S, Tocco V, Paganelli V, Stocchi F, Mariggiò E, Massa M, Nigita G, Veneziano D, Veneziano D, et al: MicroRNA profiling of paediatric AML with <em>FLT-ITD</em> or <em>MLL</em>-rearrangements: Expression signatures and <em>in vitro</em> modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors. Oncol Rep 48: 221, 2022.
APA
Leoncini, P.P., Vitullo, P., Reddel, S., Tocco, V., Paganelli, V., Stocchi, F. ... Merli, P. (2022). MicroRNA profiling of paediatric AML with <em>FLT-ITD</em> or <em>MLL</em>-rearrangements: Expression signatures and <em>in vitro</em> modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors. Oncology Reports, 48, 221. https://doi.org/10.3892/or.2022.8436
MLA
Leoncini, P. P., Vitullo, P., Reddel, S., Tocco, V., Paganelli, V., Stocchi, F., Mariggiò, E., Massa, M., Nigita, G., Veneziano, D., Fadda, P., Scarpa, M., Pigazzi, M., Bertaina, A., Rota, R., Pagliara, D., Merli, P."MicroRNA profiling of paediatric AML with <em>FLT-ITD</em> or <em>MLL</em>-rearrangements: Expression signatures and <em>in vitro</em> modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors". Oncology Reports 48.6 (2022): 221.
Chicago
Leoncini, P. P., Vitullo, P., Reddel, S., Tocco, V., Paganelli, V., Stocchi, F., Mariggiò, E., Massa, M., Nigita, G., Veneziano, D., Fadda, P., Scarpa, M., Pigazzi, M., Bertaina, A., Rota, R., Pagliara, D., Merli, P."MicroRNA profiling of paediatric AML with <em>FLT-ITD</em> or <em>MLL</em>-rearrangements: Expression signatures and <em>in vitro</em> modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors". Oncology Reports 48, no. 6 (2022): 221. https://doi.org/10.3892/or.2022.8436
Copy and paste a formatted citation
x
Spandidos Publications style
Leoncini PP, Vitullo P, Reddel S, Tocco V, Paganelli V, Stocchi F, Mariggiò E, Massa M, Nigita G, Veneziano D, Veneziano D, et al: MicroRNA profiling of paediatric AML with <em>FLT-ITD</em> or <em>MLL</em>-rearrangements: Expression signatures and <em>in vitro</em> modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors. Oncol Rep 48: 221, 2022.
APA
Leoncini, P.P., Vitullo, P., Reddel, S., Tocco, V., Paganelli, V., Stocchi, F. ... Merli, P. (2022). MicroRNA profiling of paediatric AML with <em>FLT-ITD</em> or <em>MLL</em>-rearrangements: Expression signatures and <em>in vitro</em> modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors. Oncology Reports, 48, 221. https://doi.org/10.3892/or.2022.8436
MLA
Leoncini, P. P., Vitullo, P., Reddel, S., Tocco, V., Paganelli, V., Stocchi, F., Mariggiò, E., Massa, M., Nigita, G., Veneziano, D., Fadda, P., Scarpa, M., Pigazzi, M., Bertaina, A., Rota, R., Pagliara, D., Merli, P."MicroRNA profiling of paediatric AML with <em>FLT-ITD</em> or <em>MLL</em>-rearrangements: Expression signatures and <em>in vitro</em> modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors". Oncology Reports 48.6 (2022): 221.
Chicago
Leoncini, P. P., Vitullo, P., Reddel, S., Tocco, V., Paganelli, V., Stocchi, F., Mariggiò, E., Massa, M., Nigita, G., Veneziano, D., Fadda, P., Scarpa, M., Pigazzi, M., Bertaina, A., Rota, R., Pagliara, D., Merli, P."MicroRNA profiling of paediatric AML with <em>FLT-ITD</em> or <em>MLL</em>-rearrangements: Expression signatures and <em>in vitro</em> modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors". Oncology Reports 48, no. 6 (2022): 221. https://doi.org/10.3892/or.2022.8436
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team