Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2023 Volume 49 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2023 Volume 49 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth

  • Authors:
    • Jennifer M. Caron
    • Xianghua Han
    • Christine W. Lary
    • Pradeep Sathyanarayana
    • Scot C. Remick
    • Marc S. Ernstoff
    • Meenhard Herlyn
    • Peter C. Brooks
  • View Affiliations / Copyright

    Affiliations: MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA, Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD 20892, USA, Wistar Institute, Philadelphia, PA 19104, USA
    Copyright: © Caron et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 44
    |
    Published online on: January 12, 2023
       https://doi.org/10.3892/or.2023.8481
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Structural alterations of collagen impact signaling that helps control tumor progression and the responses to therapeutic intervention. Integrins represent a class of receptors that include members that mediate collagen signaling. However, a strategy of directly targeting integrins to control tumor growth has demonstrated limited activity in the clinical setting. New molecular understanding of integrins have revealed that these receptors can regulate both pro‑ and anti‑tumorigenic functions in a cell type‑dependent manner. Therefore, designing strategies that block pro‑tumorigenic signaling, without impeding anti‑tumorigenic functions, may lead to development of more effective therapies. In the present study, evidence was provided for a novel signaling cascade in which β3‑integrin‑mediated binding to a secreted RGDKGE‑containing collagen fragment stimulates an autocrine‑like signaling pathway that differentially governs the activity of both YAP and (protein kinase‑A) PKA, ultimately leading to alterations in the levels of immune checkpoint molecule PD‑L1 by a proteasome dependent mechanism. Selectively targeting this collagen fragment, reduced nuclear YAP levels, and enhanced PKA and proteasome activity, while also exhibiting significant antitumor activity in vivo. The present findings not only provided new mechanistic insight into a previously unknown autocrine‑like signaling pathway that may provide tumor cells with the ability to regulate PD‑L1, but our findings may also help in the development of more effective strategies to control pro‑tumorigenic β3‑integrin signaling without disrupting its tumor suppressive functions in other cellular compartments.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Brassart-Pasco S, Brezillon S, Brassart B, Ramont L, Oudart JB and Monboisse JC: Tumor microenvironment: Extracellular matrix alterations influence tumor progression. Front Oncol. 10:3972020. View Article : Google Scholar : PubMed/NCBI

2 

Ruiter D, Bogenrieder T, Elder D and Herlyn M: Melanoma-stroma interactions: Structural and functional aspects. Lancet Oncol. 3:35–43. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Han X, Caron JM and Brooks PC: Cryptic collagen elements as signaling hubs in the regulation of tumor growth and metastasis. J Cell Physiol. 235:9005–9020. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Contois L, Akalu A and Brooks PC: Integrins as ‘functional hubs’ in the regulation of pathological angiogenesis. Semin Cancer Biol. 19:318–328. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Ricard-Blum S: The collagen family. Cold Spring Harb Perspect Biol. 3:a0049782011. View Article : Google Scholar : PubMed/NCBI

6 

Zeltz C and Gullberg D: The integrin-collagen connection-a glue for tissue repair? J Cell Sci. 129:12842016. View Article : Google Scholar : PubMed/NCBI

7 

Leitinger B: Transmembrane collagen receptors. Annu Rev Cell Dev Biol. 27:265–290. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Bienkowski RS, Curran SF and Berg RA: Kinetics of intracellular degradation of newly synthesized collagen. Biochemistry. 25:2455–2459. 1986. View Article : Google Scholar : PubMed/NCBI

9 

Ames JJ, Contois L, Caron JM, Tweedie E, Yang X, Friesel R, Vary C and Brooks PC: Identification of an endogenously generated cryptic collagen epitope (XL313) that may selectively regulate angiogenesis by an integrin yes-associated protein (YAP) mechano-transduction pathway. J Biol Chem. 291:2731–2750. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Han X, Caron JM, Lary CW, Sathyanarayana P, Vary C and Brooks PC: An RGDKGE-containing cryptic collagen fragment regulates phosphorylation of large tumor suppressor kinase-1 and controls ovarian tumor growth by a YAP-associated protein-dependent mechanism. Am J Pathol. 191:527–544. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Kim MH, Kim CG, Kim SK, Shin SJ, Choe EA, Park SH, Shin EC and Kim J: YAP-induced PD-L1 expression drives immune evasion in BRAFi-resistant melanoma. Cancer Immunol Res. 6:255–266. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Hsu PC, Miao J, Wang YC, Zhang WQ, Yang YL, Wang CW, Yang CT, Huang Z, You J, Xu Z, et al: Inhibition of yes-associated protein down-regulates PD-L1 (CD274) expression in human malignant pleural mesothelioma. J Cell Mol Med. 22:3139–3148. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Lee BS, Park DI, Lee DH, Lee JE, Yeo MK, Park YH, Lim DS, Choi W, Lee DH, Yoo G, et al: Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophy Res Commun. 491:493–499. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Jensen C, Madsen DH, Hansen M, Schmidt H, Svane IM, Karsdal MA and Willumsen N: Non-invasive biomarkers derived from the extracellular matrix associate with response to immune checkpoint blockade (anti-CTLA-4) in metastatic melanoma patients. J Immunother Cancer. 6:1522018. View Article : Google Scholar : PubMed/NCBI

15 

Hurkmans DP, Jensen C, Koolen SLW, Aerts J, Karsdal MA, Mathijssen RHJ and Willumsen N: Blood-based extracellular matrix biomarkers are correlated with clinical outcome after PD-1 inhibition in patients with metastatic melanoma. J Immunother Cancer. 8:e0011932020. View Article : Google Scholar : PubMed/NCBI

16 

Abdou Y, Pandey M, Sarma M, Shah S, Baron J and Ernstoff MS: Mechanism-based treatment of cancer with immune checkpoint inhibitor therapies. Br J Clin Pharmacol. 86:1690–1702. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Gandhi S, Pandey MR, Attwood K, Ji W, Witkiewicz AK, Knudsen ES, Allen C, Tario JD, Wallace PK, Cedeno CD, et al: Phase I clinical trial of combination propranolol and pembrolizumab in locally advanced and metastatic melanoma: Safety, tolerability, and preliminary evidence of antitumor activity. Clin Cancer Res. 27:87–95. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Somasundaram R, Connelly T, Choi R, Choi H, Samarkina A, Li L, Gregorio E, Chen Y, Thakur R, Abdel-Mohsen M, et al: Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nat Commun. 12:3462021. View Article : Google Scholar : PubMed/NCBI

19 

Cha JH, Chan LC, Li CW, Hsu JL and Hung MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Sun C, Mezzadra R and Schumacher TN: Regulation and function of the PD-L1 checkpoint. Immunity. 48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Gou Q, Dong C, Xu H, Khan B, Jin J, Liu Q, Shi J and Hou Y: PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis. 11:9552020. View Article : Google Scholar : PubMed/NCBI

22 

Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T, et al: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 7:126322016. View Article : Google Scholar : PubMed/NCBI

23 

Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, Li CW, Kim T, Chang SS, Lee HH, et al: Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell. 71:606–620.e7. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, Lam EYN, Henderson MA, Bell CC, Stolzenburg S, et al: CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 549:101–105. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Wang H, Yao H, Li C, Shi H, Lan J, Li Z, Zhang Y, Liang L, Fang JY and Xu J: HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat Chem Biol. 15:42–50. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Coelho MA, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina-Arcas M, East P, Spencer-Dene B, Nye E, Barnouin K, et al: Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity. 47:1083–1099.e6. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Lin HY, Chin YT, Nana AW, Shih YJ, Lai HY, Tang HY, Leinung M, Mousa SA and Davis PJ: Actions of l-thyroxine and Nano-diamino-tetrac (Nanotetrac) on PD-L1 in cancer cells. Steroids. 114:59–67. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Ren D, Zhao J, Sun Y, Li D, Meng Z, Wang B, Fan P, Liu Z, Jin X and Wu H: Overexpressed ITGA2 promotes malignant tumor aggression by up-regulating PD-L1 expression through the activation of the STAT3 signaling pathway. J Exp Clin Cancer Res. 38:4852019. View Article : Google Scholar : PubMed/NCBI

29 

Vannini A, Leoni V, Barboni C, Sanapo M, Zaghini A, Malatesta P, Campadelli-Fiume G and Gianni T: αvβ3-integrin regulates PD-L1 expression and is involved in cancer immune evasion. Proc Natl Acad Sci USA. 116:20141–20150. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Caron JM, Han X, Contois L, Vary CPH and Brooks PC: The HU177 collagen epitope controls melanoma cell migration and experimental metastasis by a CDK5/YAP-dependent mechanism. Am J Pathol. 188:2356–2368. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG and Keely PJ: Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:112008. View Article : Google Scholar : PubMed/NCBI

33 

Vellinga TT, den Uil S, Rinkes IH, Marvin D, Ponsioen B, Alvarez-Varela A, Fatrai S, Scheele C, Zwijnenburg DA, Snippert H, et al: Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene. 35:5263–5271. 2016. View Article : Google Scholar : PubMed/NCBI

34 

van Kempen LC, Rijntjes J, Mamor-Cornelissen I, Vincent-Naulleau S, Gerritsen MJ, Ruiter DJ, van Dijk MC, Geffrotin C and van Muijen GN: Type I collagen expression contributes to angiogenesis and the development of deeply invasive cutaneous melanoma. Int J Cancer. 122:1019–1029. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Noel A, Munaut C, Boulvain A, Calberg-Bacq CM, Lambert CA, Nusgens B, Lapiere CM and Foidart JM: Modulation of collagen and fibronectin synthesis in fibroblasts by normal and malignant cells. J Cell Biochem. 48:150–161. 1992. View Article : Google Scholar : PubMed/NCBI

36 

Afik R, Zigmond E, Vugman M, Klepfish M, Shimshoni E, Pasmanik-Chor M, Shenoy A, Bassat E, Halpern Z, Geiger T, et al: Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med. 213:2315–2331. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Gupta HB, Clark CA, Yuan B, Sareddy G, Pandweswara S, Padron AS, Hurez V, Conejo-Garcia J, Vadlamudi R, Li R and Curiel TJ: Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer. Signal Transduct Target Ther. 1:160302016. View Article : Google Scholar : PubMed/NCBI

38 

Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, Drerup JM, Padron A, Conejo-Garcia J, Murthy K, et al: Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res. 76:6964–6974. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Hudson K, Cross N, Jordan-Mahy N and Leyland R: The extrinsic and intrinsic roles of PD-L1 and its receptor PD-1: Implications for immunotherapy treatment. Front Immunol. 11:5689312020. View Article : Google Scholar : PubMed/NCBI

40 

Xue Z, Zheng S, Linghu D, Liu B, Yang Y, Chen MK, Huang H, Song J, Li H, Wang J, et al: PD-L1 deficiency sensitizes tumor cells to DNA-PK inhibition and enhances cGAS-STING activation. Am J Cancer Res. 12:2363–2375. 2022.PubMed/NCBI

41 

VerPlank JJS, Lokireddy S, Zhao J and Goldberg AL: 26S Proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proc Natl Acd Sci USA. 116:4228–4237. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Asai M, Tsukamoto O, Minamino T, Asanuma H, Fujita M, Asano Y, Takahama H, Sasaki H, Higo S, Asakura M, et al: PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts. J Mol Cell Cardiol. 46:452–462. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Lokireddy S, Kukushkin NV and Goldberg AL: cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA. 112:E7176–E7185. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Qin XY, Zhang YL, Chi YF, Yan B, Zeng XJ, Li HH and Liu Y: Angiotensin II regulates Th1 T cell differentiation through angiotensin II type 1 receptor-PKA-mediated activation of proteasome. Cell Physiol Biochem. 45:1366–1376. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Kim S, Harris M and Varner JA: Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem. 275:33920–33928. 2000. View Article : Google Scholar : PubMed/NCBI

46 

Whelan MC and Senger DR: Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J Biol Chem. 278:327–334. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Kim M, Kim M, Lee S, Kuninaka S, Saya H, Lee H, Lee S and Lim DS: cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J. 32:1543–1555. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y, Pan D, Taylor SS, Lai ZC and Guan KL: Protein kinase A activates the hippo pathway to modulate cell proliferation and differentiation. Genes Devel. 27:1223–1232. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Brooks PC, Clark RA and Cheresh DA: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 264:569–571. 1994. View Article : Google Scholar : PubMed/NCBI

50 

Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G and Cheresh DA: Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 79:1157–1164. 1994. View Article : Google Scholar : PubMed/NCBI

51 

Delbaldo C, Raymond E, Vera K, Hammershaimb L, Kaucic K, Lozahic S, Marty M and Faivre S: Phase I and pharmacokinetic study of etaracizumab (Abegrin), a humanized monoclonal antibody against alphαvβeta3 integrin receptor, in patients with advanced solid tumors. Invest New Drugs. 26:35–43. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Hersey P, Sosman J, O'Day S, Richards J, Bedikian A, Gonzalez R, Sharfman W, Weber R, Logan T, Buzoianu M, et al: A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or -dacarbazine in patients with stage IV metastatic melanoma. Cancer. 116:1526–1534. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Petitclerc E, Strömblad S, von Schalscha TL, Mitjans F, Piulats J, Montgomery AM, Cheresh DA and Brooks PC: Integrin alpha(v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res. 59:2724–2730. 1999.PubMed/NCBI

54 

Natali PG, Hamby CV, Felding-Habermann B, Liang B, Nicotra MR, Di Filippo F, Giannarelli D, Temponi M and Ferrone S: Clinical significance of alpha(v)beta3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res. 57:1554–1560. 1997.PubMed/NCBI

55 

Kanamori M, Vanden Berg SR, Bergers G, Berger MS and Pieper RO: Integrin beta3 overexpression suppresses tumor growth in a human model of gliomagenesis: Implications for the role of beta3 overexpression in glioblastoma multiforme. Cancer Res. 64:2751–2758. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Jinushi M, Chiba S, Baghdadi M, Kinoshita I, Dosaka-Akita H, Ito K, Yoshiyama H, Yagita H, Uede T and Takaoka A: ATM-mediated DNA damage signals mediate immune escape through integrin-αvβ3-dependent mechanisms. Cancer Res. 72:56–65. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Su X, Esser AK, Amend SR, Xiang J, Xu Y, Ross MH, Fox GC, Kobayashi T, Steri V, Roomp K, et al: Antagonizing integrin β3 increases immunosuppression in cancer. Cancer Res. 76:3484–3495. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO and Hodivala-Dilke KM: Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nature Med. 8:27–34. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Xi G, Guo W, Kang D, Ma J, Fu F, Qiu L, Zheng L, He J, Fang N, Chen J, et al: Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. Theranostics. 11:3229–3243. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Drifka CR, Loeffler AG, Mathewson K, Keikhosravi A, Eickhoff JC, Liu Y, Weber SM, Kao WJ and Eliceiri KW: Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget. 7:76197–76213. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Wu PC, Hsieh TY, Tsai ZU and Liu TM: In vivo quantification of the structural changes of collagens in a melanoma microenvironment with second and third harmonic generation microscopy. Sci Rep. 5:88792015. View Article : Google Scholar : PubMed/NCBI

62 

Birk JW, Tadros M, Moezardalan K, Nadyarnykh O, Forouhar F, Anderson J and Campagnola P: Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal colonic mucosa. Dig Dis Sci. 59:1529–1534. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Burke K, Smid M, Dawes RP, Timmermans MA, Salzman P, van Deurzen CH, Beer DG, Foekens JA and Brown E: Using second harmonic generation to predict patient outcome in solid tumors. BMC Cancer. 15:9292015. View Article : Google Scholar : PubMed/NCBI

64 

Xu J, Rodriguez D, Petitclerc E, Kim JJ, Hangai M, Moon YS, Davis GE and Brooks PC: Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol. 154:1069–1079. 2001. View Article : Google Scholar : PubMed/NCBI

65 

Willumsen N, Ali SM, Leitzel K, Drabick JJ, Yee N, Polimera HV, Nagabhairu V, Krecko L, Ali A, Maddukuri A, et al: Collagen fragments quantified in serum as measures of desmoplasia associate with survival outcome in patients with advanced pancreatic cancer. Sci Rep. 9:197612019. View Article : Google Scholar : PubMed/NCBI

66 

Kehlet SN, Sanz-Pamplona R, Brix S, Leeming DJ, Karsdal MA and Moreno V: Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients. Sci Rep. 6:305992016. View Article : Google Scholar : PubMed/NCBI

67 

Lipton A, Leitzel K, Ali SM, Polimera HV, Nagabhairu V, Marks E, Richardson AE, Krecko L, Ali A, Koestler W, et al: High turnover of extracellular matrix reflected by specific protein fragments measured in serum is associated with poor outcomes in two metastatic breast cancer cohorts. Int J Cancer. 143:3027–3034. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Hamilton HK, Rose AE, Christos PJ, Shapiro RL, Berman RS, Mazumdar M, Ma MW, Krich D, Liebes L, Brooks PC and Osman I: Increased shedding of HU177 correlates with worse prognosis in primary melanoma. J Transl Med. 8:192010. View Article : Google Scholar : PubMed/NCBI

69 

Lindsey ML, Iyer RP, Zamilpa R, Yabluchanskiy A, DeLeon-Pennell KY, Hall ME, Kaplan A, Zouein FA, Bratton D, Flynn ER, et al: A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol. 66:1364–1374. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Wang J and Pan W: The biological role of the collagen alpha-3 (VI) chain and its cleaved C5 domain fragment endotrophin in cancer. Onco Targets Ther. 13:5779–5793. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Jang JW, Kim MK and Bae SC: Reciprocal regulation of YAP/TAZ by the hippo pathway and the small GTPase pathway. Small GTPases. 11:280–288. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino G, Sodhi A, et al: Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell. 25:831–845. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Qiao Y, Chen J, Lim YB, Finch-Edmondson ML, Seshachalam VP, Qin L, Jiang T, Low BC, Singh H, Lim CT and Sudol M: YAP regulates actin dynamics through ARHGAP29 and promotes metastasis. Cell Rep. 19:1495–1502. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Kornepati AVR, Boyd JT, Murray CE, Saifetiarova J, de la Peña Avalos B, Rogers CM, Bai H, Padron AS, Liao Y, Ontiveros C, et al: Tumor intrinsic PD-L1 promotes DNA repair in distinct cancers and suppresses PARP inhibitor-induced synthetic lethality. Cancer Res. 82:2156–2170. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Lee JJ, Kim SY, Kim SH, Choi S, Lee B and Shin JS: STING mediates nuclear PD-L1 targeting-induced senescence in cancer cells. Cell Death Dis. 13:7912022. View Article : Google Scholar : PubMed/NCBI

76 

Yu J, Qin B, Moyer AM, Nowsheen S, Tu X, Dong H, Boughey JC, Goetz MP, Weinshilboum R, Lou Z and Wang L: Regulation of sister chromatid cohesion by nuclear PD-L1. Cell Res. 30:590–601. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Ghebeh H, Lehe C, Barhoush E, Al-Romaih K, Tulbah A, Al-Alwan M, Hendrayani SF, Manogaran P, Alaiya A, Al-Tweigeri T, et al: Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: Role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res. 12:R482010. View Article : Google Scholar : PubMed/NCBI

78 

Ye L, Zhu Z, Chen X, Zhang H, Huang J, Gu S and Zhao X: The importance of exosomal PD-L1 in cancer progression and its potential as a therapeutic target. Cells. 10:32472021. View Article : Google Scholar : PubMed/NCBI

79 

Gao Y, Nihira NT, Bu X, Chu C, Zhang J, Kolodziejczyk A, Fan Y, Chan NT, Ma L, Liu J, et al: Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol. 22:1064–1075. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Gao Y, Bi D, Xie R, Li M, Gau J, Liu H, Guo X, Fang J, Ding T, Zhu H, et al: Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct Target Ther. 6:3982021. View Article : Google Scholar : PubMed/NCBI

81 

Wei Y, Tang X, Ren Y, Yang Y, Song F, Fu J, Liu S, Yi M, Chen J, Wang S, et al: An RNA-RNA crosstalk network involving HMGΒ1 and RICTOR facilitates hepatocellular carcinoma tumorigenesis by promoting glutamine metabolism and impedes immunotherapy by PD-L1+ exosomes activity. Signal Transduct Target Ther. 6:4212021. View Article : Google Scholar : PubMed/NCBI

82 

Zhang JJ, Zhang QS, Li ZQ, Zhou JW and Du J: Metformin attenuates PD-L1 expression through activating hippo signaling pathway in colorectal cancer cells. Am J Transl Res. 11:6965–6976. 2019.PubMed/NCBI

83 

Moya IM, Castaldo SA, Van den Mooter L, Soheily S, Sansores-Garcia L, Jacobs J, Mannaerts I, Xie J, Verboven E, Hillen H, et al: Peritumoral activation of the hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 366:1029–1034. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, Gangeswaran R, Manson-Bishop C, Smith P, Danovi SA, et al: Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ. 15:1752–1759. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Lebid A, Chung L, Pardoll DM and Pan F: YAP attenuates CD8 T cell-mediated anti-tumor response. Front Immunol. 11:5802020. View Article : Google Scholar : PubMed/NCBI

86 

Stampouloglou E, Cheng N, Federico A, Slaby E, Monti S, Szeto GL and Varelas X: Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biol. 18:e30005912020. View Article : Google Scholar : PubMed/NCBI

87 

Ni X, Tao J, Barbi J, Chen Q, Park BV, Li Z, Zhang N, Lebid A, Ramaswamy A, Wei P, et al: YAP is essential for Treg-mediated suppression of antitumor immunity. Cancer Discov. 8:1026–1043. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Yang W, Yang S, Zhang F, Cheng F, Wang X and Rao J: Influence of the Hippo-YAP signalling pathway on tumor associated macrophages (TAMs) and its implications on cancer immunosuppressive microenvironment. Ann Transl Med. 8:3992020. View Article : Google Scholar : PubMed/NCBI

89 

Wang G, Lu X, Dey P, Deng P, Wu CC, Jiang S, Fang Z, Zhao K, Konaparthi R, Hua S, et al: Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 6:80–95. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Shibata M, Ham K and Hoque MO: A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. Int J Cancer. 143:2133–2144. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Lee JY, Dominguez AA, Nam S, Stowers RS, Qi LS and Chaudhuri O: Identification of cell context-dependent YAP-associated proteins reveals β1 and β4 integrin mediate YAP translocation independently of cell spreading. Sci Rep. 9:171882019. View Article : Google Scholar : PubMed/NCBI

92 

Lecker SH, Goldberg AL and Mitch WE: Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 17:1807–1819. 2006. View Article : Google Scholar : PubMed/NCBI

93 

Bao W, Thullberg M, Zhang H, Onischenko A and Strömblad S: Cell attachment to the extracellular matrix induces proteasomal degradation of p21(CIP1) via Cdc42/Rac1 signaling. Mol Cell Biol. 22:4587–4597. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Sasada M, Iyoda T, Asayama T, Suenaga Y, Sakai S, Kase N, Kodama H, Yokoi S, Isohama Y and Fukai F: Inactivation of beta1 integrin induces proteasomal degradation of Myc oncoproteins. Oncotarget. 10:4960–4972. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA and Fearon DT: Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 330:827–830. 2010. View Article : Google Scholar : PubMed/NCBI

96 

Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, et al: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 25:719–734. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Legler DF, Johnson-Léger C, Wiedle G, Bron C and Imhof BA: The alpha v beta 3 integrin as a tumor homing ligand for lymphocytes. Eur J Immunol. 34:1608–1616. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Larochelle C, Uphaus T, Broux B, Gowing E, Paterka M, Michel L, Dudvarski Stankovic N, Bicker F, Lemaître F, Prat A, et al: EGFL7 reduces CNS inflammation in mouse. Nature Commun. 9:8192018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Caron JM, Han X, Lary CW, Sathyanarayana P, Remick SC, Ernstoff MS, Herlyn M and Brooks PC: Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncol Rep 49: 44, 2023.
APA
Caron, J.M., Han, X., Lary, C.W., Sathyanarayana, P., Remick, S.C., Ernstoff, M.S. ... Brooks, P.C. (2023). Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncology Reports, 49, 44. https://doi.org/10.3892/or.2023.8481
MLA
Caron, J. M., Han, X., Lary, C. W., Sathyanarayana, P., Remick, S. C., Ernstoff, M. S., Herlyn, M., Brooks, P. C."Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth". Oncology Reports 49.2 (2023): 44.
Chicago
Caron, J. M., Han, X., Lary, C. W., Sathyanarayana, P., Remick, S. C., Ernstoff, M. S., Herlyn, M., Brooks, P. C."Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth". Oncology Reports 49, no. 2 (2023): 44. https://doi.org/10.3892/or.2023.8481
Copy and paste a formatted citation
x
Spandidos Publications style
Caron JM, Han X, Lary CW, Sathyanarayana P, Remick SC, Ernstoff MS, Herlyn M and Brooks PC: Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncol Rep 49: 44, 2023.
APA
Caron, J.M., Han, X., Lary, C.W., Sathyanarayana, P., Remick, S.C., Ernstoff, M.S. ... Brooks, P.C. (2023). Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncology Reports, 49, 44. https://doi.org/10.3892/or.2023.8481
MLA
Caron, J. M., Han, X., Lary, C. W., Sathyanarayana, P., Remick, S. C., Ernstoff, M. S., Herlyn, M., Brooks, P. C."Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth". Oncology Reports 49.2 (2023): 44.
Chicago
Caron, J. M., Han, X., Lary, C. W., Sathyanarayana, P., Remick, S. C., Ernstoff, M. S., Herlyn, M., Brooks, P. C."Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth". Oncology Reports 49, no. 2 (2023): 44. https://doi.org/10.3892/or.2023.8481
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team