|
1
|
Versace VL, Forsyth AD, Vaughan R, Morrice
MG and Morphett BJ: Evidence of elevated colorectal cancer and
adenoma rates for regional National Bowel Cancer Screening Program
participants. Aust J Rural Health. 26:63–64. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhiqiang F, Jie C, Yuqiang N, Chenghua G,
Hong W, Zheng S, Wanglin L, Yongjian Z, Liping D, Lizhong Z and
DeJian Z: Analysis of population-based colorectal cancer screening
in Guangzhou, 2011–2015. Cancer Med. 8:2496–2502. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Conteduca V, Sansonno D, Russi S and
Dammacco F: Precancerous colorectal lesions (Review). Int J Oncol.
43:973–984. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fearon ER and Vogelstein B: A genetic
model for colorectal tumorigenesis. Cell. 61:759–767. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Brennan CA and Garrett WS: Gut microbiota,
inflammation, and colorectal cancer. Annu Rev Microbiol.
70:395–411. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yang B, Mao L, Li Y, Li Q, Li X, Zhang Y
and Zhai Z: β-catenin, leucine-rich repeat-containing G
protein-coupled receptor 5 and GATA-binding factor 6 are associated
with the normal mucosa-adenoma-adenocarcinoma sequence of
colorectal tumorigenesis. Oncol Lett. 15:2287–2295. 2018.PubMed/NCBI
|
|
7
|
Murakami T, Kurosawa T, Fukushima H,
Shibuya T, Yao T and Nagahara A: Sessile serrated lesions:
Clinicopathological characteristics, endoscopic diagnosis, and
management. Dig Endosc. 34:1096–1109. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lazarus R, Junttila OE, Karttunen TJ and
Makinen MJ: The risk of metachronous neoplasia in patients with
serrated adenoma. Am J Clin Pathol. 123:349–359. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cirillo G, Curcio M, Vittorio O, Iemma F,
Restuccia D, Spizzirri UG, Puoci F and Picci N: Polyphenol
conjugates and human health: A perspective review. Crit Rev Food
Sci Nutr. 56:326–337. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fantini M, Benvenuto M, Masuelli L,
Frajese GV, Tresoldi I, Modesti A and Bei R: In vitro and in vivo
antitumoral effects of combinations of polyphenols, or polyphenols
and anticancer drugs: Perspectives on cancer treatment. Int J Mol
Sci. 16:9236–9282. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Marzocchella L, Fantini M, Benvenuto M,
Masuelli L, Tresoldi I, Modesti A and Bei R: Dietary flavonoids:
Molecular mechanisms of action as anti-inflammatory agents. Recent
Pat Inflamm Allergy Drug Discov. 5:200–220. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Focaccetti C, Izzi V, Benvenuto M, Fazi S,
Ciuffa S, Giganti MG, Potenza V, Manzari V, Modesti A and Bei R:
Polyphenols as immunomodulatory compounds in the tumor
microenvironment: Friends or Foes? Int J Mol Sci. 20:17142019.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mattera R, Benvenuto M, Giganti MG,
Tresoldi I, Pluchinotta FR, Bergante S, Tettamanti G, Masuelli L,
Manzari V, Modesti A and Bei R: Effects of polyphenols on oxidative
stress-mediated injury in cardiomyocytes. Nutrients. 9:5232017.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kaltenbach T, Anderson JC, Burke CA,
Dominitz JA, Gupta S, Lieberman D, Robertson DJ, Shaukat A, Syngal
S and Rex DK: Endoscopic removal of colorectal lesions:
Recommendations by the US multi-society task force on colorectal
cancer. Am J Gastroenterol. 115:435–464. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Veettil SK, Nathisuwan S, Ching SM,
Jinatongthai P, Lim KG, Kew ST and Chaiyakunapruk N: Efficacy and
safety of celecoxib on the incidence of recurrent colorectal
adenomas: A systematic review and meta-analysis. Cancer Manag Res.
11:561–571. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Brennan CA, Nakatsu G, Gallini Comeau CA,
Drew DA, Glickman JN, Schoen RE, Chan AT and Garrett WS: Aspirin
modulation of the colorectal cancer-associated microbe
fusobacterium nucleatum. mBio. 12:e00547–21. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tu H, Flanders WD, Ahearn TU, Daniel CR,
Gonzalez-Feliciano AG, Long Q, Rutherford RE and Bostick RM:
Effects of calcium and vitamin D3 on transforming growth factors in
rectal mucosa of sporadic colorectal adenoma patients: A randomized
controlled trial. Mol Carcinog. 54:270–280. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bonelli L, Puntoni M, Gatteschi B, Massa
P, Missale G, Munizzi F, Turbino L, Villanacci V, De Censi A and
Bruzzi P: Antioxidant supplement and long-term reduction of
recurrent adenomas of the large bowel. A double-blind randomized
trial. J Gastroenterol. 48:698–705. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
West NJ, Clark SK, Phillips RK, Hutchinson
JM, Leicester RJ, Belluzzi A and Hull MA: Eicosapentaenoic acid
reduces rectal polyp number and size in familial adenomatous
polyposis. Gut. 59:918–925. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sui H, Zhang L, Gu K, Chai N, Ji Q, Zhou
L, Wang Y, Ren J, Yang L, Zhang B, et al: YYFZBJS ameliorates
colorectal cancer progression in ApcMin/+ mice by
remodeling gut microbiota and inhibiting regulatory T-cell
generation. Cell Commun Signal. 18:1132020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wu H, Huang Y, Yang L, Su K, Tian S, Chen
X, Li S and Liu W: Effects of Jianpi Lishi Jiedu granules on
colorectal adenoma patients after endoscopic treatment: Study
protocol for a randomized, double-blinded, placebo-controlled
clinical trial. Trials. 23:3452022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cruz-Correa M, Hylind LM, Marrero JH,
Zahurak ML, Murray-Stewart T, Casero RA Jr, Montgomery EA,
Iacobuzio-Donahue C, Brosens LA, Offerhaus GJ, et al: Efficacy and
safety of curcumin in treatment of intestinal adenomas in patients
with familial adenomatous polyposis. Gastroenterology. 155:668–673.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Briata IM, Paleari L, Rutigliani M,
Petrera M, Caviglia S, Romagnoli P, Libera MD, Oppezzi M, Puntoni
M, Siri G, et al: A presurgical study of curcumin combined with
anthocyanin supplements in patients with colorectal adenomatous
polyps. Int J Mol Sci. 22:2021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dulai PS, Singh S, Marquez E, Khera R,
Prokop LJ, Limburg PJ, Gupta S and Murad MH: Chemoprevention of
colorectal cancer in individuals with previous colorectal
neoplasia: Systematic review and network meta-analysis. BMJ.
355:i61882016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Szeto CC, Sugano K, Wang JG, Fujimoto K,
Whittle S, Modi GK, Chen CH, Park JB, Tam LS, Vareesangthip K, et
al: Non-steroidal anti-inflammatory drug (NSAID) therapy in
patients with hypertension, cardiovascular, renal or
gastrointestinal comorbidities: Joint
APAGE/APLAR/APSDE/APSH/APSN/PoA recommendations. Gut. 69:617–629.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Scalbert A, Manach C, Morand C, Remesy C
and Jimenez L: Dietary polyphenols and the prevention of diseases.
Crit Rev Food Sci Nutr. 45:287–306. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jin H, Leng Q and Li C: Dietary flavonoid
for preventing colorectal neoplasms. Cochrane Database Syst. Rev:
CD009350. 2012.doi: 10.1002/14651858.CD009350.pub2. View Article : Google Scholar
|
|
28
|
Beecher GR: Overview of dietary
flavonoids: Nomenclature, occurrence and intake. J Nutr.
133:3248S–3254S. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Manach C, Williamson G, Morand C, Scalbert
A and Remesy C: Bioavailability and bioefficacy of polyphenols in
humans. I. Review of 97 bioavailability studies. Am J Clin Nutr.
81:230S–242S. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wicinski M, Gebalski J, Mazurek E,
Podhorecka M, Sniegocki M, Szychta P, Sawicka E and Malinowski B:
The influence of polyphenol compounds on human gastrointestinal
tract microbiota. Nutrients. 12:3502020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Monagas M, Urpi-Sarda M, Sanchez-Patan F,
Llorach R, Garrido I, Gomez-Cordoves C, Andres-Lacueva C and
Bartolome B: Insights into the metabolism and microbial
biotransformation of dietary flavan-3-ols and the bioactivity of
their metabolites. Food Funct. 1:233–253. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Manach C, Scalbert A, Morand C, Remesy C
and Jimenez L: Polyphenols: Food sources and bioavailability. Am J
Clin Nutr. 79:727–747. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tuli HS, Aggarwal V, Kaur J, Aggarwal D,
Parashar G, Parashar NC, Tuorkey M, Kaur G, Savla R, Sak K and
Kumar M: Baicalein: A metabolite with promising antineoplastic
activity. Life Sci. 259:1181832020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang CZ, Zhang CF, Chen L, Anderson S, Lu
F and Yuan CS: Colon cancer chemopreventive effects of baicalein,
an active enteric microbiome metabolite from baicalin. Int J Oncol.
47:1749–1758. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang CZ, Zhang CF, Luo Y, Yao H, Yu C,
Chen L, Yuan J, Huang WH, Wan JY, Zeng J, et al: Baicalein, an
enteric microbial metabolite, suppresses gut inflammation and
cancer progression in ApcMin/+ mice. Clin Transl Oncol.
22:1013–1022. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kim DH, Hossain MA, Kang YJ, Jang JY, Lee
YJ, Im E, Yoon JH, Kim HS, Chung HY and Kim ND: Baicalein, an
active component of Scutellaria baicalensis Georgi, induces
apoptosis in human colon cancer cells and prevents AOM/DSS-induced
colon cancer in mice. Int J Oncol. 43:1652–1658. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Fidelis QC, Faraone I, Russo D, Aragao
Catunda-Jr FE, Vignola L, de Carvalho MG, de Tommasi N and Milella
L: Chemical and Biological insights of Ouratea hexasperma (A.
St.-Hil.) Baill.: A source of bioactive compounds with
multifunctional properties. Nat Prod Res. 33:1500–1503. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Imran M, Aslam Gondal T, Atif M, Shahbaz
M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M and
Sharifi-Rad J: Apigenin as an anticancer agent. Phytother Res.
34:1812–1828. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhong Y, Krisanapun C, Lee SH, Nualsanit
T, Sams C, Peungvicha P and Baek SJ: Molecular targets of apigenin
in colorectal cancer cells: Involvement of p21, NAG-1 and p53. Eur
J Cancer. 46:3365–3374. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Agarwal ML, Taylor WR, Chernov MV,
Chernova OB and Stark GR: The p53 network. J Biol Chem. 273:1–4.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Harborne JB and Williams CA: Advances in
flavonoid research since 1992. Phytochemistry. 55:481–504. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yang Y, Cai X, Yang J, Sun X, Hu C, Yan Z,
Xu X, Lu W, Wang X and Cao P: Chemoprevention of dietary
digitoflavone on colitis-associated colon tumorigenesis through
inducing Nrf2 signaling pathway and inhibition of inflammation. Mol
Cancer. 13:482014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Nasr-Bouzaiene N, Sassi A, Bedoui A, Krifa
M, Chekir-Ghedira L and Ghedira K: Immunomodulatory and cellular
antioxidant activities of pure compounds from Teucrium ramosissimum
Desf. Tumour Biol. 37:7703–7712. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lucarini R, Tozatti MG, Silva ML, Gimenez
VM, Pauletti PM, Groppo M, Turatti IC, Cunha WR and Martins CH:
Antibacterial and anti-inflammatory activities of an extract,
fractions, and compounds isolated from Gochnatia pulchra aerial
parts. Braz J Med Biol Res. 48:822–830. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gao Y, Liu F, Fang L, Cai R, Zong C and Qi
Y: Genkwanin inhibits proinflammatory mediators mainly through the
regulation of miR-101/MKP-1/MAPK pathway in LPS-activated
macrophages. PLoS One. 9:e967412014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang X, Song ZJ, He X, Zhang RQ, Zhang CF,
Li F, Wang CZ and Yuan CS: Antitumor and immunomodulatory activity
of genkwanin on colorectal cancer in the APC(Min/+) mice. Int
Immunopharmacol. 29:701–707. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG,
Yang XL, He X and Zhang CF: Self-Nanoemulsifying drug delivery
system of genkwanin: A novel approach for anti-colitis-associated
colorectal cancer. Drug Des Devel Ther. 15:557–576. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cai X, Lu W, Ye T, Lu M, Wang J, Huo J,
Qian S, Wang X and Cao P: The molecular mechanism of
luteolin-induced apoptosis is potentially related to inhibition of
angiogenesis in human pancreatic carcinoma cells. Oncol Rep.
28:1353–1361. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Murphy EA, Davis JM, McClellan JL and
Carmichael MD: Quercetin's effects on intestinal polyp multiplicity
and macrophage number in the Apc(Min/+) mouse. Nutr Cancer.
63:421–426. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Velazquez KT, Enos RT, Narsale AA, Puppa
MJ, Davis JM, Murphy EA and Carson JA: Quercetin supplementation
attenuates the progression of cancer cachexia in ApcMin/+ mice. J
Nutr. 144:868–875. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Calderon-Montano JM, Burgos-Moron E,
Perez-Guerrero C and Lopez-Lazaro M: A review on the dietary
flavonoid kaempferol. Mini Rev Med Chem. 11:298–344. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Imran M, Salehi B, Sharifi-Rad J, Aslam
Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad
M, Khan H, et al: Kaempferol: A key emphasis to its anticancer
potential. Molecules. 24:22772019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lu L, Wang Y, Ou R, Feng Q, Ji L, Zheng H,
Guo Y, Qi X, Kong AN and Liu Z: DACT2 Epigenetic stimulator exerts
dual efficacy for colorectal cancer prevention and treatment.
Pharmacol Res. 129:318–328. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Song X, Tan L, Wang M, Ren C, Guo C, Yang
B, Ren Y, Cao Z, Li Y and Pei J: Myricetin: A review of the most
recent research. Biomed Pharmacother. 134:1110172021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li Y, Cui SX, Sun SY, Shi WN, Song ZY,
Wang SQ, Yu XF, Gao ZH and Qu XJ: Chemoprevention of intestinal
tumorigenesis by the natural dietary flavonoid myricetin in
APCMin/+ mice. Oncotarget. 7:60446–60460. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang MJ, Su H, Yan JY, Li N, Song ZY,
Wang HJ, Huo LG, Wang F, Ji WS, Qu X J and Qu MH: Chemopreventive
effect of Myricetin, a natural occurring compound, on colonic
chronic inflammation and inflammation-driven tumorigenesis in mice.
Biomed Pharmacother. 97:1131–1137. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gong G, Guan YY, Zhang ZL, Rahman K, Wang
SJ, Zhou S, Luan X and Zhang H: Isorhamnetin: A review of
pharmacological effects. Biomed Pharmacother. 128:1103012020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bobe G, Sansbury LB, Albert PS, Cross AJ,
Kahle L, Ashby J, Slattery ML, Caan B, Paskett E, Iber F, et al:
Dietary flavonoids and colorectal adenoma recurrence in the Polyp
Prevention Trial. Cancer Epidemiol Biomarkers Prev. 17:1344–1353.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Saud SM, Young MR, Jones-Hall YL, Ileva L,
Evbuomwan MO, Wise J, Colburn NH, Kim YS and Bobe G:
Chemopreventive activity of plant flavonoid isorhamnetin in
colorectal cancer is mediated by oncogenic Src and β-catenin.
Cancer Res. 73:5473–5484. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mattioli R, Francioso A, Mosca L and Silva
P: Anthocyanins: A comprehensive review of their chemical
properties and health effects on cardiovascular and
neurodegenerative diseases. Molecules. 25:38092020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Khoo HE, Azlan A, Tang ST and Lim SM:
Anthocyanidins and anthocyanins: Colored pigments as food,
pharmaceutical ingredients, and the potential health benefits. Food
Nutr Res. 61:13617792017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Fragoso MF, Romualdo GR, Vanderveer LA,
Franco-Barraza J, Cukierman E, Clapper ML, Carvalho RF and Barbisan
LF: Lyophilized acai pulp (Euterpe oleracea Mart) attenuates
colitis-associated colon carcinogenesis while its main anthocyanin
has the potential to affect the motility of colon cancer cells.
Food Chem Toxicol. 121:237–245. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fernandez J, Garcia L, Monte J, Villar CJ
and Lombo F: Functional Anthocyanin-rich sausages diminish
colorectal cancer in an animal model and reduce Pro-inflammatory
bacteria in the intestinal microbiota. Genes (Basel). 9:1332018.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen L, Jiang B, Zhong C, Guo J, Zhang L,
Mu T, Zhang Q and Bi X: Chemoprevention of colorectal cancer by
black raspberry anthocyanins involved the modulation of gut
microbiota and SFRP2 demethylation. Carcinogenesis. 39:471–481.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Charepalli V, Reddivari L, Radhakrishnan
S, Vadde R, Agarwal R and Vanamala JK: Anthocyanin-containing
purple-fleshed potatoes suppress colon tumorigenesis via
elimination of colon cancer stem cells. J Nutr Biochem.
26:1641–1649. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cai H, Marczylo TH, Teller N, Brown K,
Steward WP, Marko D and Gescher AJ: Anthocyanin-rich red grape
extract impedes adenoma development in the Apc(Min) mouse:
Pharmacodynamic changes and anthocyanin levels in the murine
biophase. Eur J Cancer. 46:811–817. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kang SY, Seeram NP, Nair MG and Bourquin
LD: Tart cherry anthocyanins inhibit tumor development in Apc(Min)
mice and reduce proliferation of human colon cancer cells. Cancer
Lett. 194:13–19. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lippert E, Ruemmele P, Obermeier F,
Goelder S, Kunst C, Rogler G, Dunger N, Messmann H, Hartmann A and
Endlicher E: Anthocyanins prevent colorectal cancer development in
a mouse model. Digestion. 95:275–280. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Asadi K, Ferguson LR, Philpott M and
Karunasinghe N: Cancer-preventive Properties of an
Anthocyanin-enriched Sweet Potato in the APC(MIN) mouse model. J
Cancer Prev. 22:135–146. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yang CS: Inhibition of carcinogenesis by
tea. Nature. 389:134–135. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sukhthankar M, Yamaguchi K, Lee SH,
McEntee MF, Eling TE, Hara Y and Baek SJ: A green tea component
suppresses posttranslational expression of basic fibroblast growth
factor in colorectal cancer. Gastroenterology. 134:1972–1980. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang X, Ye T, Chen WJ, Lv Y, Hao Z, Chen
J, Zhao JY, Wang HP and Cai YK: Structural shift of gut microbiota
during chemo-preventive effects of epigallocatechin gallate on
colorectal carcinogenesis in mice. World J Gastroenterol.
23:8128–8139. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yum HW, Zhong X, Park J, Na HK, Kim N, Lee
HS and Surh YJ: Oligonol inhibits dextran sulfate sodium-induced
colitis and colonic adenoma formation in mice. Antioxid Redox
Signal. 19:102–114. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chen R, Qi QL, Wang MT and Li QY:
Therapeutic potential of naringin: An overview. Pharm Biol.
54:3203–3210. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang YS, Wang F, Cui SX and Qu XJ:
Natural dietary compound naringin prevents azoxymethane/dextran
sodium sulfate-induced chronic colorectal inflammation and
carcinogenesis in mice. Cancer Biol Ther. 19:735–744. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lu JF, Zhu MQ, Zhang H, Liu H, Xia B, Wang
YL, Shi X, Peng L and Wu JW: Neohesperidin attenuates obesity by
altering the composition of the gut microbiota in high-fat diet-fed
mice. FASEB J. 34:12053–12071. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhao T, Hu S, Ma P, Che D, Liu R, Zhang Y,
Wang J, Li C, Ding Y, Fu J, et al: Neohesperidin suppresses
IgE-mediated anaphylactic reactions and mast cell activation via
Lyn-PLC-Ca2+ pathway. Phytother Res. 33:2034–2043. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gong Y, Dong R, Gao X, Li J, Jiang L,
Zheng J, Cui S, Ying M, Yang B, Cao J and He Q: Neohesperidin
prevents colorectal tumorigenesis by altering the gut microbiota.
Pharmacol Res. 148:1044602019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wei SY, Chen Y and Xu XY: Progress on the
pharmacological research of puerarin: A review. Chin J Nat Med.
12:407–414. 2014.PubMed/NCBI
|
|
80
|
Deng XQ, Zhang HB, Wang GF, Xu D, Zhang
WY, Wang QS and Cui YL: Colon-specific microspheres loaded with
puerarin reduce tumorigenesis and metastasis in colitis-associated
colorectal cancer. Int J Pharm. 570:1186442019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zeng J, Chen Y, Ding R, Feng L, Fu Z, Yang
S, Deng X, Xie Z and Zheng S: Isoliquiritigenin alleviates early
brain injury after experimental intracerebral hemorrhage via
suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome
activation by promoting Nrf2 antioxidant pathway. J
Neuroinflammation. 14:1192017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yadav VR, Prasad S, Sung B and Aggarwal
BB: The role of chalcones in suppression of NF-κB-mediated
inflammation and cancer. Int Immunopharmacol. 11:295–309. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wu M, Wu Y, Deng B, Li J, Cao H, Qu Y,
Qian X and Zhong G: Isoliquiritigenin decreases the incidence of
colitis-associated colorectal cancer by modulating the intestinal
microbiota. Oncotarget. 7:85318–85331. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Predes D, Oliveira LFS, Ferreira LSS, Maia
LA, Delou JMA, Faletti A, Oliveira I, Amado NG, Reis AH, Fraga CAM,
et al: The Chalcone Lonchocarpin Inhibits Wnt/β-catenin signaling
and suppresses colorectal cancer proliferation. Cancers (Basel).
11:19682019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang T, Nanney LB, Luongo C, Lamps L,
Heppner KJ, DuBois RN and Beauchamp RD: Concurrent overexpression
of cyclin D1 and cyclin-dependent kinase 4 (Cdk4) in intestinal
adenomas from multiple intestinal neoplasia (Min) mice and human
familial adenomatous polyposis patients. Cancer Res. 57:169–175.
1997.PubMed/NCBI
|
|
86
|
Hogan FS, Krishnegowda NK, Mikhailova M
and Kahlenberg MS: Flavonoid, silibinin, inhibits proliferation and
promotes cell-cycle arrest of human colon cancer. J Surg Res.
143:58–65. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Karim BO, Rhee KJ, Liu G, Zheng D and Huso
DL: Chemoprevention utility of silibinin and Cdk4 pathway
inhibition in Apc(−/+) mice. BMC Cancer. 13:1572013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Barone M, Tanzi S, Lofano K, Scavo MP,
Pricci M, Demarinis L, Papagni S, Guido R, Maiorano E, Ingravallo
G, et al: Dietary-induced ERbeta upregulation counteracts
intestinal neoplasia development in intact male ApcMin/+ mice.
Carcinogenesis. 31:269–274. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhao TT, Xu YQ, Hu HM, Gong HB and Zhu HL:
Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor
Agents. Curr Med Chem. 26:6786–6796. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zeng S, Chen L, Sun Q, Zhao H, Yang H, Ren
S, Liu M, Meng X and Xu H: Scutellarin ameliorates
colitis-associated colorectal cancer by suppressing Wnt/β-catenin
signaling cascade. Eur J Pharmacol. 906:1742532021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Feng Z, Hao W, Lin X, Fan D and Zhou J:
Antitumor activity of total flavonoids from Tetrastigma
hemsleyanum Diels et Gilg is associated with the inhibition of
regulatory T cells in mice. Onco Targets Ther. 7:947–956.
2014.PubMed/NCBI
|
|
92
|
Wu X, Yu N, Zhang Y, Ye Y, Sun W, Ye L, Wu
H, Yang Z, Wu L and Wang F: Radix Tetrastigma hemsleyani
flavone exhibits antitumor activity in colorectal cancer via
Wnt/β-catenin signaling pathway. Onco Targets Ther. 11:6437–6446.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Liu Y, Zhao X, Lin T, Wang Q, Zhang Y and
Xie J: Molecular mechanisms of polysaccharides from Ziziphus
jujuba Mill var. spinosa seeds regulating the
bioavailability of spinosin and preventing colitis. Int J Biol
Macromol. 163:1393–1402. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu J, Zhai WM, Yang YX, Shi JL, Liu QT,
Liu GL, Fang N, Li J and Guo JY: GABA and 5-HT systems are
implicated in the anxiolytic-like effect of spinosin in mice.
Pharmacol Biochem Behav. 128:41–49. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Xu MY, Lee SY, Kang SS and Kim YS:
Antitumor activity of jujuboside B and the underlying mechanism via
induction of apoptosis and autophagy. J Nat Prod. 77:370–376. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Shan S, Xie Y, Zhang C, Jia B, Li H and Li
Z: Identification of polyphenol from Ziziphi spinosae semen
against human colon cancer cells and colitis-associated colorectal
cancer in mice. Food Funct. 11:8259–8272. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Matsumoto S, Tominari T, Matsumoto C,
Yoshinouchi S, Ichimaru R, Watanabe K, Hirata M, Grundler FMW,
Miyaura C and Inada M: Effects of polymethoxyflavonoids on bone
loss induced by estrogen deficiency and by LPS-dependent
inflammation in mice. Pharmaceuticals (Basel). 11:72018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Parhiz H, Roohbakhsh A, Soltani F, Rezaee
R and Iranshahi M: Antioxidant and anti-inflammatory properties of
the citrus flavonoids hesperidin and hesperetin: An updated review
of their molecular mechanisms and experimental models. Phytother
Res. 29:323–331. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wu JC, Tsai ML, Lai CS, Lo CY, Ho CT, Wang
YJ and Pan MH: Polymethoxyflavones prevent benzo[a]pyrene/dextran
sodium sulfate-induced colorectal carcinogenesis through modulating
xenobiotic metabolism and ameliorate autophagic defect in ICR mice.
Int J Cancer. 142:1689–1701. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Javid SH, Moran AE, Carothers AM, Redston
M and Bertagnolli MM: Modulation of tumor formation and intestinal
cell migration by estrogens in the Apc(Min/+) mouse model of
colorectal cancer. Carcinogenesis. 26:587–595. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Mukund V, Mukund D, Sharma V, Mannarapu M
and Alam A: Genistein: Its role in metabolic diseases and cancer.
Crit Rev Oncol Hematol. 119:13–22. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Du Q, Wang Y, Liu C, Wang H, Fan H, Li Y,
Wang J, Zhang X, Lu J, Ji H and Hu R: Chemopreventive activity of
GEN-27, a genistein derivative, in colitis-associated cancer is
mediated by p65-CDX2-β-catenin axis. Oncotarget. 7:17870–17884.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cirmi S, Maugeri A, Ferlazzo N, Gangemi S,
Calapai G, Schumacher U and Navarra M: Anticancer potential of
citrus juices and their extracts: A systematic review of both
preclinical and clinical studies. Front Pharmacol. 8:4202017.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Cirmi S, Ferlazzo N, Lombardo GE, Maugeri
A, Calapai G, Gangemi S and Navarra M: Chemopreventive agents and
inhibitors of cancer hallmarks: May citrus offer new perspectives?
Nutrients. 8:6982016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ferlazzo N, Cirmi S, Calapai G,
Ventura-Spagnolo E, Gangemi S and Navarra M: Anti-Inflammatory
activity of citrus bergamia derivatives: Where do we stand?
Molecules. 21:12732016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Navarra M, Femia AP, Romagnoli A, Tortora
K, Luceri C, Cirmi S, Ferlazzo N and Caderni G: A flavonoid-rich
extract from bergamot juice prevents carcinogenesis in a genetic
model of colorectal cancer, the Pirc rat
(F344/NTac-Apcam1137). Eur J Nutr. 59:885–894. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Du WJ, Yang XL, Song ZJ, Wang JY, Zhang
WJ, He X, Zhang RQ, Zhang CF, Li F, Yu CH, et al: Antitumor
activity of total flavonoids from Daphne genkwa in
colorectal cancer. Phytother Res. 30:323–330. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shishodia S, Sethi G and Aggarwal BB:
Curcumin: Getting back to the roots. Ann N Y Acad Sci.
1056:206–217. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Girardi B, Pricci M, Giorgio F, Piazzolla
M, Iannone A, Losurdo G, Principi M, Barone M, Ierardi E and Di Leo
A: Silymarin, boswellic acid and curcumin enriched dietetic
formulation reduces the growth of inherited intestinal polyps in an
animal model. World J Gastroenterol. 26:1601–1612. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Eberhart CE, Coffey RJ, Radhika A,
Giardiello FM, Ferrenbach S and DuBois RN: Up-regulation of
cyclooxygenase 2 gene expression in human colorectal adenomas and
adenocarcinomas. Gastroenterology. 107:1183–1188. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Elder DJ, Baker JA, Banu NA, Moorghen M
and Paraskeva C: Human colorectal adenomas demonstrate a
size-dependent increase in epithelial cyclooxygenase-2 expression.
J Pathol. 198:428–434. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Oshima M, Dinchuk JE, Kargman SL, Oshima
H, Hancock B, Kwong E, Trzaskos JM, Evans JF and Taketo MM:
Suppression of intestinal polyposis in Apc delta716 knockout mice
by inhibition of cyclooxygenase 2 (COX-2). Cell. 87:803–809. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Jacoby RF, Seibert K, Cole CE, Kelloff G
and Lubet RA: The cyclooxygenase-2 inhibitor celecoxib is a potent
preventive and therapeutic agent in the min mouse model of
adenomatous polyposis. Cancer Res. 60:5040–5044. 2000.PubMed/NCBI
|
|
114
|
Hao J, Dai X, Gao J, Li Y, Hou Z, Chang Z
and Wang Y: Curcumin suppresses colorectal tumorigenesis via the
Wnt/β-catenin signaling pathway by downregulating Axin2. Oncol
Lett. 21:1862021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
McFadden RM, Larmonier CB, Shehab KW,
Midura-Kiela M, Ramalingam R, Harrison CA, Besselsen DG, Chase JH,
Caporaso JG, Jobin C, et al: The role of curcumin in modulating
colonic microbiota during colitis and colon cancer prevention.
Inflamm Bowel Dis. 21:2483–2494. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Adachi S, Hamoya T, Fujii G, Narita T,
Komiya M, Miyamoto S, Kurokawa Y, Takahashi M, Takayama T, Ishikawa
H, et al: Theracurmin inhibits intestinal polyp development in
Apc-mutant mice by inhibiting inflammation-related factors. Cancer
Sci. 111:1367–1374. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Seiwert N, Fahrer J, Nagel G, Frank J,
Behnam D and Kaina B: Curcumin administered as micellar solution
suppresses intestinal inflammation and colorectal carcinogenesis.
Nutr Cancer. 73:686–693. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Murakami A, Furukawa I, Miyamoto S, Tanaka
T and Ohigashi H: Curcumin combined with turmerones, essential oil
components of turmeric, abolishes inflammation-associated mouse
colon carcinogenesis. Biofactors. 39:221–232. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Guo Y, Su ZY, Zhang C, Gaspar JM, Wang R,
Hart RP, Verzi MP and Kong AN: Mechanisms of colitis-accelerated
colon carcinogenesis and its prevention with the combination of
aspirin and curcumin: Transcriptomic analysis using RNA-seq.
Biochem Pharmacol. 135:22–34. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Femia AP, Soares PV, Luceri C, Lodovici M,
Giannini A and Caderni G: Sulindac, 3,3′-diindolylmethane and
curcumin reduce carcinogenesis in the Pirc rat, an Apc-driven model
of colon carcinogenesis. BMC Cancer. 15:6112015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Lev-Ari S, Strier L, Kazanov D,
Madar-Shapiro L, Dvory-Sobol H, Pinchuk I, Marian B, Lichtenberg D
and Arber N: Celecoxib and curcumin synergistically inhibit the
growth of colorectal cancer cells. Clin Cancer Res. 11:6738–6744.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Meng T, Xiao D, Muhammed A, Deng J, Chen L
and He J: Anti-Inflammatory action and mechanisms of resveratrol.
Molecules. 26:2292021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zheng Z, Chen Y, Huang J, Deng H, Tang X
and Wang XJ: Mkp-1 is required for chemopreventive activity of
butylated hydroxyanisole and resveratrol against colitis-associated
colon tumorigenesis. Food Chem Toxicol. 127:72–80. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Reddivari L, Charepalli V, Radhakrishnan
S, Vadde R, Elias RJ, Lambert JD and Vanamala JK: Grape compounds
suppress colon cancer stem cells in vitro and in a rodent model of
colon carcinogenesis. BMC Complement Altern Med. 16:2782016.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Saud SM, Li W, Morris NL, Matter MS,
Colburn NH, Kim YS and Young MR: Resveratrol prevents tumorigenesis
in mouse model of Kras activated sporadic colorectal cancer by
suppressing oncogenic Kras expression. Carcinogenesis.
35:2778–2786. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Rauf A, Patel S, Imran M, Maalik A, Arshad
MU, Saeed F, Mabkhot YN, Al-Showiman SS, Ahmad N and Elsharkawy E:
Honokiol: An anticancer lignan. Biomed Pharmacother. 107:555–562.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Subramaniam D, Ponnurangam S, Ramalingam
S, Kwatra D, Dandawate P, Weir SJ, Umar S, Jensen RA and Anant S:
Honokiol affects stem cell viability by suppressing oncogenic YAP1
function to inhibit colon tumorigenesis. Cells. 10:16072021.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Chen X, Shi BL, Qi RZ, Chang X and Zheng
HG: Ultra-Performance liquid Chromatography/mass spectrometry-based
metabolomics for discovering potential biomarkers and metabolic
pathways of colorectal cancer in mouse model (ApcMin/+) and
revealing the effect of honokiol. Front Oncol. 11:6710142021.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Bosebabu B, Cheruku SP, Chamallamudi MR,
Nampoothiri M, Shenoy RR, Nandakumar K, Parihar VK and Kumar N: An
appraisal of current pharmacological perspectives of sesamol: A
review. Mini Rev Med Chem. 20:988–1000. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Shimizu S, Fujii G, Takahashi M, Nakanishi
R, Komiya M, Shimura M, Noma N, Onuma W, Terasaki M, Yano T and
Mutoh M: Sesamol suppresses cyclooxygenase-2 transcriptional
activity in colon cancer cells and modifies intestinal polyp
development in Apc (Min/+) mice. J Clin Biochem Nutr. 54:95–101.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Dai G, Jiang Z, Sun B, Liu C, Meng Q, Ding
K, Jing W and Ju W: Caffeic acid phenethyl ester prevents
colitis-associated cancer by inhibiting NLRP3 inflammasome. Front
Oncol. 10:7212020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Zheng Y, Liu Z, Yang X, Liu L and Ahn KS:
An updated review on the potential antineoplastic actions of
oleuropein. Phytother Res. 36:365–379. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Giner E, Recio MC, Rios JL, Cerda-Nicolas
JM and Giner RM: Chemopreventive effect of oleuropein in
colitis-associated colorectal cancer in c57bl/6 mice. Mol Nutr Food
Res. 60:242–255. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Yang J, Chen B and Gu Y: Pharmacological
evaluation of tea polysaccharides with antioxidant activity in
gastric cancer mice. Carbohydr Polym. 90:943–947. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Ahmad N, Cheng P and Mukhtar H: Cell cycle
dysregulation by green tea polyphenol epigallocatechin-3-gallate.
Biochem Biophys Res Commun. 275:328–334. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Rashidi B, Malekzadeh M, Goodarzi M,
Masoudifar A and Mirzaei H: Green tea and its anti-angiogenesis
effects. Biomed Pharmacother. 89:949–956. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Xiao H, Hao X, Simi B, Ju J, Jiang H,
Reddy BS and Yang CS: Green tea polyphenols inhibit colorectal
aberrant crypt foci (ACF) formation and prevent oncogenic changes
in dysplastic ACF in azoxymethane-treated F344 rats.
Carcinogenesis. 29:113–119. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Wang ST, Cui WQ, Pan D, Jiang M, Chang B
and Sang L X: Tea polyphenols and their chemopreventive and
therapeutic effects on colorectal cancer. World J Gastroenterol.
26:562–597. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Volate SR, Muga SJ, Issa AY, Nitcheva D,
Smith T and Wargovich MJ: Epigenetic modulation of the retinoid X
receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse
model of intestinal cancer. Mol Carcinog. 48:920–933. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Wu X, Xue L, Tata A, Song M, Neto CC and
Xiao H: Bioactive components of polyphenol-rich and
non-polyphenol-rich cranberry fruit extracts and their
chemopreventive effects on colitis-associated colon cancer. J Agric
Food Chem. 68:6845–6853. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Koh SJ, Choi YI, Kim Y, Kim YS, Choi SW,
Kim JW, Kim BG and Lee KL: Walnut phenolic extract inhibits nuclear
factor kappaB signaling in intestinal epithelial cells, and
ameliorates experimental colitis and colitis-associated colon
cancer in mice. Eur J Nutr. 58:1603–1613. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Fini L, Piazzi G, Daoud Y, Selgrad M,
Maegawa S, Garcia M, Fogliano V, Romano M, Graziani G, Vitaglione
P, et al: Chemoprevention of intestinal polyps in ApcMin/+ mice fed
with western or balanced diets by drinking annurca apple polyphenol
extract. Cancer Prev Res (Phila). 4:907–915. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Song M, Emilsson L, Bozorg SR, Nguyen LH,
Joshi AD, Staller K, Nayor J, Chan AT and Ludvigsson JF: Risk of
colorectal cancer incidence and mortality after polypectomy: A
Swedish record-linkage study. Lancet Gastroenterol Hepatol.
5:537–547. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Keum N and Giovannucci E: Global burden of
colorectal cancer: Emerging trends, risk factors and prevention
strategies. Nat Rev Gastroenterol Hepatol. 16:713–732. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Sankaranarayanan R, Valiveti CK, Kumar DR,
Van Slambrouck S, Kesharwani SS, Seefeldt T, Scaria J, Tummala H
and Bhat GJ: The Flavonoid metabolite 2,4,6-trihydroxybenzoic acid
is a CDK inhibitor and an anti-proliferative agent: A potential
role in cancer prevention. Cancers (Basel). 11:4272019. View Article : Google Scholar : PubMed/NCBI
|