Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2023 Volume 50 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2023 Volume 50 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions

  • Authors:
    • Jiayu Zhang
    • Chenguang Li
    • Luanbiao Sun
    • Denghua Sun
    • Tiancheng Zhao
  • View Affiliations / Copyright

    Affiliations: Gastrointestinal Colorectal and Anal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, Department of Breast Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, Department of Endoscopy Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 219
    |
    Published online on: October 31, 2023
       https://doi.org/10.3892/or.2023.8656
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Oxaliplatin (OXA)‑containing regimens are used as first‑line chemotherapy in colorectal cancer (CRC). However, OXA resistance remains a major challenge in CRC treatment. CRC cells that adapt to hypoxia can potentially develop OXA resistance, and the underlying molecular mechanisms still need to be further investigated. In the current study, the OXA drug sensitivity of two CRC cell lines, HCT116 (TP53WT) and HT29 (TP53MT), was compared under both normoxic and hypoxic conditions. It was found that under normoxic condition, HCT116 cells showed significantly higher OXA sensitivity than HT29 cells. However, both cell lines showed remarkable OXA resistance under hypoxic conditions. It was also revealed that P53 levels were increased after OXA and hypoxia treatment in HCT116 cells but not in HT29 cells. Notably, knocking down P53WT decreased normoxic but increased hypoxic OXA sensitivity in HCT116 cells, which did not exist in HT29 cells. Molecular analysis indicated that P53WT activated microRNA (miR)‑26a and miR‑34a in OXA treatment and activated miR‑23a in hypoxia treatment. Cell proliferation experiments indicated that a high level of miR‑23a decreased OXA sensitivity and that a high level of miR‑26a or miR‑34a increased OXA sensitivity in HCT116 cells. Additionally, it was demonstrated that miR‑26a, miR‑34a and miR‑23a affect cell apoptosis through regulation of MCL‑1, EZH2, BCL‑2, SMAD 4 and STAT3. Taken together, the present findings revealed the dual function of P53 in regulating cellular chemo‑sensitivity and highlighted the role of P53‑miR interactions in the response of CRC cells to OXA chemotherapy under normoxic and hypoxic conditions.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Cai J and Wang L: Looking back 2018-focused on colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi. 22:9–16. 2019.(In Chinese). PubMed/NCBI

2 

Quirke P, Durdey P, Dixon MF and Williams NS: Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Histopathological study of lateral tumour spread and surgical excision. Lancet. 2:996–999. 1986. View Article : Google Scholar : PubMed/NCBI

3 

Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, Tu CC, Vijaya Padma V, Kuo WW and Huang CY: Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 233:5458–5467. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Yang C, Zhou Q, Li M, Tong X, Sun J, Qing Y, Sun L, Yang X, Hu X, Jiang J, et al: Upregulation of CYP2S1 by oxaliplatin is associated with p53 status in colorectal cancer cell lines. Sci Rep. 6:330782016. View Article : Google Scholar : PubMed/NCBI

5 

Meads MB, Gatenby RA and Dalton WS: Environment-mediated drug resistance: A major contributor to minimal residual disease. Nat Rev Cancer. 9:665–674. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Martinez-Balibrea E, Martínez-Cardús A, Ginés A, Ruiz de Porras V, Moutinho C, Layos L, Manzano JL, Bugés C, Bystrup S, Esteller M and Abad A: Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther. 14:1767–1776. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Plasencia C, Martinez-Balibrea E, Martinez-Cardús A, Quinn DI, Abad A and Neamati N: Expression analysis of genes involved in oxaliplatin response and development of oxaliplatin-resistant HT29 colon cancer cells. Int J Oncol. 29:225–235. 2006.PubMed/NCBI

8 

Pedraz-Cuesta E, Christensen S, Jensen AA, Jensen NF, Bunch L, Romer MU, Brünner N, Stenvang J and Pedersen SF: The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells. BMC Cancer. 15:4112015. View Article : Google Scholar : PubMed/NCBI

9 

Liao X, Song G, Xu Z, Bu Y, Chang F, Jia F, Xiao X, Ren X, Zhang M and Jia Q: Oxaliplatin resistance is enhanced by saracatinib via upregulation Wnt-ABCG1 signaling in hepatocellular carcinoma. BMC Cancer. 20:312020. View Article : Google Scholar : PubMed/NCBI

10 

Hubbi ME and Semenza GL: Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol. 309:C775–C782. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Pugh CW and Ratcliffe PJ: Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat Med. 9:677–684. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Tang YA, Chen YF, Bao Y, Mahara S, Yatim SMJM, Oguz G, Lee PL, Feng M, Cai Y, Tan EY, et al: Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci USA. 115:E5990–E5999. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Roberts DL, Williams KJ, Cowen RL, Barathova M, Eustace AJ, Brittain-Dissont S, Tilby MJ, Pearson DG, Ottley CJ, Stratford IJ and Dive C: Contribution of HIF-1 and drug penetrance to oxaliplatin resistance in hypoxic colorectal cancer cells. Br J Cancer. 101:1290–1297. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Gariboldi MB, Taiana E, Bonzi MC, Craparotta I, Giovannardi S, Mancini M and Monti E: The BH3-mimetic obatoclax reduces HIF-1α levels and HIF-1 transcriptional activity and sensitizes hypoxic colon adenocarcinoma cells to 5-fluorouracil. Cancer Lett. 364:156–164. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Nijhuis A, Thompson H, Adam J, Parker A, Gammon L, Lewis A, Bundy JG, Soga T, Jalaly A, Propper D, et al: Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance. Hum Mol Genet. 26:1552–1564. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Xu K, Zhan Y, Yuan Z, Qiu Y, Wang H, Fan G, Wang J, Li W, Cao Y, Shen X, et al: Hypoxia induces drug resistance in colorectal cancer through the HIF-1α/miR-338-5p/IL-6 feedback loop. Mol Ther. 27:1810–1824. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Therachiyil L, Haroon J, Sahir F, Siveen KS, Uddin S, Kulinski M, Buddenkotte J, Steinhoff M and Krishnankutty R: Dysregulated phosphorylation of p53, autophagy and stemness attributes the mutant p53 harboring colon cancer cells impaired sensitivity to oxaliplatin. Front Oncol. 10:17442020. View Article : Google Scholar : PubMed/NCBI

19 

Shang L and Wei M: Inhibition of SMYD2 sensitized cisplatin to resistant cells in NSCLC through activating p53 pathway. Front Oncol. 9:3062019. View Article : Google Scholar : PubMed/NCBI

20 

Takayama T, Miyanishi K, Hayashi T, Sato Y and Niitsu Y: Colorectal cancer: Genetics of development and metastasis. J Gastroenterol. 41:185–192. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H, Xia D, Xu E, Lai M, Wu Y and Zhang H: Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 37:173–187. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Sui X, Kong N, Wang X, Fang Y, Hu X, Xu Y, Chen W, Wang K, Li D, Jin W, et al: JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci Rep. 4:46942014. View Article : Google Scholar : PubMed/NCBI

23 

Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S, Santarius T, Avis T, Barthorpe S, Brackenbury L, et al: Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. 5:2606–2612. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Park JY, Park SJ, Shim KY, Lee KJ, Kim YB, Kim YH and Kim SK: Echinomycin and a novel analogue induce apoptosis of HT-29 cells via the activation of MAP kinases pathway. Pharmacol Res. 50:201–207. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Kim JS, Lee C, Bonifant CL, Ressom H and Waldman T: Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol. 27:662–677. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Meng X, Sun W, Yu J, Zhou Y, Gu Y, Han J, Zhou L, Jiang X and Wang C: LINC00460-miR-149-5p/miR-150-5p-mutant p53 feedback loop promotes oxaliplatin resistance in colorectal cancer. Mol Ther Nucleic Acids. 22:1004–1015. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Maqbool R, Lone SN and Ul Hussain M: Post-transcriptional regulation of the tumor suppressor p53 by a novel miR-27a, with implications during hypoxia and tumorigenesis. Biochem J. 473:3597–3610. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Li H, Rokavec M, Jiang L, Horst D and Hermeking H: Antagonistic effects of p53 and HIF1A on microRNA-34a regulation of PPP1R11 and STAT3 and hypoxia-induced epithelial to mesenchymal transition in colorectal cancer cells. Gastroenterology. 153:505–520. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Kiyonari S, Iimori M, Matsuoka K, Watanabe S, Morikawa-Ichinose T, Miura D, Niimi S, Saeki H, Tokunaga E, Oki E, et al: The 1,2-diaminocyclohexane carrier ligand in oxaliplatin induces p53-dependent transcriptional repression of factors involved in thymidylate biosynthesis. Mol Cancer Ther. 14:2332–2342. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Moradi Marjaneh R, Khazaei M, Ferns GA, Avan A and Aghaee-Bakhtiari SH: MicroRNAs as potential therapeutic targets to predict responses to oxaliplatin in colorectal cancer: From basic evidence to therapeutic implication. IUBMB Life. 71:1428–1441. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Islam SU, Ahmed MB, Sonn JK, Jin EJ and Lee YS: PRP4 induces epithelial-mesenchymal transition and drug resistance in colon cancer cells via activation of p53. Int J Mol Sci. 23:30922022. View Article : Google Scholar : PubMed/NCBI

33 

Du Y, Wei N, Ma R, Jiang S and Song D: A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer. Cell Death Dis. 11:7312020. View Article : Google Scholar : PubMed/NCBI

34 

Nersisyan S, Galatenko A, Chekova M and Tonevitsky A: Hypoxia-induced miR-148a downregulation contributes to poor survival in colorectal cancer. Front Genet. 12:6624682021. View Article : Google Scholar : PubMed/NCBI

35 

Ullmann P, Qureshi-Baig K, Rodriguez F, Ginolhac A, Nonnenmacher Y, Ternes D, Weiler J, Gäbler K, Bahlawane C, Hiller K, et al: Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Oncotarget. 7:65454–65470. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Evert J, Pathak S, Sun XF and Zhang H: A study on effect of oxaliplatin in MicroRNA expression in human colon cancer. J Cancer. 9:2046–2053. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D and Lowenstein CJ: P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA. 107:6334–6339. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Wang X, Yu M, Zhao K, He M, Ge W, Sun Y, Wang Y, Sun H and Hu Y: Upregulation of MiR-205 under hypoxia promotes epithelial-mesenchymal transition by targeting ASPP2. Cell Death Dis. 7:e25172016. View Article : Google Scholar : PubMed/NCBI

39 

Jin F, Yang R, Wei Y, Wang D, Zhu Y, Wang X, Lu Y, Wang Y, Zen K and Li L: HIF-1α-induced miR-23a~27a~24 cluster promotes colorectal cancer progression via reprogramming metabolism. Cancer Lett. 440–441. 211–222. 2019.

40 

Qian X, Yu J, Yin Y, He J, Wang L, Li Q, Zhang LQ, Li CY, Shi ZM, Xu Q, et al: MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle. 12:1385–1394. 2013. View Article : Google Scholar : PubMed/NCBI

41 

He C, Wang L, Zhang J and Xu H: Hypoxia-inducible microRNA-224 promotes the cell growth, migration and invasion by directly targeting RASSF8 in gastric cancer. Mol Cancer. 16:352017. View Article : Google Scholar : PubMed/NCBI

42 

Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, Wang WC, Lin FM, Chen Z, Huang HD, et al: miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 72:3631–3641. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Sun Z, Zhang Q, Yuan W, Li X, Chen C, Guo Y, Shao B, Dang Q, Zhou Q, Wang Q, et al: MiR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. J Exp Clin Cancer Res. 39:2502020. View Article : Google Scholar : PubMed/NCBI

44 

Tang Y, Weng X, Liu C, Li X and Chen C: Hypoxia enhances activity and malignant behaviors of colorectal cancer cells through the STAT3/MicroRNA-19a/PTEN/PI3K/AKT axis. Anal Cell Pathol (Amst). 2021:41324882021.PubMed/NCBI

45 

Kim CW, Oh ET, Kim JM, Park JS, Lee DH, Lee JS, Kim KK and Park HJ: Hypoxia-induced microRNA-590-5p promotes colorectal cancer progression by modulating matrix metalloproteinase activity. Cancer Lett. 416:31–41. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Xu K, Chen G, Qiu Y, Yuan Z, Li H, Yuan X, Sun J, Xu J, Liang X and Yin P: miR-503-5p confers drug resistance by targeting PUMA in colorectal carcinoma. Oncotarget. 8:21719–21732. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Saieva L, Barreca MM, Zichittella C, Prado MG, Tripodi M, Alessandro R and Conigliaro A: Hypoxia-induced miR-675-5p supports β-catenin nuclear localization by regulating GSK3-β activity in colorectal cancer cell lines. Int J Mol Sci. 21:38322020. View Article : Google Scholar : PubMed/NCBI

48 

Costa V, Lo Dico A, Rizzo A, Rajata F, Tripodi M, Alessandro R and Conigliaro A: MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells. Oncotarget. 8:24292–24302. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Poel D, Boyd LNC, Beekhof R, Schelfhorst T, Pham TV, Piersma SR, Knol JC, Jimenez CR, Verheul HMW and Buffart TE: Proteomic analysis of miR-195 and miR-497 replacement reveals potential candidates that increase sensitivity to oxaliplatin in MSI/P53wt colorectal cancer cells. Cells. 8:11112019. View Article : Google Scholar : PubMed/NCBI

50 

Dong Y, Zhao J, Wu CW, Zhang L, Liu X, Kang W, Leung WW, Zhang N, Chan FK, Sung JJ, et al: Tumor suppressor functions of miR-133a in colorectal cancer. Mol Cancer Res. 11:1051–1060. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Moriondo G, Scioscia G, Soccio P, Tondo P, De Pace CC, Sabato R, Foschino Barbaro MP and Lacedonia D: Effect of hypoxia-induced micro-RNAs expression on oncogenesis. Int J Mol Sci. 23:62942022. View Article : Google Scholar : PubMed/NCBI

52 

Wang X, Lan Z, He J, Lai Q, Yao X, Li Q, Liu Y, Lai H, Gu C, Yan Q, et al: LncRNA SNHG6 promotes chemoresistance through ULK1-induced autophagy by sponging miR-26a-5p in colorectal cancer cells. Cancer Cell Int. 19:2342019. View Article : Google Scholar : PubMed/NCBI

53 

Liu J, Ke F, Chen T, Zhou Q, Weng L, Tan J, Shen W, Li L, Zhou J, Xu C, et al: MicroRNAs that regulate PTEN as potential biomarkers in colorectal cancer: A systematic review. J Cancer Res Clin Oncol. 146:809–820. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Xu M, Chen X, Lin K, Zeng K, Liu X, Xu X, Pan B, Xu T, Sun L, He B, et al: lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. J Hematol Oncol. 12:32019. View Article : Google Scholar : PubMed/NCBI

55 

Gao J, Li L, Wu M, Liu M and Xie X, Guo J, Tang H and Xie X: MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS One. 8:e651382013. View Article : Google Scholar : PubMed/NCBI

56 

Yang Y, Zhang P, Zhao Y, Yang J, Jiang G and Fan J: Decreased MicroRNA-26a expression causes cisplatin resistance in human non-small cell lung cancer. Cancer Biol Ther. 17:515–525. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Werner TV, Hart M, Nickels R, Kim YJ, Menger MD, Bohle RM, Keller A, Ludwig N and Meese E: MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2. Aging (Albany NY). 9:932–954. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Velaei K, Samadi N, Barazvan B and Soleimani Rad J: Tumor microenvironment-mediated chemoresistance in breast cancer. Breast. 30:92–100. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Scholten DJ II, Timmer CM, Peacock JD, Pelle DW, Williams BO and Steensma MR: Down regulation of Wnt signaling mitigates hypoxia-induced chemoresistance in human osteosarcoma cells. PLoS One. 9:e1114312014. View Article : Google Scholar : PubMed/NCBI

61 

Muz B, Kusdono HD, Azab F, de la Puente P, Federico C, Fiala M, Vij R, Salama NN and Azab AK: Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance. Leuk Lymphoma. 58:2916–2925. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Mirnezami AH, Pickard K, Zhang L, Primrose JN and Packham G: MicroRNAs: Key players in carcinogenesis and novel therapeutic targets. Eur J Surg Oncol. 35:339–347. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Munk R, Panda AC, Grammatikakis I, Gorospe M and Abdelmohsen K: Senescence-associated MicroRNAs. Int Rev Cell Mol Biol. 334:177–205. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Vienberg S, Geiger J, Madsen S and Dalgaard LT: MicroRNAs in metabolism. Acta Physiol (Oxf). 219:346–361. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Si W, Shen J, Zheng H and Fan W: The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 11:252019. View Article : Google Scholar : PubMed/NCBI

66 

Tiwari A, Mukherjee B and Dixit M: MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Curr Cancer Drug Targets. 18:266–277. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Oikawa T, Otsuka Y and Sabe H: p53-dependent and -independent epithelial integrity: beyond miRNAs and metabolic fluctuations. Cancers (Basel). 10:1622018. View Article : Google Scholar : PubMed/NCBI

68 

Blume CJ, Hotz-Wagenblatt A, Hüllein J, Sellner L, Jethwa A, Stolz T, Slabicki M, Lee K, Sharathchandra A, Benner A, et al: p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 29:2015–2023. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Ueno T, Toyooka S, Fukazawa T, Kubo T, Soh J, Asano H, Muraoka T, Tanaka N, Maki Y, Shien K, et al: Preclinical evaluation of microRNA-34b/c delivery for malignant pleural mesothelioma. Acta Med Okayama. 68:23–26. 2014.PubMed/NCBI

70 

Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng G, et al: MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 32:772–778. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Huang Y, Kesselman D, Kizub D, Guerrero-Preston R and Ratovitski EA: Phospho-ΔNp63α/microRNA feedback regulation in squamous carcinoma cells upon cisplatin exposure. Cell Cycle. 12:684–697. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Bisio A, De Sanctis V, Del Vescovo V, Denti MA, Jegga AG, Inga A and Ciribilli Y: Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer. 13:5522013. View Article : Google Scholar : PubMed/NCBI

73 

Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S and Miyazono K: Modulation of microRNA processing by p53. Nature. 460:529–533. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, et al: A microRNA signature of hypoxia. Mol Cell Biol. 27:1859–1867. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Liao JM, Cao B, Zhou X and Lu H: New insights into p53 functions through its target microRNAs. J Mol Cell Biol. 6:206–213. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Rokavec M, Li H, Jiang L and Hermeking H: The p53/microRNA connection in gastrointestinal cancer. Clin Exp Gastroenterol. 7:395–413. 2014.PubMed/NCBI

77 

Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, Wang H, Huang C and Sun S: Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS One. 7:e307712012. View Article : Google Scholar : PubMed/NCBI

78 

Zhou B, Wei E, Shi H, Huang J, Gao L, Zhang T, Wei Y and Ge B: MiR-26a inhibits cell proliferation and induces apoptosis in human bladder cancer through regulating EZH2 bioactivity. Int J Clin Exp Pathol. 10:11234–11241. 2017.PubMed/NCBI

79 

Li P, Zhang X, Wang H, Wang L, Liu T, Du L, Yang Y and Wang C: MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol Cancer Ther. 16:739–751. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Sun C, Wang FJ, Zhang HG, Xu XZ, Jia RC, Yao L and Qiao PF: miR-34a mediates oxaliplatin resistance of colorectal cancer cells by inhibiting macroautophagy via transforming growth factor-β/Smad4 pathway. World J Gastroenterol. 23:1816–1827. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Shi X, Kaller M, Rokavec M, Kirchner T, Horst D and Hermeking H: Characterization of a p53/miR-34a/CSF1R/STAT3 feedback loop in colorectal cancer. Cell Mol Gastroenterol Hepatol. 10:391–418. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Wu T, Wang Z, Liu Y, Mei Z, Wang G, Liang Z, Cui A, Hu X, Cui L, Yang Y and Liu CY: Interleukin 22 protects colorectal cancer cells from chemotherapy by activating the STAT3 pathway and inducing autocrine expression of interleukin 8. Clin Immunol. 154:116–126. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Jahid S, Sun J, Edwards RA, Dizon D, Panarelli NC, Milsom JW, Sikandar SS, Gümüs ZH and Lipkin SM: miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov. 2:540–553. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Huang S, He X, Ding J, Liang L, Zhao Y, Zhang Z, Yao X, Pan Z, Zhang P, Li J, et al: Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer. 123:972–978. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Li X, Li X, Liao D, Wang X, Wu Z, Nie J, Bai M, Fu X, Mei Q and Han W: Elevated microRNA-23a expression enhances the chemoresistance of colorectal cancer cells with microsatellite instability to 5-fluorouracil by directly targeting ABCF1. Curr Protein Pept Sci. 16:301–309. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Peng F, Zhang H, Du Y and Tan P: miR-23a promotes cisplatin chemoresistance and protects against cisplatin-induced apoptosis in tongue squamous cell carcinoma cells through twist. Oncol Rep. 33:942–950. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Xu F, Li Q, Wang Z and Cao X: Sinomenine inhibits proliferation, migration, invasion and promotes apoptosis of prostate cancer cells by regulation of miR-23a. Biomed Pharmacother. 112:1085922019. View Article : Google Scholar : PubMed/NCBI

88 

Zhang YS, Wang MY, Zhang WL and Tang CH: Proliferation, migration and apoptosis of acute myeloid leukemia cells regulated by mir-23a-3p targeting SMC1A and the mechanism. Zhonghua Zhong Liu Za Zhi. 41:753–759. 2019.(In Chinese). PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang J, Li C, Sun L, Sun D and Zhao T: P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions. Oncol Rep 50: 219, 2023.
APA
Zhang, J., Li, C., Sun, L., Sun, D., & Zhao, T. (2023). P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions. Oncology Reports, 50, 219. https://doi.org/10.3892/or.2023.8656
MLA
Zhang, J., Li, C., Sun, L., Sun, D., Zhao, T."P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions". Oncology Reports 50.6 (2023): 219.
Chicago
Zhang, J., Li, C., Sun, L., Sun, D., Zhao, T."P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions". Oncology Reports 50, no. 6 (2023): 219. https://doi.org/10.3892/or.2023.8656
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang J, Li C, Sun L, Sun D and Zhao T: P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions. Oncol Rep 50: 219, 2023.
APA
Zhang, J., Li, C., Sun, L., Sun, D., & Zhao, T. (2023). P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions. Oncology Reports, 50, 219. https://doi.org/10.3892/or.2023.8656
MLA
Zhang, J., Li, C., Sun, L., Sun, D., Zhao, T."P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions". Oncology Reports 50.6 (2023): 219.
Chicago
Zhang, J., Li, C., Sun, L., Sun, D., Zhao, T."P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions". Oncology Reports 50, no. 6 (2023): 219. https://doi.org/10.3892/or.2023.8656
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team