Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
September-2024 Volume 52 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 52 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review)

  • Authors:
    • Yi-Fan Dong
    • Jiaheng Zhang
    • Jin-Hong Zhou
    • Yi-Li Xiao
    • Wan-Juan Pei
    • Hui-Ping Liu
  • View Affiliations / Copyright

    Affiliations: College of Integrative Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
  • Article Number: 112
    |
    Published online on: July 3, 2024
       https://doi.org/10.3892/or.2024.8771
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The mitochondria‑associated endoplasmic reticulum (ER) membrane (MAM), serving as a vital link between the mitochondria and ER, holds a pivotal role in maintaining the physiological function of these two organelles. Its specific functions encompass the participation in the biosynthesis and functional regulation of the mitochondria, calcium ion transport, lipid metabolism, oxidative stress and autophagy among numerous other facets. Scientific exploration has revealed that MAMs hold potential as effective therapeutic targets influencing the mitochondria and ER within the context of cancer therapy. The present review focused on elucidating the related pathways of mitochondrial autophagy and ER stress and their practical application in ovarian cancer, aiming to identify commonalities existing between MAMs and these pathways, thereby extending to related applications of MAMs in ovarian cancer treatment. This endeavor aimed at exploring new potential for MAMs in clinically managing ovarian cancer.
View Figures

Figure 1

View References

1 

Wallace DC: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet. 39:359–407. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Copeland DE and Dalton AJ: An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J Biophys Biochem Cytol. 5:393–396. 1959. View Article : Google Scholar : PubMed/NCBI

3 

Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA and Pozzan T: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 280:1763–1766. 1998. View Article : Google Scholar : PubMed/NCBI

4 

Wu H, Carvalho P and Voeltz GK: Here, there, and everywhere: The importance of ER membrane contact sites. Science. 361:eaan58352018. View Article : Google Scholar : PubMed/NCBI

5 

Lev S: Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 4:a0133002012. View Article : Google Scholar : PubMed/NCBI

6 

Hoppins S and Nunnari J: Cell biology. Mitochondrial dynamics and apoptosis-the ER connection. Science. 337:1052–1054. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Belosludtsev KN, Dubinin MV, Belosludtseva NV and Mironova GD: Mitochondrial Ca2+ transport: Mechanisms, molecular structures, and role in cells. Biochemistry (Mosc). 84:593–607. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto R: Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T and Pizzo P: On the role of mitofusin 2 in endoplasmic reticulum-mitochondria tethering. Proc Natl Acad Sci USA. 114:E2266–E2267. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Gibellini F and Smith TK: The Kennedy pathway-de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 62:414–428. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Puglielli L, Konopka G, Pack-Chung E, Ingano LA, Berezovska O, Hyman BT, Chang TY, Tanzi RE and Kovacs DM: Acyl-coenzyme A: Cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol. 3:905–912. 2001. View Article : Google Scholar : PubMed/NCBI

12 

El Alwani M, Wu BX, Obeid LM and Hannun YA: Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol Ther. 112:171–183. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Nikolova-Karakashian M, Karakashian A and Rutkute K: Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem. 49:469–486. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J and Voeltz GK: ER tubules mark sites of mitochondrial division. Science. 334:358–362. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Murley A, Sarsam RD, Toulmay A, Yamada J, Prinz WA and Nunnari J: Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J Cell Biol. 209:539–548. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Ishihara N, Eura Y and Mihara K: Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 117:6535–6546. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Ainbinder A, Boncompagni S, Protasi F and Dirksen RT: Role of mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle. Cell Calcium. 57:14–24. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Basso V, Marchesan E, Peggion C, Chakraborty J, von Stockum S, Giacomello M, Ottolini D, Debattisti V, Caicci F, Tasca E, et al: Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol Res. 138:43–56. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Okamoto K and Shaw JM: Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 39:503–536. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Galluzzi L, Kepp O, Trojel-Hansen C and Kroemer G: Mitochondrial control of cellular life, stress, and death. Circ Res. 111:1198–1207. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E and Grimm S: Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30:556–568. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Area-Gomez E and Schon EA: On the pathogenesis of Alzheimer's disease: The MAM hypothesis. FASEB J. 31:864–867. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Wang B, Nguyen M, Chang NC and Shore GC: Fis1, Bap31 and the kiss of death between mitochondria and endoplasmic reticulum. EMBO J. 30:451–452. 2011. View Article : Google Scholar : PubMed/NCBI

24 

MacAskill AF and Kittler JT: Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20:102–112. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Upton JP, Austgen K, Nishino M, Coakley KM, Hagen A, Han D, Papa FR and Oakes SA: Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol. 28:3943–3951. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, et al: ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 129:1337–1349. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Li J, Lee B and Lee AS: Endoplasmic reticulum stress-induced apoptosis: Multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem. 281:7260–7270. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E and Grimm S: Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30:556–568. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Area-Gomez E and Schon EA: On the pathogenesis of Alzheimer's disease: The MAM hypothesis. FASEB J. 31:864–867. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Wang B, Nguyen M, Chang NC and Shore GC: Fis1, Bap31 and the kiss of death between mitochondria and endoplasmic reticulum. EMBO J. 30:451–452. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Siskind LJ, Kolesnick RN and Colombini M: Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem. 277:26796–26803. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Coleman RA, Lewin TM, Van Horn CG and Gonzalez-Baró MR: Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr. 132:2123–2126. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Larsen BD and Sørensen CS: The caspase-activated DNase: Apoptosis and beyond. FEBS J. 284:1160–1170. 2017. View Article : Google Scholar : PubMed/NCBI

34 

de Brito OM and Scorrano L: Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 456:605–610. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Mazure NM: VDAC in cancer. Biochim Biophys Acta Bioenerg. 1858:665–673. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Vinay Kumar C, Kumar KM, Swetha R, Ramaiah S and Anbarasu A: Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis. J Theor Biol. 354:72–80. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Formosa LE and Ryan MT: Mitochondrial fusion: Reaching the end of mitofusin's tether. J Cell Biol. 215:597–598. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Di Mattia T, Wilhelm LP, Ikhlef S, Wendling C, Spehner D, Nominé Y, Giordano F, Mathelin C, Drin G, Tomasetto C and Alpy F: Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites. EMBO Rep. 19:e454532018. View Article : Google Scholar : PubMed/NCBI

39 

Lim Y, Cho IT, Schoel LJ, Cho G and Golden JA: Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann Neurol. 78:679–696. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Calì T, Ottolini D, Negro A and Brini M: α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem. 287:17914–17929. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Liu Y, Ma X, Fujioka H, Liu J, Chen S and Zhu X: DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1. Proc Natl Acad Sci USA. 116:25322–25328. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Stoica R, Paillusson S, Gomez-Suaga P, Mitchell JC, Lau DH, Gray EH, Sancho RM, Vizcay-Barrena G, De Vos KJ, Shaw CE, et al: ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep. 17:1326–1342. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, Jeon JH, Choi YK, Liangpunsakul S, Huh YH, et al: PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 68:571–586. 2019. View Article : Google Scholar : PubMed/NCBI

44 

D'Eletto M, Rossin F, Occhigrossi L, Farrace MG, Faccenda D, Desai R, Marchi S, Refolo G, Falasca L, Antonioli M, et al: Transglutaminase type 2 regulates ER-mitochondria contact sites by interacting with GRP75. Cell Rep. 25:3573–3581.e4. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Wu S, Lu Q, Wang Q, Ding Y, Ma Z, Mao X, Huang K, Xie Z and Zou MH: Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation. 136:2248–2266. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Zhang W, Siraj S, Zhang R and Chen Q: Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy. 13:1080–1081. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen Q and Xia B: Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy. 12:2363–2373. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L and Chen Q: Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 12:689–702. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Wu W, Li W, Chen H, Jiang L, Zhu R and Feng D: FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy. 12:1675–1676. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Wang XL, Feng ST, Wang YT, Yuan YH, Li ZP, Chen NH, Wang ZZ and Zhang Y: Mitophagy, a form of selective autophagy, plays an essential role in mitochondrial dynamics of Parkinson's disease. Cell Mol Neurobiol. 42:1321–1339. 2022. View Article : Google Scholar : PubMed/NCBI

51 

Gong Y, Luo Y, Liu S, Ma J, Liu F, Fang Y, Cao F, Wang L, Pei Z and Ren J: Pentacyclic triterpene oleanolic acid protects against cardiac aging through regulation of mitophagy and mitochondrial integrity. Biochim Biophys Acta Mol Basis Dis. 1868:1664022022. View Article : Google Scholar : PubMed/NCBI

52 

Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J and Chen Y: NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α. Basic Res Cardiol. 113:232018. View Article : Google Scholar : PubMed/NCBI

53 

Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM and Thomas G: PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 24:717–729. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Werneburg NW, Bronk SF, Guicciardi ME, Thomas L, Dikeakos JD, Thomas G and Gores GJ: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein-induced lysosomal translocation of proapoptotic effectors is mediated by phosphofurin acidic cluster sorting protein-2 (PACS-2). J Biol Chem. 287:24427–24437. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Köttgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Höpker K, et al: Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 24:705–716. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Myhill N, Lynes EM, Nanji JA, Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G and Simmen T: The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell. 19:2777–2788. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Han S, Zhao F, Hsia J, Ma X, Liu Y, Torres S, Fujioka H and Zhu X: The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo. J Cel Sci. 134:jcs2534432021. View Article : Google Scholar

58 

Leal NS, Schreiner B, Pinho CM, Filadi R, Wiehager B, Karlström H, Pizzo P and Ankarcrona M: Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production. J Cel Mol Med. 20:1686–1695. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Li J, Qi F, Su H, Zhang C, Zhang Q, Chen Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci. 18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI

60 

Barroso-González J, Auclair S, Luan S, Thomas L, Atkins KM, Aslan JE, Thomas LL, Zhao J, Zhao Y and Thomas G: PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 23:1448–1457. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Zhou H, Zhu P, Wang J, Toan S and Ren J: DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct Target Ther. 4:562019. View Article : Google Scholar : PubMed/NCBI

62 

Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T and Pizzo P: Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA. 112:E2174–E2181. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Li J, Qi F, Su H, Zhang C, Zhang Q, Chen Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci. 18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI

64 

Chen Y and Dorn GW II: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 340:471–475. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Cao Y, Chen Z, Hu J, Feng J, Zhu Z, Fan Y, Lin Q and Ding G: Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway. Front Cell Dev Biol. 9:7692132021. View Article : Google Scholar : PubMed/NCBI

66 

Modi S, López-Doménech G, Halff EF, Covill-Cooke C, Ivankovic D, Melandri D, Arancibia-Cárcamo IL, Burden JJ, Lowe AR and Kittler JT: Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun. 10:43992019. View Article : Google Scholar : PubMed/NCBI

67 

Hernández-Alvarez MI, Sebastián D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, Plana N, Veiga SR, Hernández V, Vasconcelos N, et al: Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease. Cell. 177:881–895. e172019. View Article : Google Scholar : PubMed/NCBI

68 

Baker N, Patel J and Khacho M: Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics. Mitochondrion. 49:259–268. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Glancy B, Kim Y, Katti P and Willingham TB: The functional impact of mitochondrial structure across subcellular scales. Front Physiol. 11:5410402020. View Article : Google Scholar : PubMed/NCBI

70 

Gutiérrez T and Simmen T: Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium. 70:64–75. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Rouzier C, Bannwarth S, Chaussenot A, Chevrollier A, Verschueren A, Bonello-Palot N, Fragaki K, Cano A, Pouget J, Pellissier JF, et al: The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain. 135:23–34. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Vielhaber S, Debska-Vielhaber G, Peeva V, Schoeler S, Kudin AP, Minin I, Schreiber S, Dengler R, Kollewe K, Zuschratter W, et al: Mitofusin 2 mutations affect mitochondrial function by mitochondrial DNA depletion. Acta Neuropathol. 125:245–256. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Kawalec M, Boratyńska-Jasińska A, Beręsewicz M, Dymkowska D, Zabłocki K and Zabłocka B: Mitofusin 2 deficiency affects energy metabolism and mitochondrial biogenesis in MEF cells. PLoS One. 10:e01341622015. View Article : Google Scholar : PubMed/NCBI

74 

Parys JB and Vervliet T: New insights in the IP3 receptor and its regulation. Adv Exp Med Biol. 1131:243–270. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Mazure NM: VDAC in cancer. Biochim Biophys Acta Bioenerg. 1858:665–673. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto R: Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE and Rizzuto R: Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol. 159:613–624. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin MA, Ji-Cao J, Zoulim F, Bartosch B, Ovize M, et al: Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes. 63:3279–3294. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Honrath B, Metz I, Bendridi N, Rieusset J, Culmsee C and Dolga AM: Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 3:170762017. View Article : Google Scholar : PubMed/NCBI

80 

Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, Jeon JH, Choi YK, Liangpunsakul S, Huh YH, et al: PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 68:571–586. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Vinay Kumar C, Kumar KM, Swetha R, Ramaiah S and Anbarasu A: Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis. J Theor Biol. 354:72–80. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Kanekura K, Nishimoto I, Aiso S and Matsuoka M: Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J Biol Chem. 281:30223–30233. 2006. View Article : Google Scholar : PubMed/NCBI

83 

De Vos KJ, Mórotz GM, Stoica R, Tudor EL, Lau KF, Ackerley S, Warley A, Shaw CE and Miller CC: VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet. 21:1299–1311. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, Vizcay-Barrena G, Lin WL, Xu YF, Lewis J, et al: ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun. 5:39962014. View Article : Google Scholar : PubMed/NCBI

85 

Qiao X, Jia S, Ye J, Fang X, Zhang C, Cao Y, Xu C, Zhao L, Zhu Y, Wang L and Zheng M: PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction. Sci Rep. 7:453792017. View Article : Google Scholar : PubMed/NCBI

86 

Di Mattia T, Wilhelm LP, Ikhlef S, Wendling C, Spehner D, Nominé Y, Giordano F, Mathelin C, Drin G, Tomasetto C and Alpy F: Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites. EMBO Rep. 19:e454532018. View Article : Google Scholar : PubMed/NCBI

87 

Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Söderberg O, et al: Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci USA. 105:2427–2432. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Prevarskaya N, Ouadid-Ahidouch H, Skryma R and Shuba Y: Remodelling of Ca2+ transport in cancer: How it contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol Sci. 369:201300972014. View Article : Google Scholar : PubMed/NCBI

89 

Monteith GR, Prevarskaya N and Roberts-Thomson SJ: The calcium-cancer signalling nexus. Nat Rev Cancer. 17:367–380. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Li J, Qi F, Su H, Zhang C, Zhang Q, Chen Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int J Biol Sci. 18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI

91 

Lim Y, Cho IT, Schoel LJ, Cho G and Golden JA: Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann Neurol. 78:679–696. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Zampieri LX, Grasso D, Bouzin C, Brusa D, Rossignol R and Sonveaux P: Mitochondria participate in chemoresistance to cisplatin in human ovarian cancer cells. Mol Cancer Res. 18:1379–1391. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Chang CM, Lan KL, Huang WS, Lee YJ, Lee TW, Chang CH and Chuang CM: 188Re-liposome can induce mitochondrial autophagy and reverse drug resistance for ovarian cancer: From bench evidence to preliminary clinical proof-of-concept. Int J Mol Sci. 18:9032017. View Article : Google Scholar : PubMed/NCBI

94 

Vianello C, Cocetta V, Catanzaro D, Dorn GW II, De Milito A, Rizzolio F, Canzonieri V, Cecchin E, Roncato R, Toffoli G, et al: Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy. Cell Death Dis. 13:3982022. View Article : Google Scholar : PubMed/NCBI

95 

Zhou Z, Du LQ, Huang XM, Zhu LG, Wei QC, Qin QP and Bian H: Novel glycosylation zinc(II)-cryptolepine complexes perturb mitophagy pathways and trigger cancer cell apoptosis and autophagy in SK-OV-3/DDP cells. Eur J Med Chem. 243:1147432022. View Article : Google Scholar : PubMed/NCBI

96 

Yu Y, Xu L, Qi L, Wang C, Xu N, Liu S, Li S, Tian H, Liu W, Xu Y and Li Z: ABT737 induces mitochondrial pathway apoptosis and mitophagy by regulating DRP1-dependent mitochondrial fission in human ovarian cancer cells. Biomed Pharmacother. 96:22–29. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Chen YP, Shih PC, Feng CW, Wu CC, Tsui KH, Lin YH, Kuo HM and Wen ZH: Pardaxin activates excessive mitophagy and mitochondria-mediated apoptosis in human ovarian cancer by inducing reactive oxygen species. Antioxidants (Basel). 10:18832021. View Article : Google Scholar : PubMed/NCBI

98 

Wang J, Xu Z, Hu X, Yang Y, Su J, Liu Y, Zhou L, Qin J, Zhang D and Yu H: Epoxycytochalasin H: An endophytic phomopsis compound induces apoptosis in A2780 cells through mitochondrial damage and endoplasmic reticulum stress. Onco Targets Ther. 13:4987–4997. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Katreddy RR, Bollu LR, Su F, Xian N, Srivastava S, Thomas R, Dai Y, Wu B, Xu Y, Rea MA, et al: Targeted reduction of the EGFR protein, but not inhibition of its kinase activity, induces mitophagy and death of cancer cells through activation of mTORC2 and Akt. Oncogenesis. 7:52018. View Article : Google Scholar : PubMed/NCBI

100 

Meng Y, Qiu L, Zeng X, Hu X, Zhang Y, Wan X, Mao X, Wu J, Xu Y, Xiong Q, et al: Targeting CRL4 suppresses chemoresistant ovarian cancer growth by inducing mitophagy. Signal Transduct Target Ther. 7:3882022. View Article : Google Scholar : PubMed/NCBI

101 

Yuan X, Chen K, Zheng F, Xu S, Li Y, Wang Y, Ni H, Wang F, Cui Z, Qin Y, et al: Low-dose BPA and its substitute BPS promote ovarian cancer cell stemness via a non-canonical PINK1/p53 mitophagic signaling. J Hazard Mater. 452:1312882023. View Article : Google Scholar : PubMed/NCBI

102 

Martinez-Outschoorn UE, Balliet RM, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F and Lisanti MP: Hereditary ovarian cancer and two-compartment tumor metabolism: Epithelial loss of BRCA1 induces hydrogen peroxide production, driving oxidative stress and NFκB activation in the tumor stroma. Cell Cycle. 11:4152–4166. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Jin S, Gao J, Qi Y, Hao Y, Li X, Liu Q, Liu J, Liu D, Zhu L and Lin B: TGF-β1 fucosylation enhances the autophagy and mitophagy via PI3K/Akt and Ras-Raf-MEK-ERK in ovarian carcinoma. Biochem Biophys Res Commun. 524:970–976. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Bae H, Park S, Yang C, Song G and Lim W: Disruption of endoplasmic reticulum and ROS production in human ovarian cancer by campesterol. Antioxidants (Basel). 10:3792021. View Article : Google Scholar : PubMed/NCBI

105 

Borgese N, Francolini M and Snapp E: Endoplasmic reticulum architecture: Structures in flux. Curr Opin Cell Biol. 18:358–364. 2006. View Article : Google Scholar : PubMed/NCBI

106 

Shibata Y, Voeltz GK and Rapoport TA: Rough sheets and smooth tubules. Cell. 126:435–439. 2006. View Article : Google Scholar : PubMed/NCBI

107 

Green DR and Reed JC: Mitochondria and apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI

108 

Lossi L: The concept of intrinsic versus extrinsic apoptosis. Biochem J. 479:357–384. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Hayashi T, Rizzuto R, Hajnoczky G and Su TP: MAM: More than just a housekeeper. Trends Cell Biol. 19:81–88. 2009. View Article : Google Scholar : PubMed/NCBI

110 

Toulmay A and Prinz WA: Lipid transfer and signaling at organelle contact sites: The tip of the iceberg. Curr Opin Cell Biol. 23:458–463. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Henne WM, Zhu L, Balogi Z, Stefan C, Pleiss JA and Emr SD: Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. J Cell Biol. 210:541–551. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T and Yamamoto A: Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy. 6:301–303. 2010. View Article : Google Scholar : PubMed/NCBI

113 

Uemura T, Yamamoto M, Kametaka A, Sou YS, Yabashi A, Yamada A, Annoh H, Kametaka S, Komatsu M and Waguri S: A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane. Mol Cell Biol. 34:1695–1706. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Cheng M, Yu H, Kong Q, Wang B, Shen L, Dong D and Sun L: The mitochondrial PHB2/OMA1/DELE1 pathway cooperates with endoplasmic reticulum stress to facilitate the response to chemotherapeutics in ovarian cancer. Int J Mol Sci. 23:13202022. View Article : Google Scholar : PubMed/NCBI

115 

Jung E, Koh D, Lim Y, Shin SY and Lee YH: Overcoming multidrug resistance by activating unfolded protein response of the endoplasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells. BMB Rep. 53:88–93. 2020. View Article : Google Scholar : PubMed/NCBI

116 

Xu J, Bi G, Luo Q, Liu Y, Liu T, Li L, Zeng Q, Wang Q, Wang Y, Yu J and Yi P: PHLDA1 modulates the endoplasmic reticulum stress response and is required for resistance to oxidative stress-induced cell death in human ovarian cancer cells. J Cancer. 12:5486–5493. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Kim TW and Lee HG: 6-Shogaol overcomes gefitinib resistance via ER stress in ovarian cancer cells. Int J Mol Sci. 24:26392023. View Article : Google Scholar : PubMed/NCBI

118 

Bahar E, Kim JY, Kim DC, Kim HS and Yoon H: Combination of niraparib, cisplatin and twist knockdown in cisplatin-resistant ovarian cancer cells potentially enhances synthetic lethality through ER-stress mediated mitochondrial apoptosis pathway. Int J Mol Sci. 22:39162021. View Article : Google Scholar : PubMed/NCBI

119 

Zhang Y, Wang Y, Zhao G, Orsulic S and Matei D: Metabolic dependencies and targets in ovarian cancer. Pharmacol Ther. 245:1084132023. View Article : Google Scholar : PubMed/NCBI

120 

Rezghi Barez S, Movahedian Attar A and Aghaei M: MicroRNA-30c-2-3p regulates ER stress and induces apoptosis in ovarian cancer cells underlying ER stress. EXCLI J. 20:922–934. 2021.PubMed/NCBI

121 

Kong Q, Wei D, Xie P, Wang B, Yu K, Kang X and Wang Y: Photothermal therapy via NIR II light irradiation enhances DNA damage and endoplasmic reticulum stress for efficient chemotherapy. Front Pharmacol. 12:6702072021. View Article : Google Scholar : PubMed/NCBI

122 

Wang J, Xu Z, Hu X, Yang Y, Su J, Liu Y, Zhou L, Qin J, Zhang D and Yu H: Epoxycytochalasin H: An endophytic phomopsis compound induces apoptosis in A2780 cells through mitochondrial damage and endoplasmic reticulum stress. Onco Targets Ther. 13:4987–4997. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Wang YY, Lee KT, Lim MC and Choi JH: TRPV1 antagonist DWP05195 induces ER stress-dependent apoptosis through the ROS-p38-CHOP pathway in human ovarian cancer cells. Cancers (Basel). 12:17022020. View Article : Google Scholar : PubMed/NCBI

124 

Yart L, Bastida-Ruiz D, Allard M, Dietrich PY, Petignat P and Cohen M: Linking unfolded protein response to ovarian cancer cell fusion. BMC Cancer. 22:6222022. View Article : Google Scholar : PubMed/NCBI

125 

Chen X, Zha Z, Wang Y and Chen Y, Pang M, Huang L and Chen Y: Knockdown of ENTPD5 inhibits tumor metastasis and growth via regulating the GRP78/p-eIF-2α/CHOP pathway in serous ovarian cancer. J Ovarian Res. 15:692022. View Article : Google Scholar : PubMed/NCBI

126 

Barez SR, Atar AM and Aghaei M: Mechanism of inositol-requiring enzyme 1-alpha inhibition in endoplasmic reticulum stress and apoptosis in ovarian cancer cells. J Cell Commun Signal. 14:403–415. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Zundell JA, Fukumoto T, Lin J, Fatkhudinov N, Nacarelli T, Kossenkov AV, Liu Q, Cassel J, Hu CA, Wu S and Zhang R: Targeting the IRE1α/XBP1 endoplasmic reticulum stress response pathway in ARID1A-mutant ovarian cancers. Cancer Res. 81:5325–5335. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Ma L, Wei J, Wan J, Wang W, Wang L, Yuan Y, Yang Z, Liu X and Ming L: Low glucose and metformin-induced apoptosis of human ovarian cancer cells is connected to ASK1 via mitochondrial and endoplasmic reticulum stress-associated pathways. J Exp Clin Cancer Res. 38:772019. View Article : Google Scholar : PubMed/NCBI

129 

Lin J, Liu H, Fukumoto T, Zundell J, Yan Q, Tang CA, Wu S, Zhou W, Guo D, Karakashev S, et al: Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat Commun. 12:53212021. View Article : Google Scholar : PubMed/NCBI

130 

Xiao R, You L, Zhang L, Guo X, Guo E, Zhao F, Yang B, Li X, Fu Y, Lu F, et al: Inhibiting the IRE1α axis of the unfolded protein response enhances the antitumor effect of AZD1775 in TP53 mutant ovarian cancer. Adv Sci (Weinh). 9:e21054692022. View Article : Google Scholar : PubMed/NCBI

131 

Zhang Q, Yu S, Lam MMT, Poon TCW, Sun L, Jiao Y, Wong AST and Lee LTO: Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res. 38:1162019. View Article : Google Scholar : PubMed/NCBI

132 

Singla RK, Sharma P, Kumar D, Gautam RK, Goyal R, Tsagkaris C, Dubey AK, Bansal H, Sharma R and Shen B: The role of nanomaterials in enhancing natural product translational potential and modulating endoplasmic reticulum stress in the treatment of ovarian cancer. Front Pharmacol. 13:9870882022. View Article : Google Scholar : PubMed/NCBI

133 

Hong T, Ham J, Song G and Lim W: Alpinumisoflavone disrupts endoplasmic reticulum and mitochondria leading to apoptosis in human ovarian cancer. Pharmaceutics. 14:5642022. View Article : Google Scholar : PubMed/NCBI

134 

Li H, Chen H, Li R, Xin J, Wu S, Lan J, Xue K, Li X, Zuo C, Jiang W and Zhu L: Cucurbitacin I induces cancer cell death through the endoplasmic reticulum stress pathway. J Cell Biochem. 120:2391–2403. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Bae H, Lee JY, Song G and Lim W: Fucosterol suppresses the progression of human ovarian cancer by inducing mitochondrial dysfunction and endoplasmic reticulum stress. Mar Drugs. 18:2612020. View Article : Google Scholar : PubMed/NCBI

136 

Zhu J, Lin S, Zou X, Chen X, Liu Y, Yang X, Gao J and Zhu H: Mechanisms of autophagy and endoplasmic reticulum stress in the reversal of platinum resistance of epithelial ovarian cancer cells by naringin. Mol Biol Rep. 50:6457–6468. 2023. View Article : Google Scholar : PubMed/NCBI

137 

Zhao Q, Peng C, Zheng C, He XH, Huang W and Han B: Recent advances in characterizing natural products that regulate autophagy. Anticancer Agents Med Chem. 19:2177–2196. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Bae H, Lee JY, Yang C, Song G and Lim W: Fucoidan derived from fucus vesiculosus inhibits the development of human ovarian cancer via the disturbance of calcium homeostasis, endoplasmic reticulum stress, and angiogenesis. Mar Drugs. 18:452020. View Article : Google Scholar : PubMed/NCBI

139 

Kim T and Ko SG: JI017, a complex herbal medication, induces apoptosis via the Nox4-PERK-CHOP axis in ovarian cancer cells. Int J Mol Sci. 22:122642021. View Article : Google Scholar : PubMed/NCBI

140 

Abdullah TM, Whatmore J, Bremer E, Slibinskas R, Michalak M and Eggleton P: Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunol Immunother. 71:1655–1669. 2022. View Article : Google Scholar : PubMed/NCBI

141 

Kielbik M, Szulc-Kielbik I and Klink M: Calreticulin-multifunctional chaperone in immunogenic cell death: Potential significance as a prognostic biomarker in ovarian cancer patients. Cells. 10:1302021. View Article : Google Scholar : PubMed/NCBI

142 

Bi F, Jiang Z, Park W, Hartwich TMP, Ge Z, Chong KY, Yang K, Morrison MJ, Kim D, Kim J, et al: A Benzenesulfonamide-based mitochondrial uncoupler induces endoplasmic reticulum stress and immunogenic cell death in epithelial ovarian cancer. Mol Cancer Ther. 20:2398–2409. 2021. View Article : Google Scholar : PubMed/NCBI

143 

Lau TS, Chan LKY, Man GCW, Wong CH, Lee JHS, Yim SF, Cheung TH, McNeish IA and Kwong J: Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res. 8:1099–1111. 2020. View Article : Google Scholar : PubMed/NCBI

144 

Le HV, Babak MV, Ehsan MA, Altaf M, Reichert L, Gushchin AL, Ang WH and Isab AA: Highly cytotoxic gold(i)-phosphane dithiocarbamate complexes trigger an ER stress-dependent immune response in ovarian cancer cells. Dalton Trans. 49:7355–7363. 2020. View Article : Google Scholar : PubMed/NCBI

145 

Song M, Sandoval TA, Chae CS, Chopra S, Tan C, Rutkowski MR, Raundhal M, Chaurio RA, Payne KK, Konrad C, et al: IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 562:423–428. 2018. View Article : Google Scholar : PubMed/NCBI

146 

Cao Y, Trillo-Tinoco J, Sierra RA, Anadon C, Dai W, Mohamed E, Cen L, Costich TL, Magliocco A, Marchion D, et al: ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 10:12802019. View Article : Google Scholar : PubMed/NCBI

147 

Yu S, Yan X, Tian R, Xu L, Zhao Y, Sun L and Su J: An experimentally induced mutation in the UBA domain of p62 changes the sensitivity of cisplatin by up-regulating HK2 localisation on the mitochondria and increasing mitophagy in A2780 ovarian cancer cells. Int J Mol Sci. 22:39832021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dong Y, Zhang J, Zhou J, Xiao Y, Pei W and Liu H: Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review). Oncol Rep 52: 112, 2024.
APA
Dong, Y., Zhang, J., Zhou, J., Xiao, Y., Pei, W., & Liu, H. (2024). Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review). Oncology Reports, 52, 112. https://doi.org/10.3892/or.2024.8771
MLA
Dong, Y., Zhang, J., Zhou, J., Xiao, Y., Pei, W., Liu, H."Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review)". Oncology Reports 52.3 (2024): 112.
Chicago
Dong, Y., Zhang, J., Zhou, J., Xiao, Y., Pei, W., Liu, H."Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review)". Oncology Reports 52, no. 3 (2024): 112. https://doi.org/10.3892/or.2024.8771
Copy and paste a formatted citation
x
Spandidos Publications style
Dong Y, Zhang J, Zhou J, Xiao Y, Pei W and Liu H: Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review). Oncol Rep 52: 112, 2024.
APA
Dong, Y., Zhang, J., Zhou, J., Xiao, Y., Pei, W., & Liu, H. (2024). Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review). Oncology Reports, 52, 112. https://doi.org/10.3892/or.2024.8771
MLA
Dong, Y., Zhang, J., Zhou, J., Xiao, Y., Pei, W., Liu, H."Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review)". Oncology Reports 52.3 (2024): 112.
Chicago
Dong, Y., Zhang, J., Zhou, J., Xiao, Y., Pei, W., Liu, H."Mitochondrial‑associated endoplasmic reticulum membrane interference in ovarian cancer (Review)". Oncology Reports 52, no. 3 (2024): 112. https://doi.org/10.3892/or.2024.8771
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team