Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
June-2023 Volume 49 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2023 Volume 49 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Concurrent induction of apoptosis and necroptosis in apigenin‑treated malignant mesothelioma cells: Reversal of Warburg effect through Akt inhibition and p53 upregulation

  • Authors:
    • Yoon-Jin Lee
    • Kwan-Sik Park
    • Su-Hak Heo
    • Moon-Kyun Cho
    • Sang-Han Lee
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea, Department of Medicinal Bioscience, College of Biomedical and Health Science, Konguk University Glocal Campus, Chungju 27478, Republic of Korea, Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
    Copyright: © Lee et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 111
    |
    Published online on: April 19, 2023
       https://doi.org/10.3892/or.2023.8548
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

A high dependence on aerobic glycolysis, known as the Warburg effect, is one of the metabolic features exhibited by tumor cells. Therefore, targeting glycolysis is becoming a very promising strategy for the development of anticancer drugs. In the present study, it was investigated whether pre‑adaptation of malignant mesothelioma (MM) cells to an acidic environment was associated with a metabolic shift to the Warburg phenotype in energy production, and whether apigenin targets acidosis‑driven metabolic reprogramming. Cell viability, glycolytic activity, Annexin V‑PE binding activity, reactive oxygen species (ROS) levels, mitochondrial membrane potential, ATP content, western blot analysis and spheroid viability were assessed in the present study. MM cells pre‑adapted to lactic acid were resistant to the anticancer drug gemcitabine, increased Akt activation, downregulated p53 expression, and upregulated rate‑limiting enzymes in glucose metabolism compared with their parental cells. Apigenin treatment increased cytotoxicity, Akt inactivation and p53 upregulation. Apigenin also reduced glucose uptake along with downregulation of key regulatory enzymes in glycolysis, increased ROS levels with loss of mitochondrial membrane potential, and downregulated the levels of complexes I, III and IV in the mitochondrial electron transport chain with intracellular ATP depletion, resulting in upregulation of molecules mediating apoptosis and necroptosis. Apigenin‑induced alterations of cellular responses were similar to those of Akt inactivation by Ly294002. Overall, the present results provide mechanistic evidence supporting the anti‑glycolytic and cytotoxic role of apigenin via inhibition of the PI3K/Akt signaling pathway and p53 upregulation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Warburg O: The metabolism of carcinoma cells. J Cancer Res. 9:148–163. 1925. View Article : Google Scholar

2 

Tarrado-Castellarnau M, de Atauri P and Cascante M: Oncogenic regulation of tumor metabolic reprogramming. Oncotarget. 7:62726–62753. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Liberti MV and Locasale JW: The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Eales KL, Hollinshead KER and Tennantm DA: Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 5:e1902016. View Article : Google Scholar : PubMed/NCBI

5 

de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A and Manzo-Merino J: Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol. 9:11432019. View Article : Google Scholar : PubMed/NCBI

6 

Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM and Karagiannis TC: Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Mol Biol Rep. 42:841–851. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Wu Z, Wu J, Zhao Q, Fu S and Jin J: Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol. 22:631–646. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM and Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64:3892–3899. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Urso L, Cavallari I, Sharova E, Ciccarese F, Pasello G and Ciminale V: Metabolic rewiring and redox alterations in malignant pleural mesothelioma. Br J Cancer. 122:52–61. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Abraham AG and O'Neill E: PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans. 42:798–803. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Naderali E, Valipour B, Khaki AA, Rad JS, Alihemmati A, Rahmati M and Charoudeh HN: Positive effects of PI3K/Akt signaling inhibition on PTEN and p53 in prevention of acute lymphoblastic leukemia tumor cells. Adv Pharm Bull. 9:470–480. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Song M, Bode AM, Dong Z and Lee MH: AKT as a therapeutic target for cancer. Cancer Res. 79:1019–1031. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U and Kunnumakkara AB: Rationalizing the therapeutic potential of apigenin against cancer. Life Sci. 267:1188142021. View Article : Google Scholar : PubMed/NCBI

15 

Madunić J, Madunić IV, Gajski G, Popić J and Garaj-Vrhovac V: Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett. 413:11–22. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Tong X and Pelling JC: Targeting the PI3K/Akt/mTOR axis by apigenin for cancer prevention. Anticancer Agents Med Chem. 13:971–978. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Masuelli L, Benvenuto M, Mattera R, Di Stefano E, Zago E, Taffera G, Tresoldi I, Giganti MG, Frajese GV, Berardi G, et al: In vitro and in vivo anti-tumoral effects of the flavonoid apigenin in malignant mesothelioma. Front Pharmacol. 8:3732017. View Article : Google Scholar : PubMed/NCBI

18 

Lee YJ, Park KS, Nam HS, Cho MK and Lee SH: Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells. Korean J Physiol Pharmacol. 24:493–502. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ and Huang P: Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug-resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 65:613–621. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Geschwind JF, Ko YH, Torbenson MS, Magee C and Pedersen PL: Novel therapy for liver cancer: Direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res. 62:3909–3913. 2002.PubMed/NCBI

21 

Leist M, Single B, Castoldi AF, Kühnle S and Nicotera P: Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med. 185:1481–1486. 1997. View Article : Google Scholar : PubMed/NCBI

22 

Singhal S, Wiewrodt R, Malden LD, Amin KM, Matzie K, Friedberg J, Kucharczuk JC, Litzky LA, Johnson SW, Kaiser LR and Albelda SM: Gene expression profiling of malignant mesothelioma. Clin Cancer Res. 9:3080–3097. 2003.PubMed/NCBI

23 

Bonelli M, Terenziani R, Zoppi S, Fumarola C, La Monica S, Cretella D, Alfieri R, Cavazzoni A, Digiacomo G, Galetti M and Petronini PG: Dual inhibition of CDK4/6 and PI3K/AKT/mTOR signaling impairs energy metabolism in MPM cancer cells. Int J Mol Sci. 21:51652020. View Article : Google Scholar : PubMed/NCBI

24 

Lee YJ and Lee SH: Pro-oxidant activity of sulforaphane and cisplatin potentiates apoptosis and simultaneously promotes autophagy in malignant mesothelioma cells. Mol Med Rep. 16:2133–2141. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Kozlov AM, Lone A, Betts DH and Cumming RC: Lactate preconditioning promotes a HIF-1α-mediated metabolic shift from OXPHOS to glycolysis in normal human diploid fibroblasts. Sci Rep. 10:83882020. View Article : Google Scholar : PubMed/NCBI

26 

Ma L and Zong X: Metabolic symbiosis in chemoresistance: Refocusing the role of aerobic glycolysis. Front Oncol. 10:52020. View Article : Google Scholar : PubMed/NCBI

27 

He J, Xie G, Tong J, Peng Y, Huang H, Li J, Wang N and Liang H: Overexpression of microRNA-122 re-sensitizes 5-FU-resistant colon cancer cells to 5-FU through the inhibition of PKM2 in vitro and in vivo. Cell Biochem Biophys. 70:1343–1350. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Pérez-Tomás R and Pérez-Guillén I: Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment. Cancers (Basel). 12:32442020. View Article : Google Scholar : PubMed/NCBI

29 

Ruan GX and Kazlauskas A: Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J Biol Chem. 288:21161–21172. 2013. View Article : Google Scholar : PubMed/NCBI

30 

De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O and Sonveaux P: Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS One. 7:e465712012. View Article : Google Scholar : PubMed/NCBI

31 

Fukumura D, Xu L, Chen Y, Gohongi T, Seed B and Jain RK: Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 61:6020–6024. 2001.PubMed/NCBI

32 

Zhuo B, Li Y, Li Z, Qin H, Sun Q, Zhang F, Shen Y, Shi Y and Wang R: PI3K/Akt signaling mediated hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma. Biochem Biophys Res Commun. 464:401–406. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR and Tamura RE: p53 and metabolism: From mechanism to therapeutics. Oncotarget. 9:23780–23823. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Ma W, Sung HJ, Park JY, Matoba S and Hwang PM: A pivotal role for p53: Balancing aerobic respiration and glycolysis. J Bioenerg Biomembr. 39:243–246. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Xue C, Gu X, Li G, Bao Z and Li L: Mitochondrial mechanisms of necroptosis in liver diseases. Int J Mol Sci. 22:662020. View Article : Google Scholar : PubMed/NCBI

36 

Edmondson R, Broglie JJ, Adcock AF and Yang L: Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 12:207–218. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Chitcholtan K, Sykes P and Evans J: The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. J Transl Med. 10:382012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lee Y, Park K, Heo S, Cho M and Lee S: Concurrent induction of apoptosis and necroptosis in apigenin‑treated malignant mesothelioma cells: Reversal of Warburg effect through Akt inhibition and p53 upregulation. Oncol Rep 49: 111, 2023.
APA
Lee, Y., Park, K., Heo, S., Cho, M., & Lee, S. (2023). Concurrent induction of apoptosis and necroptosis in apigenin‑treated malignant mesothelioma cells: Reversal of Warburg effect through Akt inhibition and p53 upregulation. Oncology Reports, 49, 111. https://doi.org/10.3892/or.2023.8548
MLA
Lee, Y., Park, K., Heo, S., Cho, M., Lee, S."Concurrent induction of apoptosis and necroptosis in apigenin‑treated malignant mesothelioma cells: Reversal of Warburg effect through Akt inhibition and p53 upregulation". Oncology Reports 49.6 (2023): 111.
Chicago
Lee, Y., Park, K., Heo, S., Cho, M., Lee, S."Concurrent induction of apoptosis and necroptosis in apigenin‑treated malignant mesothelioma cells: Reversal of Warburg effect through Akt inhibition and p53 upregulation". Oncology Reports 49, no. 6 (2023): 111. https://doi.org/10.3892/or.2023.8548
Copy and paste a formatted citation
x
Spandidos Publications style
Lee Y, Park K, Heo S, Cho M and Lee S: Concurrent induction of apoptosis and necroptosis in apigenin‑treated malignant mesothelioma cells: Reversal of Warburg effect through Akt inhibition and p53 upregulation. Oncol Rep 49: 111, 2023.
APA
Lee, Y., Park, K., Heo, S., Cho, M., & Lee, S. (2023). Concurrent induction of apoptosis and necroptosis in apigenin‑treated malignant mesothelioma cells: Reversal of Warburg effect through Akt inhibition and p53 upregulation. Oncology Reports, 49, 111. https://doi.org/10.3892/or.2023.8548
MLA
Lee, Y., Park, K., Heo, S., Cho, M., Lee, S."Concurrent induction of apoptosis and necroptosis in apigenin‑treated malignant mesothelioma cells: Reversal of Warburg effect through Akt inhibition and p53 upregulation". Oncology Reports 49.6 (2023): 111.
Chicago
Lee, Y., Park, K., Heo, S., Cho, M., Lee, S."Concurrent induction of apoptosis and necroptosis in apigenin‑treated malignant mesothelioma cells: Reversal of Warburg effect through Akt inhibition and p53 upregulation". Oncology Reports 49, no. 6 (2023): 111. https://doi.org/10.3892/or.2023.8548
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team