
Non‑coding RNAs: Role of miRNAs and lncRNAs in the regulation of autophagy in hepatocellular carcinoma (Review)
- Authors:
- Jia Wu
- Ying Zhu
- Qingwei Cong
- Qiumin Xu
-
Affiliations: Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China, Administrative Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China - Published online on: April 20, 2023 https://doi.org/10.3892/or.2023.8550
- Article Number: 113
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang JD and Roberts LR: Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol. 7:448–458. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lamb CA, Yoshimori T and Tooze SA: The autophagosome: Origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 14:759–774. 2013. View Article : Google Scholar : PubMed/NCBI | |
Levine B and Kroemer G: Biological functions of autophagy genes: A disease perspective. Cell. 176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qian H, Chao X, Williams J, Fulte S, Li T, Yang L and Ding WX: Autophagy in liver diseases: A review. Mol Aspects Med. 82:1009732021. View Article : Google Scholar : PubMed/NCBI | |
Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ke PY: Diverse functions of autophagy in liver physiology and liver diseases. Int J Mol Sci. 20:3002019. View Article : Google Scholar : PubMed/NCBI | |
Yazdani HO, Huang H and Tsung A: Autophagy: Dual response in the development of hepatocellular carcinoma. Cells. 8:912019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xiong H, Liu D, Hill C, Ertay A, Li J, Zou Y, Miller P, White E, Downward J, et al: Autophagy inhibition specifically promotes epithelial-mesenchymal transition and invasion in RAS-mutated cancer cells. Autophagy. 15:886–899. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shirokikh NE: Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol. 57:261–304. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cech TR and Steitz JA: The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157:77–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bella ED, Koch J and Baerenfaller K: Translation and emerging functions of non-coding RNAs in inflammation and immunity. Allergy. 77:2025–2037. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Lin J and Tsung A: Manipulation of autophagy by MIR375 generates antitumor effects in liver cancer. Autophagy. 8:1833–1834. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV and Croce CM: MicroRNAs in cancer: Small molecules with a huge impact. J Clin Oncol. 27:5848–5856. 2009. View Article : Google Scholar : PubMed/NCBI | |
Geisler S and Coller J: RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 14:699–712. 2013. View Article : Google Scholar : PubMed/NCBI | |
Statello L, Guo C, Chen L and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mercer TR and Mattick JS: Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 20:300–307. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dhamija S and Diederichs S: From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis. Int J Cancer. 139:269–280. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen E, Li E, Liu H, Zhou Y, Wen L, Wang J, Wang Y, Ye L and Liang T: miR-26b enhances the sensitivity of hepatocellular carcinoma to doxorubicin via USP9X-dependent degradation of p53 and regulation of autophagy. Int J Biol Sci. 17:781–795. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, He Y, Zhai N, Ding S, Li J and Peng Z: MicroRNA-181a inhibits autophagy by targeting Atg5 in hepatocellular carcinoma. Front Biosci (Landmark Ed). 23:388–396. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sheng JQ, Wang MR, Fang D, Liu L, Huang WJ, Tian DA, He XX and Li PY: LncRNA NBR2 inhibits tumorigenesis by regulating autophagy in hepatocellular carcinoma. Biomed Pharmacother. 133:1110232021. View Article : Google Scholar : PubMed/NCBI | |
Fu XT, Shi YH, Zhou J, Peng YF, Liu WR, Shi GM, Gao Q, Wang XY, Song K, Fan J and Ding ZB: MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer Lett. 412:108–117. 2018. View Article : Google Scholar : PubMed/NCBI | |
Martins M, Galfrè S, Terrigno M, Pandolfini L, Appolloni I, Dunville K, Marranci A, Rizzo M, Mercatanti A, Poliseno L, et al: A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation. Stem Cell Reports. 16:1496–1509. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu C and Yi X: miR-541 serves as a prognostic biomarker of osteosarcoma and its regulatory effect on tumor cell proliferation, migration and invasion by targeting TGIF2. Diagn Pathol. 15:962020. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Du B, Lu QJ, Fan XW, Tang K, Yang L and Liao WL: miR-541 suppresses proliferation and invasion of squamous cell lung carcinoma cell lines via directly targeting high-mobility group AT-hook 2. Cancer Med. 7:2581–2591. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu WP, Liu JP, Feng JF, Zhu CP, Yang Y, Zhou WP, Ding J, Huang CK, Cui YL, Ding CH, et al: miR-541 potentiates the response of human hepatocellular carcinoma to sorafenib treatment by inhibiting autophagy. Gut. 69:1309–1321. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Jiang D and Yang S: MiR-490-3p inhibits the malignant progression of lung adenocarcinoma. Cancer Manag Res. 12:10975–10984. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Xiao Z, Wu WKK, Wang MH, To KF, Chen Y, Yang W, Li MSM, Shin VY, Tong JH, et al: Epigenetic silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1 to promote Helicobacter pylori-induced gastric carcinogenesis. Cancer Res. 75:754–765. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ou Y, He J and Liu Y: MiR-490-3p inhibits autophagy via targeting ATG7 in hepatocellular carcinoma. IUBMB Life. 70:468–478. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fernández C, Bellosillo B, Ferraro M, Seoane A, Sánchez-González B, Pairet S, Pons A, Barranco L, Vela MC, Gimeno E, et al: MicroRNAs 142-3p, miR-155 and miR-203 are deregulated in gastric MALT lymphomas compared to chronic gastritis. Cancer Genomics Proteomics. 14:75–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Chen J, Zhou H, Chen Y, Zhi Y, Zhang B, Chen L, Chu X, Wang R and Zhang C: PU.1/microRNA-142-3p targets ATG5/ATG16L1 to inactivate autophagy and sensitize hepatocellular carcinoma cells to sorafenib. Cell Death Dis. 9:3122018. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Cao F, Sui J, Hong Y, Liu Q, Gao X, Gong H, Hao L, Lou Z and Zhang W: MicroRNA-142-3p inhibits tumorigenesis of colorectal cancer via suppressing the activation of Wnt Signaling by directly targeting to β-catenin. Front Oncol. 10:5529442021. View Article : Google Scholar : PubMed/NCBI | |
Mansoori B, Duijf PHG, Mohammadi A, Safarzadeh E, Ditzel HJ, Gjerstorff MF, Cho WC and Baradaran B: MiR-142-3p targets HMGA2 and suppresses breast cancer malignancy. Life Sci. 276:1194312021. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez AE, Hernández JÁ, Benito R, Gutiérrez NC, García JL, Hernández-Sánchez M, Risueño A, Sarasquete ME, Fermiñán E, Fisac R, et al: Molecular characterization of chronic lymphocytic leukemia patients with a high number of losses in 13q14. PLoS One. 7:e484852012. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Wu Q, Wang Z, Che Y, Zheng S, Chen Y, Zhong X and Shi F: miR-223: An immune regulator in infectious disorders. Front Immunol. 12:7818152021. View Article : Google Scholar : PubMed/NCBI | |
Favero A, Segatto I, Perin T and Belletti B: The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. Wiley Interdiscip Rev RNA. 12:e16592021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Chen E, Tang Y, Mao J, Shen J, Zheng X, Xie S, Zhang S, Wu Y, Liu H, et al: miR-223 overexpression inhibits doxorubicin-induced autophagy by targeting FOXO3a and reverses chemoresistance in hepatocellular carcinoma cells. Cell Death Dis. 10:8432019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang Q, Wen J, Wu Y and Man C: MiR-375: A novel multifunctional regulator. Life Sci. 275:1193232021. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Lu Y, Wang R, Xu X, Liu Q, He S, Pan H, Liu X, Yuan B, Ding Y and Zhang J: MicroRNA-375: Potential cancer suppressor and therapeutic drug. Biosci Rep. 41:BSR202114942021. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Yan W, He X, Zhang L, Li C, Huang H, Nace G, Geller DA, Lin J and Tsung A: miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology. 143:177–187.e8. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li C, Li Y, Lu Y, Niu Z, Zhao H, Peng Y and Li M: miR-26 family and its target genes in tumorigenesis and development. Crit Rev Oncol Hematol. 157:1031242021. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M and Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jin F, Wang Y, Li M, Zhu Y, Liang H, Wang C, Wang F, Zhang CY, Zen K and Li L: MiR-26 enhances chemosensitivity and promotes apoptosis of hepatocellular carcinoma cells through inhibiting autophagy. Cell Death Dis. 8:e25402017. View Article : Google Scholar : PubMed/NCBI | |
Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M and Dreyfuss G: miRNPs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16:720–728. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang CZ, Deng F, Li H, Wang DD, Zhang W, Ding L and Tang JH: MiR-101: A potential therapeutic target of cancers. Am J Transl Res. 10:3310–3321. 2018.PubMed/NCBI | |
Xu L, Beckebaum S, Iacob S, Wu G, Kaiser GM, Radtke A, Liu C, Kabar I, Schmidt HH, Zhang X, et al: MicroRNA-101 inhibits human hepatocellular carcinoma progression through EZH2 downregulation and increased cytostatic drug sensitivity. J Hepatol. 60:590–598. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, An Y, Wang Y, Zhang C, Zhang H, Huang C, Jiang H, Wang X and Li X: miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep. 29:2019–2024. 2013. View Article : Google Scholar : PubMed/NCBI | |
Korać P, Antica M and Matulić M: MiR-7 in cancer development. Biomedicines. 9:3252021. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Tao Y, Zhou Y, Qin N, Chen C, Tian D and Xu L: MicroRNA-7: A promising new target in cancer therapy. Cancer Cell Int. 15:1032015. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Li Y, Liao J, Liu M, Zhu L and Liao K: MicroRNA-7 inhibits hepatocellular carcinoma cell invasion and metastasis by regulating Atg5-mediated autophagy. Transl Cancer Res. 9:3965–3972. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez A, Griffiths-Jones S, Ashurst JL and Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome Res. 14:1902–1910. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jiang LH, Zhang HD and Tang JH: MiR-30a: A novel biomarker and potential therapeutic target for cancer. J Oncol. 2018:51678292018. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Li C and Hao R: miR-559 inhibits proliferation, autophagy, and angiogenesis of hepatocellular carcinoma cells by targeting PARD3. Mediators Inflamm. 2022:31214922022. View Article : Google Scholar : PubMed/NCBI | |
Jin W, Liang Y, Li S, Lin G, Liang H, Zhang Z, Zhang W and Nie R: MiR-513b-5p represses autophagy during the malignant progression of hepatocellular carcinoma by targeting PIK3R3. Aging (Albany NY). 13:16072–16087. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Tan J, Wang L, Pei G, Cheng H, Zhang Q, Wang S, He C, Fu C and Wei Q: MiR-125 family in cardiovascular and cerebrovascular diseases. Front Cell Dev Biol. 9:7990492021. View Article : Google Scholar : PubMed/NCBI | |
Ren WW, Li DD, Chen X, Li XL, He YP, Guo LH, Liu LN, Sun LP and Zhang XP: MicroRNA-125b reverses oxaliplatin resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy. Cell Death Dis. 9:5472018. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Zhu H, Cao R, Zhang J and Wang X: BACH1 is transcriptionally inhibited by TET1 in hepatocellular carcinoma in a microRNA-34a-dependent manner to regulate autophagy and inflammation. Pharmacol Res. 169:1056112021. View Article : Google Scholar : PubMed/NCBI | |
Meng W, Li Y, Chai B, Liu X and Ma Z: miR-199a: A tumor suppressor with noncoding RNA network and therapeutic candidate in lung cancer. Int J Mol Sci. 23:85182022. View Article : Google Scholar : PubMed/NCBI | |
Xu N, Zhang J, Shen C, Luo Y, Xia L, Xue F and Xia Q: Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. Biochem Biophys Res Commun. 423:826–831. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Gu X and Liu Y: The effect of dexmedetomidine on biological behavior of osteosarcoma cells through miR-1307 expression. Am J Transl Res. 13:4876–4883. 2021.PubMed/NCBI | |
Zhou Y, Wang M, Shuang T, Liu Y, Zhang Y and Shi C: MiR-1307 influences the chemotherapeutic sensitivity in ovarian cancer cells through the regulation of the CIC transcriptional repressor. Pathol Res Pract. 215:1526062019. View Article : Google Scholar : PubMed/NCBI | |
Qiu X and Dou Y: miR-1307 promotes the proliferation of prostate cancer by targeting FOXO3A. Biomed Pharmacother. 88:430–435. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie S, Jiang X, Qin R, Song S, Lu Y, Wang L, Chen Y and Lu D: miR-1307 promotes hepatocarcinogenesis by CALR-OSTC-endoplasmic reticulum protein folding pathway. iScience. 24:1032712021. View Article : Google Scholar : PubMed/NCBI | |
Khordadmehr M, Shahbazi R, Sadreddini S and Baradaran B: miR-193: A new weapon against cancer. J Cell Physiol. 234:16861–16872. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qu L, Tian Y, Hong D, Wang F and Li Z: Mig-6 inhibits autophagy in HCC cell lines by modulating miR-193a-3p. Int J Med Sci. 19:338–351. 2022. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Zou B, Nan T, Zheng X, Zheng L, Lan J, Chen W and Yu J: MiR-25 enhances autophagy and promotes sorafenib resistance of hepatocellular carcinoma via targeting FBXW7. Int J Med Sci. 19:257–266. 2022. View Article : Google Scholar : PubMed/NCBI | |
Choi HJ, Park JH, Kim OH, Kim KH, Hong HE, Seo H and Kim SJ: Combining everolimus and Ku0063794 promotes apoptosis of hepatocellular carcinoma cells via reduced autophagy resulting from diminished expression of miR-4790-3p. Int J Mol Sci. 22:28592021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhai D, Huang Q, Chen HL, Zhang Z and Tan QF: LncRNA DCST1-AS1 accelerates the proliferation, metastasis and autophagy of hepatocellular carcinoma cell by AKT/mTOR signaling pathways. Eur Rev Med Pharmacol Sci. 23:6091–6104. 2019.PubMed/NCBI | |
Zhang W, Liu Y, Fu Y, Han W, Xu H, Wen L, Deng Y and Liu K: Long non-coding RNA LINC00160 functions as a decoy of microRNA-132 to mediate autophagy and drug resistance in hepatocellular carcinoma via inhibition of PIK3R3. Cancer Lett. 478:22–33. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xin X, Wu M, Meng Q, Wang C, Lu Y, Yang Y, Li X, Zheng Q, Pu H, Gui X, et al: Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a. Mol Cancer. 17:942018. View Article : Google Scholar : PubMed/NCBI | |
Cui C, Li Z and Wu D: The long non-coding RNA H19 induces hypoxia/reoxygenation injury by up-regulating autophagy in the hepatoma carcinoma cells. Biol Res. 52:322019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zhang X and Klibanski A: MEG3 noncoding RNA: A tumor suppressor. J Mol Endocrinol. 48:R45–R53. 2012. View Article : Google Scholar : PubMed/NCBI | |
Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, Negrini M, Miotto E, Croce CM and Patel T: microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 30:4750–4756. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Hou D, Chen P, Zhang Q, Lv B, Ma Y, Liu F, Liu H, Song EJ, Yang D and Liu J: Adenosine induces apoptosis through TNFR1/RIPK1/P38 axis in colon cancer cells. Biochem Biophys Res Commun. 460:759–765. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pu Z, Wu L, Guo Y, Li G, Xiang M, Liu L, Zhan H, Zhou X and Tan H: LncRNA MEG3 contributes to adenosine-induced cytotoxicity in hepatoma HepG2 cells by downregulated ILF3 and autophagy inhibition via regulation PI3K-AKT-mTOR and beclin-1 signaling pathway. J Cell Biochem. 120:18172–18185. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Li Z, Yan L, Yan F, Shen H and Tian X: Long non-coding RNA neighbor of BRCA1 gene 2: A crucial regulator in cancer biology. Front Oncol. 11:7835262021. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Huan L, Wang J, Wu Y, Huang S and He X: LncRNA RP11-295G20.2 regulates hepatocellular carcinoma cell growth and autophagy by targeting PTEN to lysosomal degradation. Cell Discov. 7:1182021. View Article : Google Scholar : PubMed/NCBI | |
Li K, Yao T, Zhang Y, Li W and Wang Z: NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: Role, mechanism and therapeutic potential. Int J Biol Sci. 17:3428–3440. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhou Y, Yang L, Ma Y, Peng X, Yang S, Li H and Liu J: LncRNA NEAT1 promotes autophagy via regulating miR-204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma. J Cell Physiol. 235:3402–3413. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi H, Tsuchiya H, Kitagawa Y, Tanino T, Yoshida K, Uchida N and Shiota G: NEAT1 confers radioresistance to hepatocellular carcinoma cells by inducing autophagy through GABARAP. Int J Mol Sci. 23:7112022. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Chen Y, Chen H, Jiang P, Yan L, Mo D, Tang X and Yan F: DCST1-AS1 promotes TGF-β-induced epithelial-mesenchymal transition and enhances chemoresistance in triple-negative breast cancer cells via ANXA1. Front Oncol. 10:2802020. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Zhao Q, Zhang Y and Xue M: The role and mechanism of HLA complex group 11 in cancer. Biomed Pharmacother. 143:1122102021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhang Y and Ma L: LncRNA HCG11 accelerates the progression of hepatocellular carcinoma via miR-26a-5p/ATG12 axis. Eur Rev Med Pharmacol Sci. 23:10708–10720. 2019.PubMed/NCBI | |
Liu Z, Chen Q and Hann SS: The functions and oncogenic roles of CCAT1 in human cancer. Biomed Pharmacother. 115:1089432019. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Ma Y, Peng X, Jin H and Liu J: LncRNA CCAT1 promotes autophagy via regulating ATG7 by sponging miR-181 in hepatocellular carcinoma. J Cell Biochem. 120:17975–17983. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Zheng Q, Zhang Q, Zhang S, He Y and Guo W: MCM3AP-AS1: An indispensable cancer-related LncRNA. Front Cell Dev Biol. 9:7527182021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Luo C and Zhang G: LncRNA MCM3AP-AS1 regulates epidermal growth factor receptor and autophagy to promote hepatocellular carcinoma metastasis by interacting with miR-455. DNA Cell Biol. 38:857–864. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wang W, Li T, Yu X, Zhu Y, Ding F, Li D and Yang T: Long noncoding RNA SNHG1 predicts a poor prognosis and promotes hepatocellular carcinoma tumorigenesis. Biomed Pharmacother. 80:73–79. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thin KZ, Tu JC and Raveendran S: Long non-coding SNHG1 in cancer. Clin Chim Acta. 494:38–47. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li W, Dong X, He C, Tan G, Li Z, Zhai B, Feng J, Jiang X, Liu C, Jiang H and Sun X: LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J Exp Clin Cancer Res. 38:1832019. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Gu J, Zhou D, Cheng W, Wang Y, Wang Q and Wang X: LINC00160 mediated paclitaxel- and doxorubicin-resistance in breast cancer cells by regulating TFF3 via transcription factor C/EBPβ. J Cell Mol Med. 24:8589–8602. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cheng G, Liu Y, Liu L, Ruan H, Cao Q, Song Z, Bao L, Xu T, Xiong Z, Liu J, et al: LINC00160 mediates sunitinib resistance in renal cell carcinoma via SAA1 that is implicated in STAT3 activation and compound transportation. Aging (Albany NY). 12:17459–17479. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huppi K, Pitt JJ, Wahlberg BM and Caplen NJ: The 8q24 gene desert: An oasis of non-coding transcriptional activity. Front Genet. 3:692012. View Article : Google Scholar : PubMed/NCBI | |
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS and Storlazzi CT: Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer. 126:835–850. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Peng X, Jin H and Liu J: Long non-coding RNA PVT1 promotes autophagy as ceRNA to target ATG3 by sponging microRNA-365 in hepatocellular carcinoma. Gene. 697:94–102. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhang Y and Xi S: Upregulation of lncRNA HAGLROS enhances the development of nasopharyngeal carcinoma via modulating miR-100/ATG14 axis-mediated PI3K/AKT/mTOR signals. Artif Cells Nanomed Biotechnol. 47:3043–3052. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen JF, Wu P, Xia R, Yang J, Huo XY, Gu DY, Tang CJ, De W and Yang F: STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 17:62018. View Article : Google Scholar : PubMed/NCBI | |
Wang WL, Yu DJ and Zhong M: LncRNA HAGLROS accelerates the progression of lung carcinoma via sponging microRNA-152. Eur Rev Med Pharmacol Sci. 23:6531–6538. 2019.PubMed/NCBI | |
Wei H, Hu J, Pu J, Tang Q, Li W, Ma R, Xu Z, Tan C, Yao T, Wu X, et al: Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells. Int Immunopharmacol. 73:72–80. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Zheng H, Chan MTV and Wu WKK: HULC: An oncogenic long non-coding RNA in human cancer. J Cell Mol Med. 21:410–417. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li P, Li Y and Ma L: Long noncoding RNA highly upregulated in liver cancer promotes the progression of hepatocellular carcinoma and attenuates the chemosensitivity of oxaliplatin by regulating miR-383-5p/vesicle-associated membrane protein-2 axis. Pharmacol Res Perspect. 9:e008152021. View Article : Google Scholar : PubMed/NCBI | |
Xiong H, Ni Z, He J, Jiang S, Li X, He J, Gong W, Zheng L, Chen S, Li B, et al: LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells. Oncogene. 36:3528–3540. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Jiang X, Li X, Song S, Meng Q, Wang L, Lu Y, Xin X, Pu H, Gui X, et al: Long noncoding RNA HULC accelerates the growth of human liver cancer stem cells by upregulating CyclinD1 through miR675-PKM2 pathway via autophagy. Stem Cell Res Ther. 11:82020. View Article : Google Scholar : PubMed/NCBI | |
Ghafouri-Fard S, Khoshbakht T, Taheri M and Shojaei S: A review on the role of small nucleolar RNA host gene 6 long non-coding RNAs in the carcinogenic processes. Front Cell Dev Biol. 9:7416842021. View Article : Google Scholar : PubMed/NCBI | |
Jing Z, Ye X, Ma X, Hu X, Yang W, Shi J, Chen G and Gong L: SNGH16 regulates cell autophagy to promote sorafenib resistance through suppressing miR-23b-3p via sponging EGR1 in hepatocellular carcinoma. Cancer Med. 9:4324–4338. 2020. View Article : Google Scholar : PubMed/NCBI | |
Raveh E, Matouk IJ, Gilon M and Hochberg A: The H19 long non-coding RNA in cancer initiation, progression and metastasis-a proposed unifying theory. Mol Cancer. 14:1842015. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Xu SN, Li K, Chen JH, Li Q and Liu Y: The biological and molecular function of LINC00665 in human cancers. Front Oncol. 12:8860342022. View Article : Google Scholar : PubMed/NCBI | |
Shan Y and Li P: Long intergenic non-protein coding RNA 665 regulates viability, apoptosis, and autophagy via the MiR-186-5p/MAP4K3 axis in hepatocellular carcinoma. Yonsei Med J. 60:842–853. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hong F, Gao Y, Li Y, Zheng L, Xu F and LI X: Inhibition of HIF1A-AS1 promoted starvation-induced hepatocellular carcinoma cell apoptosis by reducing HIF-1α/mTOR-mediated autophagy. World J Surg Oncol. 18:1132020. View Article : Google Scholar : PubMed/NCBI | |
ZHANG Y, Shi J, Luo J, Liu C and Zhu L: Regulatory mechanisms and potential medical applications of HNF1A-AS1 in cancers. Am J Transl Res. 14:4154–4168. 2022.PubMed/NCBI | |
Liu Z, Wei X, Zhang A, Li C, Bai J and Dong J: Long non-coding RNA HNF1A-AS1 functioned as an oncogene and autophagy promoter in hepatocellular carcinoma through sponging hsa-miR-30b-5p. Biochem Biophys Res Commun. 473:1268–1275. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X and Zhu Y: Research progress on regulating LncRNAs of hepatocellular carcinoma stem cells. Onco Targets Ther. 14:917–927. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Cheng ML, Gong Y, Ma WJ, Li B and Jiang YZ: LncRNA DANCR promotes ATG7 expression to accelerate hepatocellular carcinoma cell proliferation and autophagy by sponging miR-222-3p. Eur Rev Med Pharmacol Sci. 24:8778–8787. 2020.PubMed/NCBI | |
Xiao H, Zhang F, Zou Y, Li J, Liu Y and Huang W: The function and mechanism of long non-coding RNA-ATB in cancers. Front Physiol. 9:3212018. View Article : Google Scholar : PubMed/NCBI | |
Wang CZ, Yan GX, Dong DS, Xin H and Liu ZY: LncRNA-ATB promotes autophagy by activating Yes-associated protein and inducing autophagy-related protein 5 expression in hepatocellular carcinoma. World J Gastroenterol. 25:5310–5322. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peng N, He J, LI J, Huang H, Huang W, Liao Y and Zhu S: Long noncoding RNA MALAT1 inhibits the apoptosis and autophagy of hepatocellular carcinoma cell by targeting the microRNA-146a/PI3K/Akt/mTOR axis. Cancer Cell Int. 20:1652020. View Article : Google Scholar : PubMed/NCBI | |
Yuan P, Cao W, Zang Q, Li G, Guo X and Fan J: The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy. Biochem Biophys Res Commun. 478:1067–1073. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Guo C and Ma J: CCAT2 enhances autophagy-related invasion and metastasis via regulating miR-4496 and ELAVL1 in hepatocellular carcinoma. J Cell Mol Med. 25:8985–8996. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hussen BM, Azimi T, Abak A, Hidayat HJ, Taheri M and Ghafouri-Fard S: Role of lncRNA BANCR in human cancers: An updated review. Front Cell Dev Biol. 9:6899922021. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Zhang G, Hu J, Zhu Y, Lan H, Shen X, Lv Y and Huang L: Rutin attenuates sorafenib-induced chemoresistance and autophagy in hepatocellular carcinoma by regulating BANCR/miRNA-590-5P/OLR1 axis. Int J Biol Sci. 17:3595–3607. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shang Q, Yang Z, Jia R and Ge S: The novel roles of circRNAs in human cancer. Mol Cancer. 18:62019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhang J, Diao L and Han L: Small non-coding RNAs in human cancer: Function, clinical utility, and characterization. Oncogene. 40:1570–1577. 2021. View Article : Google Scholar : PubMed/NCBI | |
Morais P, Adachi H and Yu YT: Spliceosomal snRNA epitranscriptomics. Front Genet. 12:6521292021. View Article : Google Scholar : PubMed/NCBI | |
Matera AG, Terns RM and Terns MP: Non-coding RNAs: Lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol. 8:209–220. 2007. View Article : Google Scholar : PubMed/NCBI | |
Janin M, Coll-SanMartin L and Esteller M: Disruption of the RNA modifications that target the ribosome translation machinery in human cancer. Mol Cancer. 19:702020. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Wen J, Huang Z, Chen XP, Zhang BX and Chu L: Small nucleolar RNAs: Insight into their function in cancer. Front Oncol. 9:5872019. View Article : Google Scholar : PubMed/NCBI | |
Cuciniello R, Filosa S and Crispi S: Novel approaches in cancer treatment: Preclinical and clinical development of small non-coding RNA therapeutics. J Exp Clin Cancer Res. 40:3832021. View Article : Google Scholar : PubMed/NCBI | |
Novina CD and Sharp PA: The RNAi revolution. Nature. 430:161–164. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D and Zamore PD: PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 20:89–108. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, Tao J, Li W, Yin X and Xu W: The emerging role of the piRNA/piwi complex in cancer. Mol Cancer. 18:1232019. View Article : Google Scholar : PubMed/NCBI | |
Su Z, Wilson B, Kumar P and Dutta A: Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu Rev Genet. 54:47–69. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Liu Z, Cao K, Shan W, Liu J, Wen Q and Wang R: Circ-SPECC1 modulates TGFβ2 and autophagy under oxidative stress by sponging miR-33a to promote hepatocellular carcinoma tumorigenesis. Cancer Med. 9:5999–6008. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, He J and Feng C: CircCBFB is a mediator of hepato-cellular carcinoma cell autophagy and proliferation through miR-424-5p/ATG14 axis. Immunol Res. 70:341–353. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han H, Yang C, Ma J, Zhang S, Zheng S, Ling R, Sun K, Guo S, Huang B, Liang Y, et al: N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun. 13:14782022. View Article : Google Scholar : PubMed/NCBI | |
Li L and Chang HY: Physiological roles of long noncoding RNAs: Insight from knockout mice. Trends Cell Biol. 24:594–602. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pang KC, Frith MC and Mattick JS: Rapid evolution of noncoding RNAs: Lack of conservation does not mean lack of function. Trends Genet. 22:1–5. 2006. View Article : Google Scholar : PubMed/NCBI |