|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yang JD and Roberts LR: Hepatocellular
carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 7:448–458.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lamb CA, Yoshimori T and Tooze SA: The
autophagosome: Origins unknown, biogenesis complex. Nat Rev Mol
Cell Biol. 14:759–774. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Levine B and Kroemer G: Biological
functions of autophagy genes: A disease perspective. Cell.
176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Qian H, Chao X, Williams J, Fulte S, Li T,
Yang L and Ding WX: Autophagy in liver diseases: A review. Mol
Aspects Med. 82:1009732021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mizushima N and Komatsu M: Autophagy:
Renovation of cells and tissues. Cell. 147:728–741. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ke PY: Diverse functions of autophagy in
liver physiology and liver diseases. Int J Mol Sci. 20:3002019.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yazdani HO, Huang H and Tsung A:
Autophagy: Dual response in the development of hepatocellular
carcinoma. Cells. 8:912019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang Y, Xiong H, Liu D, Hill C, Ertay A,
Li J, Zou Y, Miller P, White E, Downward J, et al: Autophagy
inhibition specifically promotes epithelial-mesenchymal transition
and invasion in RAS-mutated cancer cells. Autophagy. 15:886–899.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Shirokikh NE: Translation complex
stabilization on messenger RNA and footprint profiling to study the
RNA responses and dynamics of protein biosynthesis in the cells.
Crit Rev Biochem Mol Biol. 57:261–304. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Cech TR and Steitz JA: The noncoding RNA
revolution-trashing old rules to forge new ones. Cell. 157:77–94.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bella ED, Koch J and Baerenfaller K:
Translation and emerging functions of non-coding RNAs in
inflammation and immunity. Allergy. 77:2025–2037. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chang Y, Lin J and Tsung A: Manipulation
of autophagy by MIR375 generates antitumor effects in liver cancer.
Autophagy. 8:1833–1834. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Iorio MV and Croce CM: MicroRNAs in
cancer: Small molecules with a huge impact. J Clin Oncol.
27:5848–5856. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Geisler S and Coller J: RNA in unexpected
places: Long non-coding RNA functions in diverse cellular contexts.
Nat Rev Mol Cell Biol. 14:699–712. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Statello L, Guo C, Chen L and Huarte M:
Gene regulation by long non-coding RNAs and its biological
functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mercer TR and Mattick JS: Structure and
function of long noncoding RNAs in epigenetic regulation. Nat
Struct Mol Biol. 20:300–307. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mercer TR, Dinger ME and Mattick JS: Long
non-coding RNAs: Insights into functions. Nat Rev Genet.
10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Dhamija S and Diederichs S: From junk to
master regulators of invasion: lncRNA functions in migration, EMT
and metastasis. Int J Cancer. 139:269–280. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen E, Li E, Liu H, Zhou Y, Wen L, Wang
J, Wang Y, Ye L and Liang T: miR-26b enhances the sensitivity of
hepatocellular carcinoma to doxorubicin via USP9X-dependent
degradation of p53 and regulation of autophagy. Int J Biol Sci.
17:781–795. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang J, He Y, Zhai N, Ding S, Li J and
Peng Z: MicroRNA-181a inhibits autophagy by targeting Atg5 in
hepatocellular carcinoma. Front Biosci (Landmark Ed). 23:388–396.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sheng JQ, Wang MR, Fang D, Liu L, Huang
WJ, Tian DA, He XX and Li PY: LncRNA NBR2 inhibits tumorigenesis by
regulating autophagy in hepatocellular carcinoma. Biomed
Pharmacother. 133:1110232021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fu XT, Shi YH, Zhou J, Peng YF, Liu WR,
Shi GM, Gao Q, Wang XY, Song K, Fan J and Ding ZB: MicroRNA-30a
suppresses autophagy-mediated anoikis resistance and metastasis in
hepatocellular carcinoma. Cancer Lett. 412:108–117. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Martins M, Galfrè S, Terrigno M,
Pandolfini L, Appolloni I, Dunville K, Marranci A, Rizzo M,
Mercatanti A, Poliseno L, et al: A eutherian-specific microRNA
controls the translation of Satb2 in a model of cortical
differentiation. Stem Cell Reports. 16:1496–1509. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu C and Yi X: miR-541 serves as a
prognostic biomarker of osteosarcoma and its regulatory effect on
tumor cell proliferation, migration and invasion by targeting
TGIF2. Diagn Pathol. 15:962020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xu L, Du B, Lu QJ, Fan XW, Tang K, Yang L
and Liao WL: miR-541 suppresses proliferation and invasion of
squamous cell lung carcinoma cell lines via directly targeting
high-mobility group AT-hook 2. Cancer Med. 7:2581–2591. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xu WP, Liu JP, Feng JF, Zhu CP, Yang Y,
Zhou WP, Ding J, Huang CK, Cui YL, Ding CH, et al: miR-541
potentiates the response of human hepatocellular carcinoma to
sorafenib treatment by inhibiting autophagy. Gut. 69:1309–1321.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li Z, Jiang D and Yang S: MiR-490-3p
inhibits the malignant progression of lung adenocarcinoma. Cancer
Manag Res. 12:10975–10984. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Shen J, Xiao Z, Wu WKK, Wang MH, To KF,
Chen Y, Yang W, Li MSM, Shin VY, Tong JH, et al: Epigenetic
silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1
to promote Helicobacter pylori-induced gastric carcinogenesis.
Cancer Res. 75:754–765. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ou Y, He J and Liu Y: MiR-490-3p inhibits
autophagy via targeting ATG7 in hepatocellular carcinoma. IUBMB
Life. 70:468–478. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fernández C, Bellosillo B, Ferraro M,
Seoane A, Sánchez-González B, Pairet S, Pons A, Barranco L, Vela
MC, Gimeno E, et al: MicroRNAs 142-3p, miR-155 and miR-203 are
deregulated in gastric MALT lymphomas compared to chronic
gastritis. Cancer Genomics Proteomics. 14:75–82. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang K, Chen J, Zhou H, Chen Y, Zhi Y,
Zhang B, Chen L, Chu X, Wang R and Zhang C: PU.1/microRNA-142-3p
targets ATG5/ATG16L1 to inactivate autophagy and sensitize
hepatocellular carcinoma cells to sorafenib. Cell Death Dis.
9:3122018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu P, Cao F, Sui J, Hong Y, Liu Q, Gao X,
Gong H, Hao L, Lou Z and Zhang W: MicroRNA-142-3p inhibits
tumorigenesis of colorectal cancer via suppressing the activation
of Wnt Signaling by directly targeting to β-catenin. Front Oncol.
10:5529442021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mansoori B, Duijf PHG, Mohammadi A,
Safarzadeh E, Ditzel HJ, Gjerstorff MF, Cho WC and Baradaran B:
MiR-142-3p targets HMGA2 and suppresses breast cancer malignancy.
Life Sci. 276:1194312021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Rodriguez AE, Hernández JÁ, Benito R,
Gutiérrez NC, García JL, Hernández-Sánchez M, Risueño A, Sarasquete
ME, Fermiñán E, Fisac R, et al: Molecular characterization of
chronic lymphocytic leukemia patients with a high number of losses
in 13q14. PLoS One. 7:e484852012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yuan S, Wu Q, Wang Z, Che Y, Zheng S, Chen
Y, Zhong X and Shi F: miR-223: An immune regulator in infectious
disorders. Front Immunol. 12:7818152021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Favero A, Segatto I, Perin T and Belletti
B: The many facets of miR-223 in cancer: Oncosuppressor, oncogenic
driver, therapeutic target, and biomarker of response. Wiley
Interdiscip Rev RNA. 12:e16592021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou Y, Chen E, Tang Y, Mao J, Shen J,
Zheng X, Xie S, Zhang S, Wu Y, Liu H, et al: miR-223 overexpression
inhibits doxorubicin-induced autophagy by targeting FOXO3a and
reverses chemoresistance in hepatocellular carcinoma cells. Cell
Death Dis. 10:8432019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu Y, Wang Q, Wen J, Wu Y and Man C:
MiR-375: A novel multifunctional regulator. Life Sci.
275:1193232021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wei J, Lu Y, Wang R, Xu X, Liu Q, He S,
Pan H, Liu X, Yuan B, Ding Y and Zhang J: MicroRNA-375: Potential
cancer suppressor and therapeutic drug. Biosci Rep.
41:BSR202114942021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chang Y, Yan W, He X, Zhang L, Li C, Huang
H, Nace G, Geller DA, Lin J and Tsung A: miR-375 inhibits autophagy
and reduces viability of hepatocellular carcinoma cells under
hypoxic conditions. Gastroenterology. 143:177–187.e8. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Li C, Li Y, Lu Y, Niu Z, Zhao H, Peng Y
and Li M: miR-26 family and its target genes in tumorigenesis and
development. Crit Rev Oncol Hematol. 157:1031242021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Calin GA, Sevignani C, Dumitru CD, Hyslop
T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M
and Croce CM: Human microRNA genes are frequently located at
fragile sites and genomic regions involved in cancers. Proc Natl
Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jin F, Wang Y, Li M, Zhu Y, Liang H, Wang
C, Wang F, Zhang CY, Zen K and Li L: MiR-26 enhances
chemosensitivity and promotes apoptosis of hepatocellular carcinoma
cells through inhibiting autophagy. Cell Death Dis. 8:e25402017.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mourelatos Z, Dostie J, Paushkin S, Sharma
A, Charroux B, Abel L, Rappsilber J, Mann M and Dreyfuss G: miRNPs:
A novel class of ribonucleoproteins containing numerous microRNAs.
Genes Dev. 16:720–728. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang CZ, Deng F, Li H, Wang DD, Zhang W,
Ding L and Tang JH: MiR-101: A potential therapeutic target of
cancers. Am J Transl Res. 10:3310–3321. 2018.PubMed/NCBI
|
|
48
|
Xu L, Beckebaum S, Iacob S, Wu G, Kaiser
GM, Radtke A, Liu C, Kabar I, Schmidt HH, Zhang X, et al:
MicroRNA-101 inhibits human hepatocellular carcinoma progression
through EZH2 downregulation and increased cytostatic drug
sensitivity. J Hepatol. 60:590–598. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xu Y, An Y, Wang Y, Zhang C, Zhang H,
Huang C, Jiang H, Wang X and Li X: miR-101 inhibits autophagy and
enhances cisplatin-induced apoptosis in hepatocellular carcinoma
cells. Oncol Rep. 29:2019–2024. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Korać P, Antica M and Matulić M: MiR-7 in
cancer development. Biomedicines. 9:3252021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhao J, Tao Y, Zhou Y, Qin N, Chen C, Tian
D and Xu L: MicroRNA-7: A promising new target in cancer therapy.
Cancer Cell Int. 15:1032015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yuan J, Li Y, Liao J, Liu M, Zhu L and
Liao K: MicroRNA-7 inhibits hepatocellular carcinoma cell invasion
and metastasis by regulating Atg5-mediated autophagy. Transl Cancer
Res. 9:3965–3972. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rodriguez A, Griffiths-Jones S, Ashurst JL
and Bradley A: Identification of mammalian microRNA host genes and
transcription units. Genome Res. 14:1902–1910. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jiang LH, Zhang HD and Tang JH: MiR-30a: A
novel biomarker and potential therapeutic target for cancer. J
Oncol. 2018:51678292018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang C, Li C and Hao R: miR-559 inhibits
proliferation, autophagy, and angiogenesis of hepatocellular
carcinoma cells by targeting PARD3. Mediators Inflamm.
2022:31214922022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jin W, Liang Y, Li S, Lin G, Liang H,
Zhang Z, Zhang W and Nie R: MiR-513b-5p represses autophagy during
the malignant progression of hepatocellular carcinoma by targeting
PIK3R3. Aging (Albany NY). 13:16072–16087. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang Y, Tan J, Wang L, Pei G, Cheng H,
Zhang Q, Wang S, He C, Fu C and Wei Q: MiR-125 family in
cardiovascular and cerebrovascular diseases. Front Cell Dev Biol.
9:7990492021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ren WW, Li DD, Chen X, Li XL, He YP, Guo
LH, Liu LN, Sun LP and Zhang XP: MicroRNA-125b reverses oxaliplatin
resistance in hepatocellular carcinoma by negatively regulating
EVA1A mediated autophagy. Cell Death Dis. 9:5472018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sun X, Zhu H, Cao R, Zhang J and Wang X:
BACH1 is transcriptionally inhibited by TET1 in hepatocellular
carcinoma in a microRNA-34a-dependent manner to regulate autophagy
and inflammation. Pharmacol Res. 169:1056112021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Meng W, Li Y, Chai B, Liu X and Ma Z:
miR-199a: A tumor suppressor with noncoding RNA network and
therapeutic candidate in lung cancer. Int J Mol Sci. 23:85182022.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xu N, Zhang J, Shen C, Luo Y, Xia L, Xue F
and Xia Q: Cisplatin-induced downregulation of miR-199a-5p
increases drug resistance by activating autophagy in HCC cell.
Biochem Biophys Res Commun. 423:826–831. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu Y, Gu X and Liu Y: The effect of
dexmedetomidine on biological behavior of osteosarcoma cells
through miR-1307 expression. Am J Transl Res. 13:4876–4883.
2021.PubMed/NCBI
|
|
63
|
Zhou Y, Wang M, Shuang T, Liu Y, Zhang Y
and Shi C: MiR-1307 influences the chemotherapeutic sensitivity in
ovarian cancer cells through the regulation of the CIC
transcriptional repressor. Pathol Res Pract. 215:1526062019.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Qiu X and Dou Y: miR-1307 promotes the
proliferation of prostate cancer by targeting FOXO3A. Biomed
Pharmacother. 88:430–435. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xie S, Jiang X, Qin R, Song S, Lu Y, Wang
L, Chen Y and Lu D: miR-1307 promotes hepatocarcinogenesis by
CALR-OSTC-endoplasmic reticulum protein folding pathway. iScience.
24:1032712021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Khordadmehr M, Shahbazi R, Sadreddini S
and Baradaran B: miR-193: A new weapon against cancer. J Cell
Physiol. 234:16861–16872. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Qu L, Tian Y, Hong D, Wang F and Li Z:
Mig-6 inhibits autophagy in HCC cell lines by modulating
miR-193a-3p. Int J Med Sci. 19:338–351. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Feng X, Zou B, Nan T, Zheng X, Zheng L,
Lan J, Chen W and Yu J: MiR-25 enhances autophagy and promotes
sorafenib resistance of hepatocellular carcinoma via targeting
FBXW7. Int J Med Sci. 19:257–266. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Choi HJ, Park JH, Kim OH, Kim KH, Hong HE,
Seo H and Kim SJ: Combining everolimus and Ku0063794 promotes
apoptosis of hepatocellular carcinoma cells via reduced autophagy
resulting from diminished expression of miR-4790-3p. Int J Mol Sci.
22:28592021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li J, Zhai D, Huang Q, Chen HL, Zhang Z
and Tan QF: LncRNA DCST1-AS1 accelerates the proliferation,
metastasis and autophagy of hepatocellular carcinoma cell by
AKT/mTOR signaling pathways. Eur Rev Med Pharmacol Sci.
23:6091–6104. 2019.PubMed/NCBI
|
|
71
|
Zhang W, Liu Y, Fu Y, Han W, Xu H, Wen L,
Deng Y and Liu K: Long non-coding RNA LINC00160 functions as a
decoy of microRNA-132 to mediate autophagy and drug resistance in
hepatocellular carcinoma via inhibition of PIK3R3. Cancer Lett.
478:22–33. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Xin X, Wu M, Meng Q, Wang C, Lu Y, Yang Y,
Li X, Zheng Q, Pu H, Gui X, et al: Long noncoding RNA HULC
accelerates liver cancer by inhibiting PTEN via autophagy
cooperation to miR15a. Mol Cancer. 17:942018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cui C, Li Z and Wu D: The long non-coding
RNA H19 induces hypoxia/reoxygenation injury by up-regulating
autophagy in the hepatoma carcinoma cells. Biol Res. 52:322019.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhou Y, Zhang X and Klibanski A: MEG3
noncoding RNA: A tumor suppressor. J Mol Endocrinol. 48:R45–R53.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Braconi C, Kogure T, Valeri N, Huang N,
Nuovo G, Costinean S, Negrini M, Miotto E, Croce CM and Patel T:
microRNA-29 can regulate expression of the long non-coding RNA gene
MEG3 in hepatocellular cancer. Oncogene. 30:4750–4756. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yu S, Hou D, Chen P, Zhang Q, Lv B, Ma Y,
Liu F, Liu H, Song EJ, Yang D and Liu J: Adenosine induces
apoptosis through TNFR1/RIPK1/P38 axis in colon cancer cells.
Biochem Biophys Res Commun. 460:759–765. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pu Z, Wu L, Guo Y, Li G, Xiang M, Liu L,
Zhan H, Zhou X and Tan H: LncRNA MEG3 contributes to
adenosine-induced cytotoxicity in hepatoma HepG2 cells by
downregulated ILF3 and autophagy inhibition via regulation
PI3K-AKT-mTOR and beclin-1 signaling pathway. J Cell Biochem.
120:18172–18185. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang T, Li Z, Yan L, Yan F, Shen H and
Tian X: Long non-coding RNA neighbor of BRCA1 gene 2: A crucial
regulator in cancer biology. Front Oncol. 11:7835262021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liang L, Huan L, Wang J, Wu Y, Huang S and
He X: LncRNA RP11-295G20.2 regulates hepatocellular carcinoma cell
growth and autophagy by targeting PTEN to lysosomal degradation.
Cell Discov. 7:1182021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li K, Yao T, Zhang Y, Li W and Wang Z:
NEAT1 as a competing endogenous RNA in tumorigenesis of various
cancers: Role, mechanism and therapeutic potential. Int J Biol Sci.
17:3428–3440. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li X, Zhou Y, Yang L, Ma Y, Peng X, Yang
S, Li H and Liu J: LncRNA NEAT1 promotes autophagy via regulating
miR-204/ATG3 and enhanced cell resistance to sorafenib in
hepatocellular carcinoma. J Cell Physiol. 235:3402–3413. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sakaguchi H, Tsuchiya H, Kitagawa Y,
Tanino T, Yoshida K, Uchida N and Shiota G: NEAT1 confers
radioresistance to hepatocellular carcinoma cells by inducing
autophagy through GABARAP. Int J Mol Sci. 23:7112022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tang L, Chen Y, Chen H, Jiang P, Yan L, Mo
D, Tang X and Yan F: DCST1-AS1 promotes TGF-β-induced
epithelial-mesenchymal transition and enhances chemoresistance in
triple-negative breast cancer cells via ANXA1. Front Oncol.
10:2802020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yuan X, Zhao Q, Zhang Y and Xue M: The
role and mechanism of HLA complex group 11 in cancer. Biomed
Pharmacother. 143:1122102021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Li M, Zhang Y and Ma L: LncRNA HCG11
accelerates the progression of hepatocellular carcinoma via
miR-26a-5p/ATG12 axis. Eur Rev Med Pharmacol Sci. 23:10708–10720.
2019.PubMed/NCBI
|
|
86
|
Liu Z, Chen Q and Hann SS: The functions
and oncogenic roles of CCAT1 in human cancer. Biomed Pharmacother.
115:1089432019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Guo J, Ma Y, Peng X, Jin H and Liu J:
LncRNA CCAT1 promotes autophagy via regulating ATG7 by sponging
miR-181 in hepatocellular carcinoma. J Cell Biochem.
120:17975–17983. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yu X, Zheng Q, Zhang Q, Zhang S, He Y and
Guo W: MCM3AP-AS1: An indispensable cancer-related LncRNA. Front
Cell Dev Biol. 9:7527182021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhang H, Luo C and Zhang G: LncRNA
MCM3AP-AS1 regulates epidermal growth factor receptor and autophagy
to promote hepatocellular carcinoma metastasis by interacting with
miR-455. DNA Cell Biol. 38:857–864. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang M, Wang W, Li T, Yu X, Zhu Y, Ding
F, Li D and Yang T: Long noncoding RNA SNHG1 predicts a poor
prognosis and promotes hepatocellular carcinoma tumorigenesis.
Biomed Pharmacother. 80:73–79. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Thin KZ, Tu JC and Raveendran S: Long
non-coding SNHG1 in cancer. Clin Chim Acta. 494:38–47. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li W, Dong X, He C, Tan G, Li Z, Zhai B,
Feng J, Jiang X, Liu C, Jiang H and Sun X: LncRNA SNHG1 contributes
to sorafenib resistance by activating the Akt pathway and is
positively regulated by miR-21 in hepatocellular carcinoma cells. J
Exp Clin Cancer Res. 38:1832019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wu H, Gu J, Zhou D, Cheng W, Wang Y, Wang
Q and Wang X: LINC00160 mediated paclitaxel- and
doxorubicin-resistance in breast cancer cells by regulating TFF3
via transcription factor C/EBPβ. J Cell Mol Med. 24:8589–8602.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Cheng G, Liu Y, Liu L, Ruan H, Cao Q, Song
Z, Bao L, Xu T, Xiong Z, Liu J, et al: LINC00160 mediates sunitinib
resistance in renal cell carcinoma via SAA1 that is implicated in
STAT3 activation and compound transportation. Aging (Albany NY).
12:17459–17479. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Huppi K, Pitt JJ, Wahlberg BM and Caplen
NJ: The 8q24 gene desert: An oasis of non-coding transcriptional
activity. Front Genet. 3:692012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Traversa D, Simonetti G, Tolomeo D, Visci
G, Macchia G, Ghetti M, Martinelli G, Kristensen LS and Storlazzi
CT: Unravelling similarities and differences in the role of
circular and linear PVT1 in cancer and human disease. Br J Cancer.
126:835–850. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yang L, Peng X, Jin H and Liu J: Long
non-coding RNA PVT1 promotes autophagy as ceRNA to target ATG3 by
sponging microRNA-365 in hepatocellular carcinoma. Gene.
697:94–102. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang W, Zhang Y and Xi S: Upregulation of
lncRNA HAGLROS enhances the development of nasopharyngeal carcinoma
via modulating miR-100/ATG14 axis-mediated PI3K/AKT/mTOR signals.
Artif Cells Nanomed Biotechnol. 47:3043–3052. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chen JF, Wu P, Xia R, Yang J, Huo XY, Gu
DY, Tang CJ, De W and Yang F: STAT3-induced lncRNA HAGLROS
overexpression contributes to the malignant progression of gastric
cancer cells via mTOR signal-mediated inhibition of autophagy. Mol
Cancer. 17:62018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang WL, Yu DJ and Zhong M: LncRNA HAGLROS
accelerates the progression of lung carcinoma via sponging
microRNA-152. Eur Rev Med Pharmacol Sci. 23:6531–6538.
2019.PubMed/NCBI
|
|
101
|
Wei H, Hu J, Pu J, Tang Q, Li W, Ma R, Xu
Z, Tan C, Yao T, Wu X, et al: Long noncoding RNA HAGLROS promotes
cell proliferation, inhibits apoptosis and enhances autophagy via
regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells.
Int Immunopharmacol. 73:72–80. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yu X, Zheng H, Chan MTV and Wu WKK: HULC:
An oncogenic long non-coding RNA in human cancer. J Cell Mol Med.
21:410–417. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li P, Li Y and Ma L: Long noncoding RNA
highly upregulated in liver cancer promotes the progression of
hepatocellular carcinoma and attenuates the chemosensitivity of
oxaliplatin by regulating miR-383-5p/vesicle-associated membrane
protein-2 axis. Pharmacol Res Perspect. 9:e008152021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Xiong H, Ni Z, He J, Jiang S, Li X, He J,
Gong W, Zheng L, Chen S, Li B, et al: LncRNA HULC triggers
autophagy via stabilizing Sirt1 and attenuates the chemosensitivity
of HCC cells. Oncogene. 36:3528–3540. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang C, Jiang X, Li X, Song S, Meng Q,
Wang L, Lu Y, Xin X, Pu H, Gui X, et al: Long noncoding RNA HULC
accelerates the growth of human liver cancer stem cells by
upregulating CyclinD1 through miR675-PKM2 pathway via autophagy.
Stem Cell Res Ther. 11:82020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ghafouri-Fard S, Khoshbakht T, Taheri M
and Shojaei S: A review on the role of small nucleolar RNA host
gene 6 long non-coding RNAs in the carcinogenic processes. Front
Cell Dev Biol. 9:7416842021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Jing Z, Ye X, Ma X, Hu X, Yang W, Shi J,
Chen G and Gong L: SNGH16 regulates cell autophagy to promote
sorafenib resistance through suppressing miR-23b-3p via sponging
EGR1 in hepatocellular carcinoma. Cancer Med. 9:4324–4338. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Raveh E, Matouk IJ, Gilon M and Hochberg
A: The H19 long non-coding RNA in cancer initiation, progression
and metastasis-a proposed unifying theory. Mol Cancer. 14:1842015.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zhang C, Xu SN, Li K, Chen JH, Li Q and
Liu Y: The biological and molecular function of LINC00665 in human
cancers. Front Oncol. 12:8860342022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Shan Y and Li P: Long intergenic
non-protein coding RNA 665 regulates viability, apoptosis, and
autophagy via the MiR-186-5p/MAP4K3 axis in hepatocellular
carcinoma. Yonsei Med J. 60:842–853. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Hong F, Gao Y, Li Y, Zheng L, Xu F and LI
X: Inhibition of HIF1A-AS1 promoted starvation-induced
hepatocellular carcinoma cell apoptosis by reducing
HIF-1α/mTOR-mediated autophagy. World J Surg Oncol. 18:1132020.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
ZHANG Y, Shi J, Luo J, Liu C and Zhu L:
Regulatory mechanisms and potential medical applications of
HNF1A-AS1 in cancers. Am J Transl Res. 14:4154–4168.
2022.PubMed/NCBI
|
|
113
|
Liu Z, Wei X, Zhang A, Li C, Bai J and
Dong J: Long non-coding RNA HNF1A-AS1 functioned as an oncogene and
autophagy promoter in hepatocellular carcinoma through sponging
hsa-miR-30b-5p. Biochem Biophys Res Commun. 473:1268–1275. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang X and Zhu Y: Research progress on
regulating LncRNAs of hepatocellular carcinoma stem cells. Onco
Targets Ther. 14:917–927. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang X, Cheng ML, Gong Y, Ma WJ, Li B and
Jiang YZ: LncRNA DANCR promotes ATG7 expression to accelerate
hepatocellular carcinoma cell proliferation and autophagy by
sponging miR-222-3p. Eur Rev Med Pharmacol Sci. 24:8778–8787.
2020.PubMed/NCBI
|
|
116
|
Xiao H, Zhang F, Zou Y, Li J, Liu Y and
Huang W: The function and mechanism of long non-coding RNA-ATB in
cancers. Front Physiol. 9:3212018. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wang CZ, Yan GX, Dong DS, Xin H and Liu
ZY: LncRNA-ATB promotes autophagy by activating Yes-associated
protein and inducing autophagy-related protein 5 expression in
hepatocellular carcinoma. World J Gastroenterol. 25:5310–5322.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Peng N, He J, LI J, Huang H, Huang W, Liao
Y and Zhu S: Long noncoding RNA MALAT1 inhibits the apoptosis and
autophagy of hepatocellular carcinoma cell by targeting the
microRNA-146a/PI3K/Akt/mTOR axis. Cancer Cell Int. 20:1652020.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Yuan P, Cao W, Zang Q, Li G, Guo X and Fan
J: The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance
of hepatocellular carcinoma cells via modulating autophagy. Biochem
Biophys Res Commun. 478:1067–1073. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Shi J, Guo C and Ma J: CCAT2 enhances
autophagy-related invasion and metastasis via regulating miR-4496
and ELAVL1 in hepatocellular carcinoma. J Cell Mol Med.
25:8985–8996. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Hussen BM, Azimi T, Abak A, Hidayat HJ,
Taheri M and Ghafouri-Fard S: Role of lncRNA BANCR in human
cancers: An updated review. Front Cell Dev Biol. 9:6899922021.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhou M, Zhang G, Hu J, Zhu Y, Lan H, Shen
X, Lv Y and Huang L: Rutin attenuates sorafenib-induced
chemoresistance and autophagy in hepatocellular carcinoma by
regulating BANCR/miRNA-590-5P/OLR1 axis. Int J Biol Sci.
17:3595–3607. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Shang Q, Yang Z, Jia R and Ge S: The novel
roles of circRNAs in human cancer. Mol Cancer. 18:62019. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhang Z, Zhang J, Diao L and Han L: Small
non-coding RNAs in human cancer: Function, clinical utility, and
characterization. Oncogene. 40:1570–1577. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Morais P, Adachi H and Yu YT: Spliceosomal
snRNA epitranscriptomics. Front Genet. 12:6521292021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Matera AG, Terns RM and Terns MP:
Non-coding RNAs: Lessons from the small nuclear and small nucleolar
RNAs. Nat Rev Mol Cell Biol. 8:209–220. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Janin M, Coll-SanMartin L and Esteller M:
Disruption of the RNA modifications that target the ribosome
translation machinery in human cancer. Mol Cancer. 19:702020.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Liang J, Wen J, Huang Z, Chen XP, Zhang BX
and Chu L: Small nucleolar RNAs: Insight into their function in
cancer. Front Oncol. 9:5872019. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Cuciniello R, Filosa S and Crispi S: Novel
approaches in cancer treatment: Preclinical and clinical
development of small non-coding RNA therapeutics. J Exp Clin Cancer
Res. 40:3832021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Novina CD and Sharp PA: The RNAi
revolution. Nature. 430:161–164. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll
D and Zamore PD: PIWI-interacting RNAs: small RNAs with big
functions. Nat Rev Genet. 20:89–108. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Liu Y, Dou M, Song X, Dong Y, Liu S, Liu
H, Tao J, Li W, Yin X and Xu W: The emerging role of the piRNA/piwi
complex in cancer. Mol Cancer. 18:1232019. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Su Z, Wilson B, Kumar P and Dutta A:
Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu Rev
Genet. 54:47–69. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhang B, Liu Z, Cao K, Shan W, Liu J, Wen
Q and Wang R: Circ-SPECC1 modulates TGFβ2 and autophagy under
oxidative stress by sponging miR-33a to promote hepatocellular
carcinoma tumorigenesis. Cancer Med. 9:5999–6008. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zhao Z, He J and Feng C: CircCBFB is a
mediator of hepato-cellular carcinoma cell autophagy and
proliferation through miR-424-5p/ATG14 axis. Immunol Res.
70:341–353. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Han H, Yang C, Ma J, Zhang S, Zheng S,
Ling R, Sun K, Guo S, Huang B, Liang Y, et al:
N7-methylguanosine tRNA modification promotes esophageal
squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy
axis. Nat Commun. 13:14782022. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Li L and Chang HY: Physiological roles of
long noncoding RNAs: Insight from knockout mice. Trends Cell Biol.
24:594–602. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Pang KC, Frith MC and Mattick JS: Rapid
evolution of noncoding RNAs: Lack of conservation does not mean
lack of function. Trends Genet. 22:1–5. 2006. View Article : Google Scholar : PubMed/NCBI
|