
Immunotherapy: A new target for cancer cure (Review)
- Authors:
- Fuqian Zhao
- Daofu Shen
- Mingquan Shang
- Hao Yu
- Xiaoxue Zuo
- Lixin Chen
- Zhijin Huang
- Lianxing Li
- Lei Wang
-
Affiliations: Medical Laboratory Center, Chifeng Municipal Hospital/Chifeng Clinical College, Inner Mongolia Medical University, Chifeng 024000, P.R. China, Medical Laboratory Center, Songshan Hospital, Chifeng 024000, P.R. China, Medical Laboratory Center, Ningcheng County Central Hospital, Ningcheng 0242004, P.R. China, Department of Teaching and Research, Chifeng Municipal Hospital/Chifeng Clinical College, Inner Mongolia Medical University, Chifeng 024000, P.R. China - Published online on: March 28, 2023 https://doi.org/10.3892/or.2023.8537
- Article Number: 100
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Lin L, Li Z, Yan L, Liu Y, Yang H and Li H: Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990–2019. J Hematol Oncol. 14:1972021. View Article : Google Scholar : PubMed/NCBI | |
Feng RM, Zong YN, Cao SM and Xu RH: Current cancer situation in China: Good or bad news from the 2018 global cancer statistics? Cancer Commun (Lond). 39:222019. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Liu H, Robins E, Song W, Liu D, Li Z and Zheng L: Next-generation immuno-oncology agents: Current momentum shifts in cancer immunotherapy. J Hematol Oncol. 13:292020. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Jiang L, Wen T, Guo X, Shao X, Qu H, Chen X, Song Y, Wang F, Qu X and Li Z: Trends in the research into immune checkpoint blockade by anti-PD1/PDL1 antibodies in cancer immunotherapy: A bibliometric study. Front Pharmacol. 12:6709002021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Du X, Liu M, Tang F, Zhang P, Ai C, Fields JK, Sundberg EJ, Latinovic OS, Devenport M, et al: Hijacking antibody-induced CTLA-4 lysosomal degradation for safer and more effective cancer immunotherapy. Cell Res. 9:609–627. 2019. View Article : Google Scholar | |
Smith KM and Desai J: Nivolumab for the treatment of colorectal cancer. Expert Rev Anticancer Ther. 18:611–618. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez H, Hagerling C and Werb Z: Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 32:1267–1284. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ribatti D: The concept of immune surveillance against tumors. The first theories. Oncotarget. 8:7175–7180. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dunn GP, Bruce AT, Ikeda H, Old LJ and Schreiber RD: Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 3:991–998. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mittal D, Gubin MM, Schreiber RD and Smyth MJ: New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol. 27:16–25. 2014. View Article : Google Scholar : PubMed/NCBI | |
Finn OJ: Human tumor antigens yesterday, today, and tomorrow. Cancer Immunol Res. 5:347–354. 2017. View Article : Google Scholar : PubMed/NCBI | |
Verginelli F, Pisacane A, Gambardella G, D'Ambrosio A, Candiello E, Ferrio M, Panero M, Casorzo L, Benvenuti S, Cascardi E, et al: Cancer of unknown primary stem-like cells model multi-organ metastasis and unveil liability to MEK inhibition. Nat Commun. 12:24982021. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Yang W, Zhou Z, Tian R, Lin L, Ma Y, Song J and Chen X: Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nat Commun. 11:49512020. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Kumar A, Das JK, Peng HY, Wang L, Balllard D, Xiong X, Ren X, Zhang Y, Yang JM and Song J: Tumorous expression of NAC1 restrains antitumor immunity through the LDHA-mediated immune evasion. J Immunother Cancer. 10:e0048562022. View Article : Google Scholar : PubMed/NCBI | |
Bazett M, Costa AM, Bosiljcic M, Anderson RM, Alexander MP, Wong SWY, Dhanji S, Chen JM, Pankovich J, Lam S, et al: Harnessing innate lung anti-cancer effector functions with a novel bacterial-derived immunotherapy. Oncoimmunology. 7:e13988752017. View Article : Google Scholar : PubMed/NCBI | |
Rosewell Shaw A, Porter C, Biegert G, Jatta L and Suzuki M: HydrAd: A helper-dependent adenovirus targeting multiple immune pathways for cancer immunotherapy. Cancers (Basel). 14:27692022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O'Brien SA, He Y, Wang L, Zhang Q, Kim A, et al: Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 181:442–459.e29. 2020. View Article : Google Scholar : PubMed/NCBI | |
Krausgruber T, Fortelny N, Fife-Gernedl V, Senekowitsch M, Schuster LC, Lercher A, Nemc A, Schmidl C, Rendeiro AF, Bergthaler A and Bock C: Structural cells are key regulators of organ-specific immune responses. Nature. 583:296–302. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmad HI, Jabbar A, Mushtaq N, Javed Z, Hayyat MU, Bashir J, Naseeb I, Abideen ZU, Ahmad N and Chen J: Immune tolerance vs immune resistance: The interaction between host and pathogens in infectious diseases. Front Vet Sci. 9:8274072022. View Article : Google Scholar : PubMed/NCBI | |
Bettcher BM, Tansey MG, Dorothée G and Heneka MT: Peripheral and central immune system crosstalk in Alzheimer disease-a research prospectus. Nat Rev Neurol. 17:689–701. 2021. View Article : Google Scholar : PubMed/NCBI | |
Morsink MAJ, Willemen NGA, Leijten J, Bansal R and Shin SR: Immune organs and immune cells on a chip: An overview of biomedical applications. Micromachines (Basel). 11:8492020. View Article : Google Scholar : PubMed/NCBI | |
Benci JL, Johnson LR, Choa R, Xu Y, Qiu J, Zhou Z, Xu B, Ye D, Nathanson KL, June CH, et al: Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell. 178:933–948.e14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gangopadhyay K, Roy S, Sen Gupta S, Chandradasan AC, Chowdhury S and Das R: Regulating the discriminatory response to antigen by T-cell receptor. Biosci Rep. 42:BSR202120122022. View Article : Google Scholar : PubMed/NCBI | |
Druszczyńska M, Godkowicz M, Kulesza J, Wawrocki S and Fol M: Cytokine receptors-regulators of antimycobacterial immune response. Int J Mol Sci. 23:11122022. View Article : Google Scholar : PubMed/NCBI | |
Šket T, Ramuta TŽ, Starčič Erjavec M and Kreft ME: The role of innate immune system in the human amniotic membrane and human amniotic fluid in protection against intra-amniotic infections and inflammation. Front Immunol. 12:7353242021. View Article : Google Scholar : PubMed/NCBI | |
He L, Valignat MP, Zhang L, Gelard L, Zhang F, Le Guen V, Audebert S, Camoin L, Fossum E, Bogen B, et al: ARHGAP45 controls naïve T- and B-cell entry into lymph nodes and T-cell progenitor thymus seeding. EMBO Rep. 22:e521962021. View Article : Google Scholar : PubMed/NCBI | |
Yiwen Z, Shilin G, Yingshi C, Lishi S, Baohong L, Chao L, Linghua L, Ting P and Hui Z: Efficient generation of antigen-specific CTLs by the BAFF-activated human B Lymphocytes as APCs: A novel approach for immunotherapy. Oncotarget. 7:77732–77748. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nicholson LB: The immune system. Essays Biochem. 60:275–301. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vila-Leahey A, MacKay A, Portales-Cervantes L, Weir GM, Merkx-Jacques A and Stanford MM: Generation of highly activated, antigen-specific tumor-infiltrating CD8+ T cells induced by a novel T cell-targeted immunotherapy. Oncoimmunology. 9:17825742020. View Article : Google Scholar : PubMed/NCBI | |
Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R and Neubauer HA: The diverse roles of γδ T cells in cancer: From rapid immunity to aggressive lymphoma. Cancers (Basel). 13:62122021. View Article : Google Scholar : PubMed/NCBI | |
Leko V and Rosenberg SA: Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell. 38:454–472. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Fu M, Wang M, Wan D, Wei Y and Wei X: Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J Hematol Oncol. 15:282022. View Article : Google Scholar : PubMed/NCBI | |
Liu YT and Sun ZJ: Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 11:5365–5386. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tanimine N, Ohira M, Tahara H, Ide K, Tanaka Y, Onoe T and Ohdan H: Strategies for deliberate induction of immune tolerance in liver transplantation: From preclinical models to clinical application. Front Immunol. 11:16152020. View Article : Google Scholar : PubMed/NCBI | |
Hargadon KM: Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clin Transl Med. 10:374–411. 2020. View Article : Google Scholar : PubMed/NCBI | |
Elizondo DM, Andargie TE, Kubhar DS, Gugssa A and Lipscomb MW: CD40-CD40L cross-talk drives fascin expression in dendritic cells for efficient antigen presentation to CD4+ T cells. Int Immunol. 29:121–131. 2017. View Article : Google Scholar : PubMed/NCBI | |
Morris DL, Oatmen KE, Mergian TA, Cho KW, DelProposto JL, Singer K, Evans-Molina C, O'Rourke RW and Lumeng CN: CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity. J Leukoc Biol. 99:1107–1119. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Slone N, Chrisikos TT, Kyrysyuk O, Babcock RL, Medik YB, Li HS, Kleinerman ES and Watowich SS: Vaccine efficacy against primary and metastatic cancer with in vitro-generated CD103+ conventional dendritic cells. J Immunother Cancer. 8:e0004742020. View Article : Google Scholar : PubMed/NCBI | |
Krishnaswamy JK, Gowthaman U, Zhang B, Mattsson J, Szeponik L, Liu D, Wu R, White T, Calabro S, Xu L, et al: Migratory CD11b+ conventional dendritic cells induce T follicular helper cell-dependent antibody responses. Sci Immunol. 2:eaam91692017. View Article : Google Scholar : PubMed/NCBI | |
Roselli E, Araya P, Núñez NG, Gatti G, Graziano F, Sedlik C, Benaroch P, Piaggio E and Maccioni M: TLR3 activation of intratumoral CD103+ dendritic cells modifies the tumor infiltrate conferring anti-tumor immunity. Front Immunol. 10:5032019. View Article : Google Scholar : PubMed/NCBI | |
Koh YC, Yang G, Lai CS, Weerawatanakorn M and Pan MH: Chemopreventive effects of phytochemicals and medicines on M1/M2 polarized macrophage role in inflammation-related diseases. Int J Mol Sci. 19:22082018. View Article : Google Scholar : PubMed/NCBI | |
Castro F, Cardoso AP, Gonçalves RM, Serre K and Oliveira MJ: Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol. 9:8472018. View Article : Google Scholar : PubMed/NCBI | |
Song X, Traub B, Shi J and Kornmann M: Possible roles of interleukin-4 and −13 and their receptors in gastric and colon cancer. Int J Mol Sci. 22:7272021. View Article : Google Scholar : PubMed/NCBI | |
Babazadeh S, Nassiri SM, Siavashi V, Sahlabadi M, Hajinasrollah M and Zamani-Ahmadmahmudi M: Macrophage polarization by MSC-derived CXCL12 determines tumor growth. Cell Mol Biol Lett. 26:302021. View Article : Google Scholar : PubMed/NCBI | |
Oshi M, Tokumaru Y, Asaoka M, Yan L, Satyananda V, Matsuyama R, Matsuhashi N, Futamura M, Ishikawa T, Yoshida K, et al: M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Sci Rep. 10:165542020. View Article : Google Scholar : PubMed/NCBI | |
He M, Wang Y, Zhang G, Cao K, Yang M and Liu H: The prognostic significance of tumor-infiltrating lymphocytes in cervical cancer. J Gynecol Oncol. 32:e322021. View Article : Google Scholar : PubMed/NCBI | |
Xu A, Zhang L, Yuan J, Babikr F, Freywald A, Chibbar R, Moser M, Zhang W, Zhang B, Fu Z and Xiang J: TLR9 agonist enhances radiofrequency ablation-induced CTL responses, leading to the potent inhibition of primary tumor growth and lung metastasis. Cell Mol Immunol. 16:820–832. 2019. View Article : Google Scholar : PubMed/NCBI | |
Crawshaw A, Kendrick YR, McMichael AJ and Ho LP: Abnormalities in iNKT cells are associated with impaired ability of monocytes to produce IL-10 and suppress T-cell proliferation in sarcoidosis. Eur J Immunol. 44:2165–2174. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang YL, Gong Y, Lv Z, Li L and Yuan Y: Expression of PD1/PDL1 in gastric cancer at different microsatellite status and its correlation with infiltrating immune cells in the tumor microenvironment. J Cancer. 12:1698–1707. 2021. View Article : Google Scholar : PubMed/NCBI | |
Weigelin B, Bolaños E, Teijeira A, Martinez-Forero I, Labiano S, Azpilikueta A, Morales-Kastresana A, Quetglas JI, Wagena E, Sánchez-Paulete AR, et al: Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc Natl Acad Sci USA. 112:7551–7556. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baik AH, Tsai KK, Oh DY and Aras MA: Mechanisms and clinical manifestations of cardiovascular toxicities associated with immune checkpoint inhibitors. Clin Sci (Lond). 135:703–724. 2021. View Article : Google Scholar : PubMed/NCBI | |
Turula H, Bragazzi Cunha J, Mainou BA, Ramakrishnan SK, Wilke CA, Gonzalez-Hernandez MB, Pry A, Fava J, Bassis CM, Edelman J, et al: Natural secretory immunoglobulins promote enteric viral infections. J Virol. 92:e00826–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich P: Address in pathology, on chemiotherapy: Delivered before the seventeenth international congress of medicine. Br Med J. 2:353–359. 1913. View Article : Google Scholar : PubMed/NCBI | |
He Q, Liu Z, Liu Z, Lai Y, Zhou X and Weng J: TCR-like antibodies in cancer immunotherapy. J Hematol Oncol. 12:992019. View Article : Google Scholar : PubMed/NCBI | |
Byeon HK, Ku M and Yang J: Beyond EGFR inhibition: Multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med. 51:1–14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Santoro V, Jia R, Thompson H, Nijhuis A, Jeffery R, Kiakos K, Silver AR, Hartley JA and Hochhauser D: Role of reactive oxygen species in the abrogation of oxaliplatin activity by cetuximab in colorectal cancer. J Natl Cancer Inst. 108:djv3942015. View Article : Google Scholar : PubMed/NCBI | |
Chen KF, Chen HL, Shiau CW, Liu CY, Chu PY, Tai WT, Ichikawa K, Chen PJ and Cheng AL: Sorafenib and its derivative SC-49 sensitize hepatocellular carcinoma cells to CS-1008, a humanized anti-TNFRSF10B (DR5) antibody. Br J Pharmacol. 168:658–672. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fenwarth L, Fournier E, Cheok M, Boyer T, Gonzales F, Castaigne S, Boissel N, Lambert J, Dombret H, Preudhomme C and Duployez N: Biomarkers of gemtuzumab ozogamicin response for acute myeloid leukemia treatment. Int J Mol Sci. 21:56262020. View Article : Google Scholar : PubMed/NCBI | |
Boyer-Suavet S, Andreani M, Lateb M, Savenkoff B, Brglez V, Benzaken S, Bernard G, Nachman PH, Esnault V and Seitz-Polski B: Neutralizing anti-rituximab antibodies and relapse in membranous nephropathy treated with rituximab. Front Immunol. 10:30692020. View Article : Google Scholar : PubMed/NCBI | |
Strohl WR and Naso M: Bispecific T-Cell redirection versus chimeric antigen receptor (CAR)-T cells as approaches to kill cancer cells. Antibodies (Basel). 8:412019. View Article : Google Scholar : PubMed/NCBI | |
Huo Y, Sheng Z, Lu DR, Ellwanger DC, Li CM, Homann O, Wang S, Yin H and Ren R: Blinatumomab-induced T cell activation at single cell transcriptome resolution. BMC Genomics. 22:1452021. View Article : Google Scholar : PubMed/NCBI | |
Davis SK, Selva KJ, Kent SJ and Chung AW: Serum IgA Fc effector functions in infectious disease and cancer. Immunol Cell Biol. 98:276–286. 2020. View Article : Google Scholar : PubMed/NCBI | |
Brandsma AM, Bondza S, Evers M, Koutstaal R, Nederend M, Jansen JHM, Rösner T, Valerius T, Leusen JHW and Ten Broeke T: Potent Fc receptor signaling by IgA leads to superior killing of cancer cells by neutrophils compared to IgG. Front Immunol. 10:7042019. View Article : Google Scholar : PubMed/NCBI | |
Leoh LS, Daniels-Wells TR and Penichet ML: IgE immunotherapy against cancer. Curr Top Microbiol Immunol. 388:109–149. 2015.PubMed/NCBI | |
Chauhan J, McCraw AJ, Nakamura M, Osborn G, Sow HS, Cox VF, Stavraka C, Josephs DH, Spicer JF, Karagiannis SN and Bax HJ: IgE antibodies against cancer: Efficacy and safety. Antibodies (Basel). 9:552020. View Article : Google Scholar : PubMed/NCBI | |
El-Kadiry AE, Rafei M and Shammaa R: Cell therapy: Types, regulation, and clinical benefits. Front Med (Lausanne). 8:7560292021. View Article : Google Scholar : PubMed/NCBI | |
Mora Román JJ, Del Campo M, Villar J, Paolini F, Curzio G, Venuti A, Jara L, Ferreira J, Murgas P, Lladser A, et al: Immunotherapeutic potential of mollusk hemocyanins in combination with human vaccine adjuvants in murine models of oral cancer. J Immunol Res. 2019:70769422019. View Article : Google Scholar : PubMed/NCBI | |
Kurosawa S, Mizuno S, Arai Y, Masuko M, Kanda J, Kohno K, Onai D, Fukuda T, Ozawa Y, Katayama Y, et al: Syngeneic hematopoietic stem cell transplantation for acute myeloid leukemia: A propensity score-matched analysis. Blood Cancer J. 11:1592021. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Wang H, Liu C, Cheng A, Deng Q, Zhu H and Chen J: Dendritic cells: Versatile players in renal transplantation. Front Immunol. 12:6545402021. View Article : Google Scholar : PubMed/NCBI | |
Markov O, Oshchepkova A and Mironova N: Immunotherapy based on dendritic cell-targeted/-derived extracellular vesicles-A novel strategy for enhancement of the anti-tumor immune response. Front Pharmacol. 10:11522019. View Article : Google Scholar : PubMed/NCBI | |
Blando J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS, Kim J, Sepulveda AM, Sharp M, Maitra A, et al: Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc Natl Acad Sci USA. 116:1692–1697. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cui X and Snapper CM: Epstein barr virus: Development of vaccines and immune cell therapy for EBV-associated diseases. Front Immunol. 12:7344712021. View Article : Google Scholar : PubMed/NCBI | |
Luo XH, Meng Q, Rao M, Liu Z, Paraschoudi G, Dodoo E and Maeurer M: The impact of inflationary cytomegalovirus-specific memory T cells on anti-tumour immune responses in patients with cancer. Immunology. 155:294–308. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pesch T, Bonati L, Kelton W, Parola C, Ehling RA, Csepregi L, Kitamura D and Reddy ST: Molecular design, optimization, and genomic integration of chimeric B cell receptors in murine B cells. Front Immunol. 10:26302019. View Article : Google Scholar : PubMed/NCBI | |
Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S and Kobold S: Limitations in the design of chimeric antigen receptors for cancer therapy. Cells. 8:4722019. View Article : Google Scholar : PubMed/NCBI | |
Kasala D, Yoon AR, Hong J, Kim SW and Yun CO: Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond). 11:1689–1713. 2016. View Article : Google Scholar : PubMed/NCBI | |
Muliaditan T, Halim L, Whilding LM, Draper B, Achkova DY, Kausar F, Glover M, Bechman N, Arulappu A, Sanchez J, et al: Synergistic T cell signaling by 41BB and CD28 is optimally achieved by membrane proximal positioning within parallel chimeric antigen receptors. Cell Rep Med. 2:1004572021. View Article : Google Scholar : PubMed/NCBI | |
Verheye E, Bravo Melgar J, Deschoemaeker S, Raes G, Maes A, De Bruyne E, Menu E, Vanderkerken K, Laoui D and De Veirman K: Dendritic cell-based immunotherapy in multiple myeloma: Challenges, opportunities, and future directions. Int J Mol Sci. 23:9042022. View Article : Google Scholar : PubMed/NCBI | |
Steinman RM and Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 137:1142–1162. 1973. View Article : Google Scholar : PubMed/NCBI | |
Steinman RM and Banchereau J: Taking dendritic cells into medicine. Nature. 449:419–426. 2007. View Article : Google Scholar : PubMed/NCBI | |
Handy CE and Antonarakis ES: Sipuleucel-T for the treatment of prostate cancer: Novel insights and future directions. Future Oncol. 14:907–917. 2018. View Article : Google Scholar : PubMed/NCBI | |
Artyomov MN, Munk A, Gorvel L, Korenfeld D, Cella M, Tung T and Klechevsky E: Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells. J Exp Med. 212:743–757. 2015. View Article : Google Scholar : PubMed/NCBI | |
Barbosa CRR, Barton J, Shepherd AJ and Mishto M: Mechanistic diversity in MHC class I antigen recognition. Biochem J. 478:4187–4202. 2021. View Article : Google Scholar : PubMed/NCBI | |
Oh DS and Lee HK: Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy. 15:2091–2106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rühle PF, Fietkau R, Gaipl US and Frey B: Development of a modular assay for detailed immunophenotyping of peripheral human whole blood samples by multicolor flow cytometry. Int J Mol Sci. 17:13162016. View Article : Google Scholar : PubMed/NCBI | |
Mengos AE, Gastineau DA and Gustafson MP: The CD14+HLA-DRlo/neg monocyte: An immunosuppressive phenotype that restrains responses to cancer immunotherapy. Front Immunol. 10:11472019. View Article : Google Scholar : PubMed/NCBI | |
Trujillo-Ocampo A, Cho HW, Clowers M, Pareek S, Ruiz-Vazquez W, Lee SE and Im JS: IL-7 during antigenic stimulation using allogeneic dendritic cells promotes expansion of CD45RA−CD62L+CD4+ invariant NKT cells with Th-2 biased cytokine production profile. Front Immunol. 11:5674062020. View Article : Google Scholar : PubMed/NCBI | |
Mylonas KJ, Anderson J, Sheldrake TA, Hesketh EE, Richards JA, Ferenbach DA, Kluth DC, Savill J and Hughes J: Granulocyte macrophage-colony stimulating factor: A key modulator of renal mononuclear phagocyte plasticity. Immunobiology. 224:60–74. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shklovskaya E and Rizos H: MHC class I deficiency in solid tumors and therapeutic strategies to overcome it. Int J Mol Sci. 22:67412021. View Article : Google Scholar : PubMed/NCBI | |
Pardi N, Hogan MJ, Porter FW and Weissman D: mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 17:261–279. 2018. View Article : Google Scholar : PubMed/NCBI | |
Coughlan L, Kremer EJ and Shayakhmetov DM: Adenovirus-based vaccines-a platform for pandemic preparedness against emerging viral pathogens. Mol Ther. 30:1822–1849. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo J, De May H, Franco S, Noureddine A, Tang L, Brinker CJ, Kusewitt DF, Adams SF and Serda RE: Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns. Nat Biomed Eng. 6:19–31. 2022. View Article : Google Scholar : PubMed/NCBI | |
Subtil B, Cambi A, Tauriello DVF and de Vries IJM: The therapeutic potential of tackling tumor-induced dendritic cell dysfunction in colorectal cancer. Front Immunol. 12:7248832021. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Sang M, Liu Q, Fan X, Zhang X and Shan B: The expression and clinical significance of melanoma-associated antigen-A1, -A3 and -A11 in glioma. Oncol Lett. 6:55–62. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gopanenko AV, Kosobokova EN and Kosorukov VS: Main strategies for the identification of neoantigens. Cancers (Basel). 12:28792020. View Article : Google Scholar : PubMed/NCBI | |
Tomić S, Petrović A, Puač N, Škoro N, Bekić M, Petrović ZL and Čolić M: Plasma-activated medium potentiates the immunogenicity of tumor cell lysates for dendritic cell-based cancer vaccines. Cancers (Basel). 13:16262021. View Article : Google Scholar : PubMed/NCBI | |
Polyzoidis S and Ashkan K: DCVax®-L-developed by northwest biotherapeutics. Hum Vaccin Immunother. 10:3139–3145. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mott KR, Allen SJ, Zandian M, Akbari O, Hamrah P, Maazi H, Wechsler SL, Sharpe AH, Freeman GJ and Ghiasi H: Inclusion of CD80 in HSV targets the recombinant virus to PD-L1 on DCs and allows productive infection and robust immune responses. PLoS One. 9:e876172014. View Article : Google Scholar : PubMed/NCBI | |
Stewart MP, Langer R and Jensen KF: Intracellular delivery by membrane disruption: Mechanisms, strategies, and concepts. Chem Rev. 118:7409–7531. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Jibril AH, Peeters BPH and Omar AR: Exploring the prospects of engineered Newcastle disease virus in modern vaccinology. Viruses. 12:4512020. View Article : Google Scholar : PubMed/NCBI | |
Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M and Benichou S: Virus-mediated cell-cell fusion. Int J Mol Sci. 21:96442020. View Article : Google Scholar : PubMed/NCBI | |
Russell CJ and Hurwitz JL: Sendai virus-vectored vaccines that express envelope glycoproteins of respiratory viruses. Viruses. 13:10232021. View Article : Google Scholar : PubMed/NCBI | |
Huang TX, Tan XY, Huang HS, Li YT, Liu BL, Liu KS, Chen X, Chen Z, Guan XY, Zou C and Fu L: Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut. 71:333–344. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Li W, Yang X, Zhang W, Li M, Zhang H, Qin C, Chen X and Gao R: Inhibition of host Ogr1 enhances effector CD8+ T-cell function by modulating acidic microenvironment. Cancer Gene Ther. 28:1213–1224. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U and Lopez-Gonzalez JS: The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol (Lausanne). 13:9295722022. View Article : Google Scholar : PubMed/NCBI | |
Mizui M: Natural and modified IL-2 for the treatment of cancer and autoimmune diseases. Clin Immunol. 206:63–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Glassman CR, Mathiharan YK, Jude KM, Su L, Panova O, Lupardus PJ, Spangler JB, Ely LK, Thomas C, Skiniotis G and Garcia KC: Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell. 184:983–999.e24. 2021. View Article : Google Scholar : PubMed/NCBI | |
Takeda K, Nakayama M, Hayakawa Y, Kojima Y, Ikeda H, Imai N, Ogasawara K, Okumura K, Thomas DM and Smyth MJ: IFN-γ is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat Commun. 8:146072017. View Article : Google Scholar : PubMed/NCBI | |
Duncan TJ, Rolland P, Deen S, Scott IV, Liu DT, Spendlove I and Durrant LG: Loss of IFN gamma receptor is an independent prognostic factor in ovarian cancer. Clin Cancer Res. 13:4139–4145. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ravaud A, Négrier S, Cany L, Merrouche Y, Le Guillou M, Blay JY, Clavel M, Gaston R, Oskam R and Philip T: Subcutaneous low-dose recombinant interleukin 2 and alpha-interferon in patients with metastatic renal cell carcinoma. Br J Cancer. 69:1111–1114. 1994. View Article : Google Scholar : PubMed/NCBI | |
Weinreich DM and Rosenberg SA: Response rates of patients with metastatic melanoma to high-dose intravenous interleukin-2 after prior exposure to alpha-interferon or low-dose interleukin-2. J Immunother. 25:185–187. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wu YN, Zhang L, Chen T, Li X, He LH and Liu GX: Granulocyte-macrophage colony-stimulating factor protects mice against hepatocellular carcinoma by ameliorating intestinal dysbiosis and attenuating inflammation. World J Gastroenterol. 26:5420–5436. 2020. View Article : Google Scholar : PubMed/NCBI | |
Goyal G, Wong K, Nirschl CJ, Souders N, Neuberg D, Anandasabapathy N and Dranoff G: PPARγ contributes to immunity induced by cancer cell vaccines that secrete GM-CSF. Cancer Immunol Res. 6:723–732. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang SR, Nold MF, Tang SC, Bui CB, Nold CA, Arumugam TV, Drummond GR, Sobey CG and Kim HA: IL-37 increases in patients after ischemic stroke and protects from inflammatory brain injury, motor impairment and lung infection in mice. Sci Rep. 9:69222019. View Article : Google Scholar : PubMed/NCBI | |
Jones DS II, Nardozzi JD, Sackton KL, Ahmad G, Christensen E, Ringgaard L, Chang DK, Jaehger DE, Konakondla JV, Wiinberg M, et al: Cell surface-tethered IL-12 repolarizes the tumor immune microenvironment to enhance the efficacy of adoptive T cell therapy. Sci Adv. 8:eabi80752022. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki T, Maiti M, Hennessy M, Chang T, Kuo P, Addepalli M, Obalapur P, Sheibani S, Wilczek J, Pena R, et al: NKTR-255, a novel polymer-conjugated rhIL-15 with potent antitumor efficacy. J Immunother Cancer. 9:e0020242021. View Article : Google Scholar : PubMed/NCBI | |
Hamilton JA: GM-CSF in inflammation. J Exp Med. 217:e201909452020. View Article : Google Scholar : PubMed/NCBI | |
Kumar V: Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol. 89:1070872020. View Article : Google Scholar : PubMed/NCBI | |
Mercogliano MF, Bruni S, Mauro F, Elizalde PV and Schillaci R: Harnessing Tumor necrosis factor alpha to achieve effective cancer immunotherapy. Cancers (Basel). 13:5642021. View Article : Google Scholar : PubMed/NCBI | |
Wang TT, Zhao YL, Peng LS, Chen N, Chen W, Lv YP, Mao FY, Zhang JY, Cheng P, Teng YS, et al: Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut. 66:1900–1911. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bi E, Ma X, Lu Y, Yang M, Wang Q, Xue G, Qian J, Wang S and Yi Q: Foxo1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of TH9 cells programmed by IL-7. Sci Signal. 10:eaak97412017. View Article : Google Scholar : PubMed/NCBI | |
Alizadeh D, Wong RA, Yang X, Wang D, Pecoraro JR, Kuo CF, Aguilar B, Qi Y, Ann DK, Starr R, et al: IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res. 7:759–772. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu HJ, Liang X, Li HL, Du CM, Hao JL, Wang HY, Gu JF, Ni AM, Sun LY, Xiao J, et al: The armed oncolytic adenovirus ZD55-IL-24 eradicates melanoma by turning the tumor cells from the self-state into the nonself-state besides direct killing. Cell Death Dis. 11:10222020. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Park A, Kim S, Jung IH and Byun JH: An immune therapy model for effective treatment on inflammatory bowel disease. PLoS One. 15:e02389182020. View Article : Google Scholar : PubMed/NCBI | |
Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E and Melero I: Cytokines in clinical cancer immunotherapy. Br J Cancer. 120:6–15. 2019. View Article : Google Scholar : PubMed/NCBI | |
Waldmann TA: Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 10:a0284722018. View Article : Google Scholar : PubMed/NCBI | |
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA and Kobold S: Interleukins in cancer: From biology to therapy. Nat Rev Cancer. 21:481–499. 2021. View Article : Google Scholar : PubMed/NCBI | |
Riley P, Glenny AM, Worthington HV, Littlewood A, Fernandez Mauleffinch LM, Clarkson JE and McCabe MG: Interventions for preventing oral mucositis in patients with cancer receiving treatment: Cytokines and growth factors. Cochrane Database Syst Rev. 11:CD0119902017.PubMed/NCBI | |
Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI and Morales-Montor J: The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res. 35:1–16. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hosokawa H and Rothenberg EV: Cytokines, transcription factors, and the initiation of T-cell development. Cold Spring Harb Perspect Biol. 10:a0286212018. View Article : Google Scholar : PubMed/NCBI | |
Dayakar A, Chandrasekaran S, Kuchipudi SV and Kalangi SK: Cytokines: Key determinants of resistance or disease progression in visceral leishmaniasis: Opportunities for novel diagnostics and immunotherapy. Front Immunol. 10:6702019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wong K, Ouyang W and Rutz S: Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect Biol. 11:a0285482019. View Article : Google Scholar : PubMed/NCBI | |
Ali MF, Driscoll CB, Walters PR, Limper AH and Carmona EM: β-Glucan-activated human B lymphocytes participate in innate immune responses by releasing proinflammatory cytokines and stimulating neutrophil chemotaxis. J Immunol. 195:5318–5326. 2015. View Article : Google Scholar : PubMed/NCBI | |
Trottein F and Paget C: Natural killer T cells and mucosal-associated invariant T cells in lung infections. Front Immunol. 9:17502018. View Article : Google Scholar : PubMed/NCBI | |
Isaeva OI, Sharonov GV, Serebrovskaya EO, Turchaninova MA, Zaretsky AR, Shugay M and Chudakov DM: Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. J Immunother Cancer. 7:2792019. View Article : Google Scholar : PubMed/NCBI | |
Fajgenbaum DC and June CH: Cytokine storm. N Engl J Med. 383:2255–2273. 2020. View Article : Google Scholar : PubMed/NCBI | |
Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG and Calfee CS: Acute respiratory distress syndrome. Nat Rev Dis Primers. 5:182019. View Article : Google Scholar : PubMed/NCBI | |
Eskilsson A, Shionoya K, Engblom D and Blomqvist A: Fever during localized inflammation in mice is elicited by a humoral pathway and depends on brain endothelial interleukin-1 and interleukin-6 signaling and central EP3 receptors. J Neurosci. 41:5206–5218. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kang S and Kishimoto T: Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med. 53:1116–1123. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, Zhao HY, Chen DK and Ma WT: Pathogenesis and treatment of cytokine storm induced by infectious diseases. Int J Mol Sci. 22:130092021. View Article : Google Scholar : PubMed/NCBI | |
Hemminki O, Dos Santos JM and Hemminki A: Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 13:842020. View Article : Google Scholar : PubMed/NCBI | |
Kaufman HL, Kohlhapp FJ and Zloza A: Oncolytic viruses: A new class of immunotherapy drugs. Nat Rev Drug Discov. 14:642–646. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rahman MM and McFadden G: Oncolytic viruses: Newest frontier for cancer immunotherapy. Cancers (Basel). 13:54522021. View Article : Google Scholar : PubMed/NCBI | |
Innao V, Rizzo V, Allegra AG, Musolino C and Allegra A: Oncolytic viruses and hematological malignancies: A new class of immunotherapy drugs. Curr Oncol. 28:159–183. 2020. View Article : Google Scholar : PubMed/NCBI | |
Heidbuechel JPW and Engeland CE: Oncolytic viruses encoding bispecific T cell engagers: A blueprint for emerging immunovirotherapies. J Hematol Oncol. 14:632021. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Liu F, Zhao M and Zhang J: Antitumor efficacy of oncolytic herpes virus type 1 armed with GM-CSF in murine uveal melanoma xenografts. Cancer Manag Res. 12:11803–11812. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lühl NC, Zirngibl F, Dorneburg C, Wei J, Dahlhaus M, Barth TF, Meyer LH, Queudeville M, Eckhoff S, Debatin KM and Beltinger C: Attenuated measles virus controls pediatric acute B-lineage lymphoblastic leukemia in NOD/SCID mice. Haematologica. 99:1050–1061. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ammayappan A, Russell SJ and Federspiel MJ: Recombinant mumps virus as a cancer therapeutic agent. Mol Ther Oncolytics. 3:160192016. View Article : Google Scholar : PubMed/NCBI | |
Bommareddy PK, Patel A, Hossain S and Kaufman HL: Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol. 18:1–15. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Cui Y, Guan X and Jiang X: A recombinant human adenovirus type 5 (H101) combined with chemotherapy for advanced gastric carcinoma: A retrospective cohort study. Front Oncol. 11:7525042021. View Article : Google Scholar : PubMed/NCBI | |
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, et al: Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol. 13:10827972022. View Article : Google Scholar : PubMed/NCBI | |
Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A and Akbari M: Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; combination of oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int. 22:1682022. View Article : Google Scholar : PubMed/NCBI | |
Ajina A and Maher J: Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer. 5:902017. View Article : Google Scholar : PubMed/NCBI | |
Spiesschaert B, Angerer K, Park J and Wollmann G: Combining oncolytic viruses and small molecule therapeutics: Mutual benefits. Cancers (Basel). 13:33862021. View Article : Google Scholar : PubMed/NCBI | |
Schirrmacher V: Molecular mechanisms of anti-neoplastic and immune stimulatory properties of oncolytic Newcastle disease virus. Biomedicines. 10:5622022. View Article : Google Scholar : PubMed/NCBI | |
Globerson-Levin A, Waks T and Eshhar Z: Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells. Mol Ther. 22:1029–1038. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chang YH, Lau KS, Kuo RL and Horng JT: dsRNA binding domain of PKR is proteolytically released by enterovirus A71 to facilitate viral replication. Front Cell Infect Microbiol. 7:2842017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang S, Zhu Y, Zhang M, Zhao Y, Yan Z, Wang Q and Li X: Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncoimmunology. 10:19290052021. View Article : Google Scholar : PubMed/NCBI | |
Ginting TE, Christian S, Larasati YO, Suryatenggara J, Suriapranata IM and Mathew G: Antiviral interferons induced by Newcastle disease virus (NDV) drive a tumor-selective apoptosis. Sci Rep. 9:151602019. View Article : Google Scholar : PubMed/NCBI | |
Roulstone V, Mansfield D, Harris RJ, Twigger K, White C, de Bono J, Spicer J, Karagiannis SN, Vile R, Pandha H, et al: Antiviral antibody responses to systemic administration of an oncolytic RNA virus: the impact of standard concomitant anticancer chemotherapies. J Immunother Cancer. 9:e0026732021. View Article : Google Scholar : PubMed/NCBI | |
Cheng JT, Wang YY, Zhu LZ, Zhang Y, Cai WQ, Han ZW, Zhou Y, Wang XW, Peng XC, Xiang Y, et al: Novel transcription regulatory sequences and factors of the immune evasion protein ICP47 (US12) of herpes simplex viruses. Virol J. 17:1012020. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Kang X, Chen KS, Jehng T, Jones L, Chen J, Huang XF and Chen SY: An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun. 11:13952020. View Article : Google Scholar : PubMed/NCBI | |
Arnone CM, Polito VA, Mastronuzzi A, Carai A, Diomedi FC, Antonucci L, Petrilli LL, Vinci M, Ferrari F, Salviato E, et al: Oncolytic adenovirus and gene therapy with EphA2-BiTE for the treatment of pediatric high-grade gliomas. J Immunother Cancer. 9:e0019302021. View Article : Google Scholar : PubMed/NCBI | |
Shi T, Song X, Wang Y, Liu F and Wei J: Combining oncolytic viruses with cancer immunotherapy: Establishing a new generation of cancer treatment. Front Immunol. 11:6832020. View Article : Google Scholar : PubMed/NCBI | |
Guedan S and Alemany R: CAR-T cells and oncolytic viruses: Joining forces to overcome the solid tumor challenge. Front Immunol. 9:24602018. View Article : Google Scholar : PubMed/NCBI | |
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C and Franci G: Oncolytic viruses in combination therapeutic approaches with epigenetic modulators: Past, present, and future perspectives. Cancers (Basel). 13:27612021. View Article : Google Scholar : PubMed/NCBI | |
Luo Q, Pan M, Feng H and Wang L: ABO blood group antigen therapy: A potential new strategy against solid tumors. Sci Rep. 11:162412021. View Article : Google Scholar : PubMed/NCBI | |
O'Brien RM, Cannon A, Reynolds JV, Lysaght J and Lynam-Lennon N: Complement in tumourigenesis and the response to cancer therapy. Cancers (Basel). 13:12092021. View Article : Google Scholar : PubMed/NCBI | |
Khalili H, Wolpin BM, Huang ES, Giovannucci EL, Kraft P, Fuchs CS and Chan AT: ABO blood group and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 20:1017–1020. 2011. View Article : Google Scholar : PubMed/NCBI | |
Akin S and Altundag K: Clinical associations with ABO blood group and rhesus blood group status in patients with breast cancer: A nationwide retrospective study of 3,944 breast cancer patients in Turkey. Med Sci Monit. 24:4698–4703. 2018. View Article : Google Scholar : PubMed/NCBI | |
Elkoshi Z: Cancer and autoimmune diseases: A tale of two immunological opposites? Front Immunol. 13:8215982022. View Article : Google Scholar : PubMed/NCBI | |
Kolev M and Markiewski MM: Targeting complement-mediated immunoregulation for cancer immunotherapy. Semin Immunol. 37:85–97. 2018. View Article : Google Scholar : PubMed/NCBI | |
Makunts T, Saunders IM, Cohen IV, Li M, Moumedjian T, Issa MA, Burkhart K, Lee P, Patel SP and Abagyan R: Myocarditis occurrence with cancer immunotherapy across indications in clinical trial and post-marketing data. Sci Rep. 11:173242021. View Article : Google Scholar : PubMed/NCBI | |
Ermer T, Canavan ME, Maduka RC, Li AX, Salazar MC, Kaminski MF, Pichert MD, Zhan PL, Mase V, Kluger H and Boffa DJ: Association between food and drug administration approval and disparities in immunotherapy use among patients with cancer in the US. JAMA Netw Open. 5:e22195352022. View Article : Google Scholar : PubMed/NCBI | |
Noman MZ, Hasmim M, Lequeux A, Xiao M, Duhem C, Chouaib S, Berchem G and Janji B: Improving cancer immunotherapy by targeting the hypoxic tumor microenvironment: New opportunities and challenges. Cells. 8:10832019. View Article : Google Scholar : PubMed/NCBI | |
Kawashima S, Inozume T, Kawazu M, Ueno T, Nagasaki J, Tanji E, Honobe A, Ohnuma T, Kawamura T, Umeda Y, et al: TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment. J Immunother Cancer. 9:e0031342021. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Zhang W, Dong B, Xin Z, Ji Y, Su R, Shen K, Pan J, Wang Q and Xue W: Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics. 12:4965–4979. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lee HT, Lee SH and Heo YS: Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules. 24:11902019. View Article : Google Scholar : PubMed/NCBI | |
Capuano C, Pighi C, Battella S, De Federicis D, Galandrini R and Palmieri G: Harnessing CD16-mediated NK cell functions to enhance therapeutic efficacy of tumor-targeting mAbs. Cancers (Basel). 13:25002021. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Oduro PK, Guo R, Li R, Leng L, Kong X, Wang Q and Yang L: Oncolytic viruses: Immunotherapy drugs for gastrointestinal malignant tumors. Front Cell Infect Microbiol. 12:9215342022. View Article : Google Scholar : PubMed/NCBI | |
Burn OK, Prasit KK and Hermans IF: Modulating the tumour microenvironment by intratumoural injection of pattern recognition receptor agonists. Cancers (Basel). 12:38242020. View Article : Google Scholar : PubMed/NCBI | |
Couzin-Frankel J: Breakthrough of the year 2013. Cancer immunotherapy. Science. 342:1432–1433. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP and Yin JY: Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer. 21:982022. View Article : Google Scholar : PubMed/NCBI | |
Sharma VP, Tang B, Wang Y, Duran CL, Karagiannis GS, Xue EA, Entenberg D, Borriello L, Coste A, Eddy RJ, et al: Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination. Nat Commun. 12:73002021. View Article : Google Scholar : PubMed/NCBI | |
Virant-Klun I, Skerl P, Novakovic S, Vrtacnik-Bokal E and Smrkolj S: Similar population of CD133+ and DDX4+ VSEL-like stem cells sorted from human embryonic stem cell, ovarian, and ovarian cancer ascites cell cultures: The real embryonic stem cells? Cells. 8:7062019. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Chen Y, Yang F, Chen IH, Xiong Z, Wang J, Lachman LB, Wang H and Yang XF: HLA-A2.1-restricted T cells react to SEREX-defined tumor antigen CML66L and are suppressed by CD4+CD25+ regulatory T cells. Int J Immunopathol Pharmacol. 20:75–89. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wargo JA, Robbins PF, Li Y, Zhao Y, El-Gamil M, Caragacianu D, Zheng Z, Hong JA, Downey S, Schrump DS, et al: Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression. Cancer Immunol Immunother. 58:383–394. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Gu X, Yu J, Ge S and Fan X: Oncolytic virotherapy: From bench to bedside. Front Cell Dev Biol. 9:7901502021. View Article : Google Scholar : PubMed/NCBI | |
Han W, Li W, Zhang X, Du Z, Liu X, Zhao X, Wen X, Wang G, Hu JF and Cui J: Targeted breast cancer therapy by harnessing the inherent blood group antigen immune system. Oncotarget. 8:15034–15046. 2017. View Article : Google Scholar : PubMed/NCBI |