You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Seguin L, Durandy M and Feral CC: Lung adenocarcinoma tumor origin: A guide for personalized medicine. Cancers (Basel). 14:17592022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Fillmore CM, Hammerman PS, Kim CF and Wong KK: Non-small-cell lung cancers: A heterogeneous set of diseases. Nat Rev Cancer. 14:535–546. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Davidson MR, Gazdar AF and Clarke BE: The pivotal role of pathology in the management of lung cancer. J Thorac Dis. 5 (Suppl 5):S463–S478. 2013.PubMed/NCBI | |
|
Zito Marino F, Bianco R, Accardo M, Ronchi A, Cozzolino I, Morgillo F, Rossi G and Franco R: Molecular heterogeneity in lung cancer: From mechanisms of origin to clinical implications. Int J Med Sci. 16:981–989. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Langer CJ, Besse B, Gualberto A, Brambilla E and Soria JC: The evolving role of histology in the management of advanced non-small-cell lung cancer. J Clin Oncol. 28:5311–5320. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Iqbal MA, Arora S, Prakasam G, Calin GA and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 70:3–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ishola AA, La'ah AS, Le HD, Nguyen VQ, Yang YP, Chou SJ, Tai HY, Chien CS and Wang ML: Non-coding RNA and lung cancer progression. J Chin Med. 83:8–14. 2020. | |
|
Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM, et al: MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res. 16:430–441. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D and Tao Y: Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer. 19:472020. View Article : Google Scholar : PubMed/NCBI | |
|
Hanna J, Hossain GS and Kocerha J: The potential for microRNA therapeutics and clinical research. Front Genet. 10:4782019. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Fang J, Wang Y, Wang H and Sun CC: MiRNA-based therapeutic strategy in lung cancer. Curr Pharm Des. 23:6011–6018. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK and Mukherjee SK: RNA interference: Biology, mechanism, and applications. Microbiol Mol Biol Rev. 67:657–685. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Michlewski G and Cáceres JF: Post-transcriptional control of miRNA biogenesis. RNA. 25:1–16. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Guo WT and Wang Y: Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol Life Sci. 76:1697–1711. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1217. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Heyam A, Lagos D and Plevin M: Dissecting the roles of TRBP and PACT in double-stranded RNA recognition and processing of noncoding RNAs. Wiley Interdiscip Rev RNA. 6:271–289. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Linder P and Jankowsky E: From unwinding to clamping-the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 12:505–616. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Williams AE: Functional aspects of animal microRNAs. Cell Mol Life Sci. 65:545–562. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Du T and Zamore PD: microPrimer: The biogenesis and function of microRNA. Development. 132:4645–4652. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Treiber T, Treiber N and Meister G: Regulation of microRNA biogenesis and function. Thromb Haemost. 107:605–610. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ren H and Wang Q: Non-coding RNA and diabetic kidney disease. DNA Cell Biol. 40:553–567. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gizak A, Duda P, Pielka E, McCubrey JA and Rakus D: GSK3 and miRNA in neural tissue: From brain development to neurodegenerative diseases. Biochim Biophys Acta Mol Cell Res. 1867:1186962020. View Article : Google Scholar : PubMed/NCBI | |
|
Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Long H, Wang Z, Chen J, Xiang T, Li Q, Diao X and Zhu B: microRNA-214 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting the suppressor-of-fused protein (Sufu). Oncotarget. 6:38705–38718. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Han L, Huang Z, Liu Y, Ye L, Li D, Yao Z, Wang C, Zhang Y, Yang H, Tan Z, et al: MicroRNA-106a regulates autophagy-related cell death and EMT by targeting TP53INP1 in lung cancer with bone metastasis. Cell Death Dis. 12:10372021. View Article : Google Scholar : PubMed/NCBI | |
|
Luo J, Xia L, Zhang L, Zhao K and Li C: MiRNA-144-5p down-modulates CDCA3 to regulate proliferation and apoptosis of lung adenocarcinoma cells. Mutat Res. 825:1117982022. View Article : Google Scholar : PubMed/NCBI | |
|
Mo D, Yang D, Xiao X, Sun R, Huang L and Xu J: MiRNA-145 suppresses lung adenocarcinoma cell invasion and migration by targeting N-cadherin. Biotechnol Lett. 39:701–710. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yin R, Zhang S, Wu Y, Fan X, Jiang F, Zhang Z, Feng D, Guo X and Xu L: microRNA-145 suppresses lung adenocarcinoma-initiating cell proliferation by targeting OCT4. Oncol Rep. 25:1747–1754. 2011.PubMed/NCBI | |
|
Zhang JX, Yang W, Wu JZ, Zhou C, Liu S, Shi HB and Zhou WZ: MicroRNA-32-5p inhibits epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting SMAD family 3. J Cancer. 12:2258–2267. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Si L and Tian H: MicroRNA-148a inhibits cell proliferation and cell cycle progression in lung adenocarcinoma via directly targeting transcription factor E2F3. Exp Ther Med. 16:5400–5409. 2018.PubMed/NCBI | |
|
Lu Y, Zheng W, Rao X, Du Y and Xue J: MicroRNA-9-5p facilitates lung adenocarcinoma cell malignant progression via targeting STARD13. Biochem Genet. 60:1865–1880. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu K, Lin J, Chen S and Xu Q: miR-9-5p promotes lung adenocarcinoma cell proliferation, migration and invasion by targeting ID4. Technol Cancer Res Treat. 20:153303382110485922021. View Article : Google Scholar : PubMed/NCBI | |
|
Han HS, Son SM, Yun J, Jo YN and Lee OJ: MicroRNA-29a suppresses the growth, migration, and invasion of lung adenocarcinoma cells by targeting carcinoembryonic antigen-related cell adhesion molecule 6. FEBS Lett. 588:3744–3750. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Cao J, He Y, Liu HQ, Wang SB, Zhao BC and Cheng YS: MicroRNA 192 regulates chemo-resistance of lung adenocarcinoma for gemcitabine and cisplatin combined therapy by targeting Bcl-2. Int J Clin Exp Med. 8:12397–12403. 2015.PubMed/NCBI | |
|
Ma Z, Chen G, Chen Y, Guo Z, Chai H, Tang Y, Zheng L, Wei K, Pan C, Ma Z, et al: MiR-937-3p promotes metastasis and angiogenesis and is activated by MYC in lung adenocarcinoma. Cancer Cell Int. 22:312022. View Article : Google Scholar : PubMed/NCBI | |
|
Duan L, Wang J, Zhang D, Yuan Y, Tang L, Zhou Y and Jiang X: Immune-related miRNA-195-5p inhibits the progression of lung adenocarcinoma by targeting polypyrimidine tract-binding protein 1. Front Oncol. 12:8625642022. View Article : Google Scholar : PubMed/NCBI | |
|
Bu L, Tian Y, Wen H, Jia W and Yang S: miR-195-5p exerts tumor-suppressive functions in human lung cancer cells through targeting TrxR2. Acta Biochim Biophys Sin (Shanghai). 53:189–200. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan C, Bai R, Gao Y, Jiang X, Li S, Sun W, Li Y, Huang Z, Gong Y and Xie C: Effects of MicroRNA-195-5p on biological behaviors and radiosensitivity of lung adenocarcinoma cells via targeting HOXA10. Oxid Med Cell Longev. 2021:45222102021. View Article : Google Scholar : PubMed/NCBI | |
|
Cao X, Xue F, Chen H, Shen L, Yuan X, Yu Y, Zong Y, Zhong L and Huang F: MiR-202-3p inhibits the proliferation and metastasis of lung adenocarcinoma cells by targeting RRM2. Ann Transl Med. 10:13742022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang L, Shou T, Li K, Gao CL, Duan LC, Fang LZ, Zhang QY, Chen ZN, Zhang C, Yang ST and Li GF: MicroRNA-30e-5p promotes cell growth by targeting PTPN13 and indicates poor survival and recurrence in lung adenocarcinoma. J Cell Mol Med. 21:2852–2862. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao S, Gao X, Zang S, Li Y, Feng X and Yuan X: MicroRNA-383-5p acts as a prognostic marker and inhibitor of cell proliferation in lung adenocarcinoma by cancerous inhibitor of protein phosphatase 2A. Oncol Lett. 14:3573–3579. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sato T, Shiba-Ishii A, Kim Y, Dai T, Husni RE, Hong J, Kano J, Sakashita S, Iijima T and Noguchi M: miR-3941: A novel microRNA that controls IGBP1 expression and is associated with malignant progression of lung adenocarcinoma. Cancer Sci. 108:536–542. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pu X, Jiang H, Li W, Xu L, Wang L and Shu Y: Upregulation of the coatomer protein complex subunit beta 2 (COPB2) gene targets microRNA-335-3p in NCI-H1975 lung adenocarcinoma cells to promote cell proliferation and migration. Med Sci Monit. 26:e9183822020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu WB, Wang L, Huang XR and Li F: MicroRNA-204 targets SOX4 to inhibit metastasis of lung adenocarcinoma. Eur Rev Med Pharmacol Sci. 23:1553–1562. 2019.PubMed/NCBI | |
|
Zhou Y, Zhao M, Du Y, Liu Y, Zhao G, Ye L, Li Q, Li H, Wang X, Liu X, et al: MicroRNA-195 suppresses the progression of lung adenocarcinoma by directly targeting apelin. Thorac Cancer. 10:1419–1430. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Wu G, Zhang H, Peng X, Huang B, Huang M, Ding J, Mao C and Peng C: MiR-196b promotes the invasion and migration of lung adenocarcinoma cells by targeting AQP4. Technol Cancer Res Treat. 20:15330338209858682021. View Article : Google Scholar : PubMed/NCBI | |
|
Pan L, Tang Z, Pan L and Tang R: MicroRNA-3666 inhibits lung cancer cell proliferation, migration, and invasiveness by targeting BPTF. Biochem Cell Biol. 97:415–422. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mou X and Liu S: MiR-485 inhibits metastasis and EMT of lung adenocarcinoma by targeting Flot2. Biochem Biophys Res Commun. 477:521–526. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Chen Y, Jin M, Wang J, Li S, Chen Z and Yu W: MicroRNA-134 reverses multidrug resistance in human lung adenocarcinoma cells by targeting FOXM1. Oncol Lett. 13:1451–1455. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Xue Q, Wang D, Du M, Zhang Y and Gao S: miR-873 induces lung adenocarcinoma cell proliferation and migration by targeting SRCIN1. Am J Transl Res. 7:2519–2526. 2015.PubMed/NCBI | |
|
Liu L, Bi N, Wu L, Ding X, Men Y, Zhou W, Li L, Zhang W, Shi S, Song Y and Wang L: MicroRNA-29c functions as a tumor suppressor by targeting VEGFA in lung adenocarcinoma. Mol Cancer. 16:502017. View Article : Google Scholar : PubMed/NCBI | |
|
Chai Y, Xue H, Wu Y, Du X, Zhang Z, Zhang Y, Zhang L, Zhang S, Zhang Z and Xue Z: MicroRNA-216b-3p inhibits lung adenocarcinoma cell growth via regulating PDZ binding kinase/T-LAK-cell-originated protein kinase. Exp Ther Med. 15:4822–4828. 2018.PubMed/NCBI | |
|
Zhu D, Gu L, Li Z, Jin W, Lu Q and Ren T: MiR-138-5p suppresses lung adenocarcinoma cell epithelial-mesenchymal transition, proliferation and metastasis by targeting ZEB2. Pathol Res Pract. 215:861–872. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang F and Xu P: miR-590 accelerates lung adenocarcinoma migration and invasion through directly suppressing functional target OLFM4. Biomed Pharmacother. 86:466–474. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Wang Y, Zang W, Wang H, Chu H, Li P, Li M, Zhang G and Zhao G: Downregulation of microRNA-182 inhibits cell growth and invasion by targeting programmed cell death 4 in human lung adenocarcinoma cells. Tumour Biol. 35:39–46. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Greenawalt EJ, Edmonds MD, Jain N, Adams CM, Mitra R and Eischen CM: Targeting of SGK1 by miR-576-3p inhibits lung adenocarcinoma migration and invasion. Mol Cancer Res. 17:289–298. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Fu Q, Li H, Zhu L, Chen W, Ruan T, Xu W and Yu X: MicroRNA-520c-3p functions as a novel tumor suppressor in lung adenocarcinoma. FEBS J. 286:2737–2752. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fan G, Xu P and Tu P: MiR-1827 functions as a tumor suppressor in lung adenocarcinoma by targeting MYC and FAM83F. J Cell Biochem. 121:1675–1689. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu A, Yang X, Zhang B, Wang S and Li G: miR-516a-3p promotes proliferation, migration, and invasion and inhibits apoptosis in lung adenocarcinoma by targeting PTPRD. Int J Clin Exp Pathol. 12:4222–4231. 2019.PubMed/NCBI | |
|
Qin E, Gu S, Guo Y, Wang L and Pu G: MiRNA-30a-5p/VCAN arrests tumor metastasis via modulating the adhesion of lung adenocarcinoma cells. Appl Biochem Biotechnol. Apr 10–2023.(Epub ahead of print). View Article : Google Scholar | |
|
Tao K, Liu J, Liang J, Xu X, Xu L and Mao W: Vascular endothelial cell-derived exosomal miR-30a-5p inhibits lung adenocarcinoma malignant progression by targeting CCNE2. Carcinogenesis. 42:1056–1067. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang G, Wu YJ and Yan F: MicroRNA-130-5p promotes invasion as well as migration of lung adenocarcinoma cells by targeting the EZH2 signaling pathway. Eur Rev Med Pharmacol Sci. 23:9480–9488. 2019.PubMed/NCBI | |
|
Dai B, Kong DL, Tian J, Liu TW, Zhou H and Wang ZF: microRNA-1205 promotes cell growth by targeting APC2 in lung adenocarcinoma. Eur Rev Med Pharmacol Sci. 23:1125–1133. 2019.PubMed/NCBI | |
|
Bai J, Hu Y, Chen X, Chen L, Zhang L, Yin C and Li H: miR-144-3p inhibits the invasion and metastasis of lung adenocarcinoma cells by targeting IRS1. Zhongguo Fei Ai Za Zhi. 24:323–330. 2021.(In Chinese). PubMed/NCBI | |
|
Liu K, Zhang W, Tan J, Ma J and Zhao J: MiR-200b-3p functions as an oncogene by targeting ABCA1 in lung adenocarcinoma. Technol Cancer Res Treat. 18:15330338198925902019. View Article : Google Scholar : PubMed/NCBI | |
|
Guo ZZ, Ma ZJ, He YZ, Jiang W, Xia Y, Pan CF, Wei K, Shi YJ, Chen L and Chen YJ: miR-550a-5p functions as a tumor promoter by targeting LIMD1 in lung adenocarcinoma. Front Oncol. 10:5707332020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Zhao J, Yin X, Yuan X, Guo J and Bi J: miR-297 acts as an oncogene by targeting GPC5 in lung adenocarcinoma. Cell Prolif. 49:636–643. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y and Yang C: miR-197-3p-induced downregulation of lysine 63 deubiquitinase promotes cell proliferation and inhibits cell apoptosis in lung adenocarcinoma cell lines. Mol Med Rep. 17:3921–3927. 2018.PubMed/NCBI | |
|
Fang H, Liu Y, He Y, Jiang Y, Wei Y, Liu H, Gong Y and An G: Extracellular vesicle-delivered miR-505-5p, as a diagnostic biomarker of early lung adenocarcinoma, inhibits cell apoptosis by targeting TP53AIP1. Int J Oncol. 54:1821–1832. 2019.PubMed/NCBI | |
|
Qian T, Shi S, Xie L and Zhu Y: miR-938 promotes cell proliferation by regulating RBM5 in lung adenocarcinoma cells. Cell Biol Int. 44:295–305. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cao J, Geng J, Chu X, Wang R, Huang G and Chen L: miRNA-885-3p inhibits docetaxel chemoresistance in lung adenocarcinoma by downregulating Aurora A. Oncol Rep. 41:1218–1230. 2019.PubMed/NCBI | |
|
Bao B, Yu X and Zheng W: MiR-139-5p targeting CCNB1 modulates proliferation, migration, invasion and cell cycle in lung adenocarcinoma. Mol Biotechnol. 64:852–860. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, He X, Wu X, Liu X, Huang Y and Gong Y: miR-139-5p inhibits lung adenocarcinoma cell proliferation, migration, and invasion by targeting MAD2L1. Comput Math Methods Med. 2020:29535982020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Zhou L, Chen B, Li X, Zou Q, Xu W, Fang L, Wu A, Li Z and Chen Y: microRNA-660 enhances cisplatin sensitivity via decreasing SATB2 expression in lung adenocarcinoma. Genes. 14:9112023. View Article : Google Scholar : PubMed/NCBI | |
|
Feng YY, Liu CH, Xue Y, Chen YY, Wang YL and Wu XZ: MicroRNA-147b promotes lung adenocarcinoma cell aggressiveness through negatively regulating microfibril-associated glycoprotein 4 (MFAP4) and affects prognosis of lung adenocarcinoma patients. Gene. 730:1443162020. View Article : Google Scholar : PubMed/NCBI | |
|
Wan S, Liu Z, Chen Y, Mai Z, Jiang M, Di Q and Sun B: MicroRNA-140-3p represses the proliferation, migration, invasion and angiogenesis of lung adenocarcinoma cells via targeting TYMS (thymidylate synthetase). Bioengineered. 12:11959–11977. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Kanmangne D, Li R, Qian Z, Xia X, Wang X and Wang T: miR-30a-3p suppresses the proliferation and migration of lung adenocarcinoma cells by downregulating CNPY2. Oncol Rep. 43:646–654. 2020.PubMed/NCBI | |
|
Chen L, Chen X, Liu L, Zhao Y, Zuo W, Yin C and Li H: miR-30b-3p inhibits the proliferation and invasion of lung adenocarcinoma by targeting COX6B1. Zhongguo Fei Ai Za Zhi. 25:567–574. 2022.(In Chinese). PubMed/NCBI | |
|
Tu Y and Mei F: miR-3648 promotes lung adenocarcinoma-genesis by inhibiting SOCS2 (suppressor of cytokine signaling 2). Bioengineered. 13:3044–3056. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Cui Y, Wang S, Wu C, Mei F, Han E, Hu Z and Zhou B: MiR-96-5p is an oncogene in lung adenocarcinoma and facilitates tumor progression through ARHGAP6 downregulation. J Appl Genet. 62:631–638. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou F, Qian C, Chen T and Zang X: MiR-96-5p facilitates lung adenocarcinoma cell phenotypes by inhibiting FHL1. Comput Math Methods Med. 2022:78912222022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, Wang Q and Wang K: MicroRNA-218-5p affects lung adenocarcinoma progression through targeting endoplasmic reticulum oxidoreductase 1 alpha. Bioengineered. 13:10061–10070. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Miao H, Zeng Q, Xu S and Chen Z: miR-1-3p/CELSR3 participates in regulating malignant phenotypes of lung adenocarcinoma cells. Curr Gene Ther. 21:304–312. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Wang X, Jing L and Li Y: MiR-1-3p inhibits lung adenocarcinoma cell tumorigenesis via targeting protein regulator of cytokinesis 1. Front Oncol. 9:1202019. View Article : Google Scholar : PubMed/NCBI | |
|
An JC, Shi HB, Hao WB, Zhu K and Ma B: miR-944 inhibits lung adenocarcinoma tumorigenesis by targeting STAT1 interaction. Oncol Lett. 17:3790–3798. 2019.PubMed/NCBI | |
|
Feng H, Zhang Z, Qing X, French SW and Liu D: miR-186-5p promotes cell growth, migration and invasion of lung adenocarcinoma by targeting PTEN. Exp Mol Pathol. 108:105–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Q and Xu Z: miR-196b-5p promotes proliferation, migration and invasion of lung adenocarcinoma cells via targeting RSPO2. Cancer Manag Res. 12:13393–13402. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin R, Li GS, Gan XY, Peng JX, Feng Y, Wang LT, Zhang CY, Huang KY, Huang SH, Yang L, et al: The clinical significance and mechanism of microRNA-22-3p targeting TP53 in lung adenocarcinoma. Technol Health Care. 31:1691–1707. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Goto A, Tanaka M, Yoshida M, Umakoshi M, Nanjo H, Shiraishi K, Saito M, Kohno T, Kuriyama S, Konno H, et al: The low expression of miR-451 predicts a worse prognosis in non-small cell lung cancer cases. PLoS One. 12:e01812702017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Zhou Y, Chen W, Yang Y, Ye J, Ou H and Wu H: miR-21-5p promotes lung adenocarcinoma cell proliferation, migration and invasion via targeting WWC2. Cancer Biomark. 28:549–559. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wei D: MiR-486-5p specifically suppresses SAPCD2 expression, which attenuates the aggressive phenotypes of lung adenocarcinoma cells. Histol Histopathol. 37:909–917. 2022.PubMed/NCBI | |
|
Yang W, Bai J, Liu D, Wang S, Zhao N, Che R and Zhang H: MiR-93-5p up-regulation is involved in non-small cell lung cancer cells proliferation and migration and poor prognosis. Gene. 647:13–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shao L, He Q, Wang J, He F, Lin S, Wu L, Gao Y, Ma W, Dong J, Yang X and Li F: MicroRNA-326 attenuates immune escape and prevents metastasis in lung adenocarcinoma by targeting PD-L1 and B7-H3. Cell Death Discov. 7:1452021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Yu H, Han T and Zhu X: Prognosis value of microRNA-3677-3p in lung adenocarcinoma and its regulatory effect on tumor progression. Cancer Manag Res. 13:9261–9270. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ling DJ, Chen ZS, Zhang YD, Liao QD, Feng JX, Zhang XY and Shi TS: MicroRNA-145 inhibits lung cancer cell metastasis. Mol Med Rep. 11:3108–3114. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HB, Shen B, Ma ZC, Xu YY, Lou YL and Chen M: MiR-593-5p inhibited proliferation and migration of lung adenocarcinoma by targeting ICAM-1. Eur Rev Med Pharmacol Sci. 24:4298–4305. 2020.PubMed/NCBI | |
|
Huang JY, Cui SY, Chen YT, Song HZ, Huang GC, Feng B, Sun M, De W, Wang R and Chen LB: MicroRNA-650 was a prognostic factor in human lung adenocarcinoma and confers the docetaxel chemoresistance of lung adenocarcinoma cells via regulating Bcl-2/Bax expression. PLoS One. 8:e726152013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuo E, Cai C, Liu W, Li K and Zhao W: Downregulated microRNA-140-5p expression regulates apoptosis, migration and invasion of lung cancer cells by targeting zinc finger protein 800. Oncol Lett. 20:3902020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Xiao H, Wu D, Zhang D and Zhang Z: miR-335-5p regulates cell cycle and metastasis in lung adenocarcinoma by targeting CCNB2. Onco Targets Ther. 13:6255–6263. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Heikkinen L, Wang C, Yang Y, Sun H and Wong G: Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 20:1836–1852. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Petkova V, Marinova D, Kyurkchiyan S, Stancheva G, Mekov E, Kachakova-Yordanova D, Slavova Y, Kostadinov D, Mitev V and Kaneva R: MiRNA expression profiling in adenocarcinoma and squamous cell lung carcinoma reveals both common and specific deregulated microRNAs. Medicine (Baltimore). 101:e300272022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X, Liu L, Lin B, Su H, Zhao L, et al: Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res. 23:5311–5319. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z and Yuan W: Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 17:1472018. View Article : Google Scholar : PubMed/NCBI | |
|
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Seijo LM, Peled N, Ajona D, Boeri M, Field JK, Sozzi G, Pio R, Zulueta JJ, Spira A, Massion PP, et al: Biomarkers in lung cancer screening: Achievements, promises, and challenges. J Thorac Oncol. 14:343–357. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kim Y, Sim J, Kim H, Bang SS, Jee S, Park S and Jang K: MicroRNA-374a expression as a prognostic biomarker in lung adenocarcinoma. J Pathol Transl Med. 53:354–360. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tong L, Han WZ, Wang JL, Sun NN and Zhuang M: MicroRNA-365 inhibits the progression of lung adenocarcinoma through targeting ETS1 and inactivating AKT/mTOR pathway. Eur Rev Med Pharmacol Sci. 24:4836–4845. 2020.PubMed/NCBI | |
|
Kim Y, Kim H, Bang S, Jee S and Jang K: MicroRNA-130b functions as an oncogene and is a predictive marker of poor prognosis in lung adenocarcinoma. Lab Invest. 101:155–164. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Mei H, Xu C, Tang H and Wei W: Circulating microRNA-339-5p and −21 in plasma as an early detection predictors of lung adenocarcinoma. Pathol Res Pract. 214:119–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Evan GI and Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature. 411:342–348. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Li X and Wu X: MiR-21-5p promotes the progression of non-small-cell lung cancer by regulating the expression of SMAD7. Onco Targets Ther. 11:8445–8454. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Li X, Yang L and Zhang J: Long non-coding RNA LINC01969 promotes ovarian cancer by regulating the miR-144-5p/LARP1 axis as a competing endogenous RNA. Front Cell Dev Biol. 8:6257302021. View Article : Google Scholar : PubMed/NCBI | |
|
Perlikos F, Harrington KJ and Syrigos KN: Key molecular mechanisms in lung cancer invasion and metastasis: A comprehensive review. Crit Rev Oncol Hematol. 87:1–11. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Verma V and Lautenschlaeger T: MicroRNAs in non-small cell lung cancer invasion and metastasis: From the perspective of the radiation oncologist. Expert Rev Anticancer Ther. 16:767–774. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bukowski K, Kciuk M and Kontek R: Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 21:32332020. View Article : Google Scholar : PubMed/NCBI | |
|
Baskar R, Lee KA, Yeo R and Yeoh KW: Cancer and radiation therapy: Current advances and future directions. Int J Med Sci. 9:193–199. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra S, Yadav T and Rani V: Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 98:12–23. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang N, Zou C, Zhu Y, Luo Y, Chen L, Lei Y, Tang K, Sun Y, Zhang W, Li S, et al: HIF-1α-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and Notch signaling. Theranostics. 10:2553–2570. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Du X, Wang S, Liu X, He T, Lin X, Wu S, Wang D, Li J, Huang W and Yang H: MiR-1307-5p targeting TRAF3 upregulates the MAPK/NF-κB pathway and promotes lung adenocarcinoma proliferation. Cancer Cell Int. 20:5022020. View Article : Google Scholar : PubMed/NCBI | |
|
He T, Shen H, Wang S, Wang Y, He Z, Zhu L, Du X, Wang D, Li J, Zhong S, et al: MicroRNA-3613-5p promotes lung adenocarcinoma cell proliferation through a RELA and AKT/MAPK positive feedback loop. Mol Ther Nucleic Acids. 22:572–583. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma DB, Qin MM, Shi L and Ding XM: MicroRNA-6077 enhances the sensitivity of patients-derived lung adenocarcinoma cells to anlotinib by repressing the activation of glucose transporter 1 pathway. Cell Signal. 64:1093912019. View Article : Google Scholar : PubMed/NCBI | |
|
Song M and Xing X: miR-6742-5p regulates the invasion and migration of lung adenocarcinoma cells via mediating FGF8/ERK12/MMP9/MMP2 signaling pathway. Aging (Albany NY). 15:53–69. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fang H, Wu W and Wu Z: miR-382-3p downregulation contributes to the carcinogenesis of lung adenocarcinoma by promoting AKT SUMOylation and phosphorylation. Exp Ther Med. 24:4402022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Q: MicroRNA-1-3p affects lung adenocarcinoma progression through E2F8 and regulating NF-кB pathway. Cytokine. 156:1559222022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Liu W, Zhao Q, Zhang R, Wang J, Pan P, Shang H, Liu C and Wang C: Down-regulating the expression of miRNA-21 inhibits the glucose metabolism of A549/DDP cells and promotes cell death through the PI3K/AKT/mTOR/HIF-1α pathway. Front Oncol. 11:6535962021. View Article : Google Scholar : PubMed/NCBI | |
|
Edmonds MD, Boyd KL, Moyo T, Mitra R, Duszynski R, Arrate MP, Chen X, Zhao Z, Blackwell TS, Andl T and Eischen CM: MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer. J Clin Invest. 126:349–364. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qu J, Li M, An J, Zhao B, Zhong W, Gu Q, Cao L, Yang H and Hu C: MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling. Int J Oncol. 47:2141–2152. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Zhang Y, Li Y, Liu L, Li Z, Liu Y and Xiao Y: MicroRNA-106a-5p promotes the proliferation, autophagy and migration of lung adenocarcinoma cells by targeting LKB1/AMPK. Exp Ther Med. 22:14222021. View Article : Google Scholar : PubMed/NCBI | |
|
Fan X, Liang Y, Liu Y, Bai Y, Yang C and Xu S: The upregulation of TMPRSS4, partly ascribed to the downregulation of miR-125a-5p, promotes the growth of human lung adenocarcinoma via the NF-κB signaling pathway. Int J Oncol. 53:148–158. 2018.PubMed/NCBI | |
|
Ghoshal-Gupta S, Kutiyanawalla A, Lee BR, Ojha J, Nurani A, Mondal AK, Kolhe R, Rojiani AM and Rojiani MV: TIMP-1 downregulation modulates miR-125a-5p expression and triggers the apoptotic pathway. Oncotarget. 9:8941–8956. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Meng H, Li B, Xu W, Ding R, Xu S, Wu Q and Zhang Y: miR-140-3p enhances the sensitivity of LUAD cells to antitumor agents by targeting the ADAM10/Notch pathway. J Cancer. 13:3660–3673. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang WS, Huang CL, Zhang J, Xu F and Dai XH: MicroRNA-149 inhibits the progression of lung adenocarcinoma through targeting RAP1B and inactivating Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 24:4846–4854. 2020.PubMed/NCBI | |
|
Liu J, Xing Y and Rong L: miR-181 regulates cisplatin-resistant non-small cell lung cancer via downregulation of autophagy through the PTEN/PI3K/AKT pathway. Oncol Rep. 39:1631–1639. 2018.PubMed/NCBI | |
|
Seidl C, Panzitt K, Bertsch A, Brcic L, Schein S, Mack M, Leithner K, Prinz F, Olschewski H, Kornmueller K and Hrzenjak A: MicroRNA-182-5p regulates hedgehog signaling pathway and chemosensitivity of cisplatin-resistant lung adenocarcinoma cells via targeting GLI2. Cancer Lett. 469:266–276. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo L, Wang J, Yang P, Lu Q, Zhang T and Yang Y: MicroRNA-200 promotes lung cancer cell growth through FOG2-independent AKT activation. IUBMB Life. 67:720–725. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Gao X, Zhang W, Zhu T, Bi W and Zhang Y: MicroRNA-204 deregulation in lung adenocarcinoma controls the biological behaviors of endothelial cells potentially by modulating Janus kinase 2-signal transducer and activator of transcription 3 pathway. IUBMB Life. 70:81–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Watt K, Newsted D, Voorand E, Gooding RJ, Majewski A, Truesdell P, Yao B, Tuschl T, Renwick N and Craig AW: MicroRNA-206 suppresses TGF-β signalling to limit tumor growth and metastasis in lung adenocarcinoma. Cell Signal. 50:25–36. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lv Q, Hu JX, Li YJ, Xie N, Song DD, Zhao W, Yan YF, Li BS, Wang PY and Xie SY: MiR-320a effectively suppresses lung adenocarcinoma cell proliferation and metastasis by regulating STAT3 signals. Cancer Biol Ther. 18:142–151. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou QY, Gui SY, Zhang P and Wang M: Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A (RhoA) and Rho/Rho associated protein kinase (Rho/ROCK) pathway. Chin Med J (Engl). 134:2619–2628. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Chen T, Huang H, Jiang Y, Yang L, Lin Z, He H, Liu T, Wu B, Chen J, et al: miR-363-3p inhibits tumor growth by targeting PCNA in lung adenocarcinoma. Oncotarget. 8:20133–20144. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang S, Bao H, Mu S, Zhang B, Ma H and Ma S: MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int. 18:642018. View Article : Google Scholar : PubMed/NCBI | |
|
Xuan YW, Liao M, Zhai WL, Peng LJ and Tang Y: MicroRNA-381 inhibits lung adenocarcinoma cell biological progression by directly targeting LMO3 through regulation of the PI3K/Akt signaling pathway and epithelial-to-mesenchymal transition. Eur Rev Med Pharmacol Sci. 23:8411–8421. 2019.PubMed/NCBI | |
|
He B, Wu C, Sun W, Qiu Y, Li J, Liu Z, Jing T, Wang H and Liao Y: miR-383 increases the cisplatin sensitivity of lung adenocarcinoma cells through inhibition of the RBM24-mediated NF-κB signaling pathway. Int J Oncol. 59:872021. View Article : Google Scholar : PubMed/NCBI | |
|
Wan L, Zhu L, Xu J, Lu B, Yang Y, Liu F and Wang Z: MicroRNA-409-3p functions as a tumor suppressor in human lung adenocarcinoma by targeting c-Met. Cell Physiol Biochem. 34:1273–1290. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Huang W, Zhu C, Sun X, Zhang Q, Zhang L, Qi Q, Bai X, Feng Y and Wang C: miR-423-3p activates FAK signaling pathway to drive EMT process and tumor growth in lung adenocarcinoma through targeting CYBRD1. J Clin Lab Anal. 35:e240442021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Wang F, Guo Y, Yang J, Chen S, Gao X and Wang X: MicroRNA-425 promotes the development of lung adenocarcinoma via targeting A disintegrin and metalloproteinases 9 (ADAM9). Onco Targets Ther. 11:4065–4073. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Huang J, Zhang K, Pan B, Chen J, De W, Wang R and Chen L: MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc. Eur J Cancer. 50:3050–3067. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Jiang D and Yang S: MiR-490-3p inhibits the malignant progression of lung adenocarcinoma. Cancer Manag Res. 12:10975–10984. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Duan J, Wang L, Shang L, Yang S, Wu H, Huang Y and Miao Y: miR-152/TNS1 axis inhibits non-small cell lung cancer progression through Akt/mTOR/RhoA pathway. Biosci Rep. 41:BSR202015392021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhijun Z and Jingkang H: MicroRNA-520e suppresses non-small-cell lung cancer cell growth by targeting Zbtb7a-mediated Wnt signaling pathway. Biochem Biophys Res Commun. 486:49–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Z, Zhang J, Chen F and Sun Y: MiR-148b suppressed non-small cell lung cancer progression via inhibiting ALCAM through the NF-κB signaling pathway. Thorac Cancer. 11:415–425. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang W, Wei K, Pan C, Li H, Cao J, Han X, Tang Y, Zhu S, Yuan W, He Y, et al: MicroRNA-1258 suppresses tumour progression via GRB2/Ras/Erk pathway in non-small-cell lung cancer. Cell Prolif. 51:e125022018. View Article : Google Scholar : PubMed/NCBI | |
|
Wu T, Hu H, Zhang T, Jiang L, Li X, Liu S, Zheng C, Yan G, Chen W, Ning Y, et al: miR-25 promotes cell proliferation, migration, and invasion of non-small-cell lung cancer by targeting the LATS2/YAP signaling pathway. Oxid Med Cell Longev. 2019:97197232019. View Article : Google Scholar : PubMed/NCBI | |
|
Ding X, Zhong T, Jiang L, Huang J, Xia Y and Hu R: miR-25 enhances cell migration and invasion in non-small-cell lung cancer cells via ERK signaling pathway by inhibiting KLF4. Mol Med Rep. 17:7005–7016. 2018.PubMed/NCBI | |
|
Hu Z, Xiao D, Qiu T, Li J and Liu Z: MicroRNA-103a curtails the stemness of non-small cell lung cancer cells by binding OTUB1 via the hippo signaling pathway. Technol Cancer Res Treat. 19:15330338209716432020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang K, Shen M, Chen Y and Xu W: miR-150 promotes the proliferation and migration of non-small cell lung cancer cells by regulating the SIRT2/JMJD2A signaling pathway. Oncol Rep. 40:943–951. 2018.PubMed/NCBI | |
|
Xu G, Cai J, Wang L, Jiang L, Huang J, Hu R and Ding F: MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res. 362:268–278. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang JX, Zhai JF, Yang XT and Wang J: MicroRNA-132 inhibits migration, invasion and epithelial-mesenchymal transition by regulating TGFβ1/Smad2 in human non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 20:3793–3801. 2016.PubMed/NCBI | |
|
Revathidevi S and Munirajan AK: Akt in cancer: Mediator and more. Semin Cancer Biol. 59:80–91. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ward SG, Westwick J and Harris S: Sat-Nav for T cells: Role of PI3K isoforms and lipid phosphatases in migration of T lymphocytes. Immunol Lett. 138:15–18. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Altomare DA and Testa JR: Perturbations of the AKT signaling pathway in human cancer. Oncogene. 24:7455–7464. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Akbarzadeh M, Mihanfar A, Akbarzadeh S, Yousefi B and Majidinia M: Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer. Life Sci. 285:1199842021. View Article : Google Scholar : PubMed/NCBI | |
|
Zou S, Tong Q, Liu B, Huang W, Tian Y and Fu X: Targeting STAT3 in Cancer Immunotherapy. Mol Cancer. 19:1452020. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S: mTOR signaling in metabolism and cancer. Cells. 9:22782020. View Article : Google Scholar : PubMed/NCBI | |
|
Hua H, Kong Q, Zhang H, Wang J, Luo T and Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol. 12:712019. View Article : Google Scholar : PubMed/NCBI | |
|
Kryczka J, Kryczka J, Czarnecka-Chrebelska KH and Brzeziańska-Lasota E: Molecular mechanisms of chemoresistance induced by cisplatin in NSCLC cancer therapy. Int J Mol Sci. 22:88852021. View Article : Google Scholar : PubMed/NCBI | |
|
Dolcet X, Llobet D, Pallares J and Matias-Guiu X: NF-kB in development and progression of human cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bonizzi G and Karin M: The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25:280–288. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Lee S, Rauch J and Kolch W: Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int J Mol Sci. 21:11022020. View Article : Google Scholar : PubMed/NCBI | |
|
Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, Lotfinejad P, Bagheri M, Shirjang S, Lotfi Z, et al: Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 278:1194992021. View Article : Google Scholar : PubMed/NCBI | |
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Arancio W, Pizzolanti G, Genovese SI, Baiamonte C and Giordano C: Competing endogenous RNA and interactome bioinformatic analyses on human telomerase. Rejuvenation Res. 17:161–167. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S, Liu T, Sun Y and Liang X: The long noncoding RNA LINC00483 promotes lung adenocarcinoma progression by sponging miR-204-3p. Cell Mol Biol Lett. 24:702019. View Article : Google Scholar : PubMed/NCBI | |
|
Qian Y, Zhang Y, Ji H, Shen Y, Zheng L, Cheng S and Lu X: LINC01089 suppresses lung adenocarcinoma cell proliferation and migration via miR-301b-3p/STARD13 axis. BMC Pulm Med. 21:2422021. View Article : Google Scholar : PubMed/NCBI | |
|
Cai Y, Sheng Z, Chen Y and Wang J: LncRNA HMMR-AS1 promotes proliferation and metastasis of lung adenocarcinoma by regulating MiR-138/sirt6 axis. Aging (Albany NY). 11:3041–3054. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Li X, Du B, Cui Y, Ma Y and Li Y: The long noncoding RNA HOXA11-AS promotes lung adenocarcinoma proliferation and glycolysis via the microRNA-148b-3p/PKM2 axis. Cancer Med. 12:4421–4433. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Chen H, Liu M, Xiong J and Song Z: Long noncoding RNA LINC00520 accelerates lung adenocarcinoma progression via miR-1252-5p/FOXR2 pathway. Hum Cell. 34:478–490. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li W, Lin Z, Hu J, Wang J, Ren Y, Wei B, Fan Y and Yang Y: The long noncoding RNA Linc01833 enhances lung adenocarcinoma progression via MiR-519e-3p/S100A4 axis. Cancer Manag Res. 12:11157–11167. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dong HX, Wang R, Jin XY, Zeng J and Pan J: LncRNA DGCR5 promotes lung adenocarcinoma (LUAD) progression via inhibiting hsa-mir-22-3p. J Cell Physiol. 233:4126–4136. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bai J, Li H, Chen X, Chen L, Hu Y, Liu L, Zhao Y, Zuo W, Zhang B and Yin C: LncRNA-AC009948.5 promotes invasion and metastasis of lung adenocarcinoma by binding to miR-186-5p. Front Oncol. 12:9499512022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Yu Q, Zhou Y, Chu Y, Jiang F and Wang Q: FAM201A knockdown inhibits proliferation and invasion of lung adenocarcinoma cells by regulating miR-7515/GLO1 axis. J Cell Physiol. 236:5620–5632. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Z, Liu H, Ji T, Liu Q, Zhang L, Zhu P, Li L and Zhu L: Long non-coding RNA 00960 promoted the aggressiveness of lung adenocarcinoma via the miR-124a/SphK1 axis. Bioengineered. 13:1276–1287. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tai G, Fu H, Bai H, Liu H, Li L and Song T: Long non-coding RNA GLIDR accelerates the tumorigenesis of lung adenocarcinoma by miR-1270/TCF12 axis. Cell Cycle. 20:1653–1662. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mu X, Wu H, Liu J, Hu X, Wu H, Chen L, Liu W, Luo S and Zhao Y: Long noncoding RNA TMPO-AS1 promotes lung adenocarcinoma progression and is negatively regulated by miR-383-5p. Biomed Pharmacother. 125:1099892020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Yang C, Wang W and Liu C: LncRNA SGMS1-AS1 regulates lung adenocarcinoma cell proliferation, migration, invasion, and EMT progression via miR-106a-5p/MYLI9 axis. Thorac Cancer. 12:2104–2112. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Q, Xu Z, Zhu K, Lin J and Ye B: LINC00346 sponges miR-30c-2-3p to promote the development of lung adenocarcinoma by targeting MYBL2 and regulating CELL CYCLE signaling pathway. Front Oncol. 11:6872082021. View Article : Google Scholar : PubMed/NCBI | |
|
Yao Y, Hua Q and Zhou Y: CircRNA has_circ_0006427 suppresses the progression of lung adenocarcinoma by regulating miR-6783-3p/DKK1 axis and inactivating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 508:37–45. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Du J, Zhang G, Qiu H, Yu H and Yuan W: The novel circular RNA circ-CAMK2A enhances lung adenocarcinoma metastasis by regulating the miR-615-5p/fibronectin 1 pathway. Cell Mol Biol Lett. 24:722019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Su S, Ye D, Yu Z, Lu W and Liu L: Hsa_circ_0020850 promotes the malignant behaviors of lung adenocarcinoma by regulating miR-326/BECN1 axis. World J Surg Oncol. 20:132022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma D, Liu H, Qin Y, Li D, Cui Y, Li L, He J, Chen Y and Zhou X: Circ_0007142/miR-186/FOXK1 axis promoted lung adenocarcinoma progression. Am J Transl Res. 12:4728–4738. 2020.PubMed/NCBI | |
|
Huang C, Yue W, Li L, Li S, Gao C, Si L, Qi L, Cheng C, Lu M, Chen G, et al: Circular RNA hsa-circ-000881 suppresses the progression of lung adenocarcinoma in vitro via a miR-665/PRICKLE2 axis. Ann Transl Med. 9:4982021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Q and Ju JG: Circ_0001998 regulates the proliferation, invasion, and apoptosis of lung adenocarcinoma via sponging miR-145. Evid Based Complement Alternat Med. 2022:64461502022.PubMed/NCBI | |
|
Fan J, Xia X and Fan Z: Hsa_circ_0129047 regulates the miR-375/ACVRL1 axis to attenuate the progression of lung adenocarcinoma. J Clin Lab Anal. 36:e245912022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Chen M, Jiang N, Shi K and Qian R: A regulatory circuit of circ-MTO1/miR-17/QKI-5 inhibits the proliferation of lung adenocarcinoma. Cancer Biol Ther. 20:1127–1135. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wei W, Wang C, Wang L and Zhang J: circ_0020123 promotes cell proliferation and migration in lung adenocarcinoma via PDZD8. Open Med (Wars). 17:536–549. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z: Circular RNA hsa_circ_0001588 promotes the malignant progression of lung adenocarcinoma by modulating miR-524-3p/NACC1 signaling. Life Sci. 259:1181572020. View Article : Google Scholar : PubMed/NCBI | |
|
Cao F, Liu S, Li Z, Meng L, Sang M and Shan B: Activation of circ_0072088/miR-1261/PIK3CA pathway accelerates lung adenocarcinoma progression. Thorac Cancer. 13:1548–1557. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Panda AC: Circular RNAs Act as miRNA sponges. Adv Exp Med Biol. 1087:67–79. 2018. View Article : Google Scholar : PubMed/NCBI |