|
1
|
Wallace DC: A mitochondrial paradigm of
metabolic and degenerative diseases, aging, and cancer: A dawn for
evolutionary medicine. Annu Rev Genet. 39:359–407. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Copeland DE and Dalton AJ: An association
between mitochondria and the endoplasmic reticulum in cells of the
pseudobranch gland of a teleost. J Biophys Biochem Cytol.
5:393–396. 1959. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Rizzuto R, Pinton P, Carrington W, Fay FS,
Fogarty KE, Lifshitz LM, Tuft RA and Pozzan T: Close contacts with
the endoplasmic reticulum as determinants of mitochondrial Ca2+
responses. Science. 280:1763–1766. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wu H, Carvalho P and Voeltz GK: Here,
there, and everywhere: The importance of ER membrane contact sites.
Science. 361:eaan58352018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lev S: Nonvesicular lipid transfer from
the endoplasmic reticulum. Cold Spring Harb Perspect Biol.
4:a0133002012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hoppins S and Nunnari J: Cell biology.
Mitochondrial dynamics and apoptosis-the ER connection. Science.
337:1052–1054. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Belosludtsev KN, Dubinin MV, Belosludtseva
NV and Mironova GD: Mitochondrial Ca2+ transport: Mechanisms,
molecular structures, and role in cells. Biochemistry (Mosc).
84:593–607. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Szabadkai G, Bianchi K, Várnai P, De
Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto
R: Chaperone-mediated coupling of endoplasmic reticulum and
mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Filadi R, Greotti E, Turacchio G, Luini A,
Pozzan T and Pizzo P: On the role of mitofusin 2 in endoplasmic
reticulum-mitochondria tethering. Proc Natl Acad Sci USA.
114:E2266–E2267. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gibellini F and Smith TK: The Kennedy
pathway-de novo synthesis of phosphatidylethanolamine and
phosphatidylcholine. IUBMB Life. 62:414–428. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Puglielli L, Konopka G, Pack-Chung E,
Ingano LA, Berezovska O, Hyman BT, Chang TY, Tanzi RE and Kovacs
DM: Acyl-coenzyme A: Cholesterol acyltransferase modulates the
generation of the amyloid beta-peptide. Nat Cell Biol. 3:905–912.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
El Alwani M, Wu BX, Obeid LM and Hannun
YA: Bioactive sphingolipids in the modulation of the inflammatory
response. Pharmacol Ther. 112:171–183. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nikolova-Karakashian M, Karakashian A and
Rutkute K: Role of neutral sphingomyelinases in aging and
inflammation. Subcell Biochem. 49:469–486. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Friedman JR, Lackner LL, West M,
DiBenedetto JR, Nunnari J and Voeltz GK: ER tubules mark sites of
mitochondrial division. Science. 334:358–362. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Murley A, Sarsam RD, Toulmay A, Yamada J,
Prinz WA and Nunnari J: Ltc1 is an ER-localized sterol transporter
and a component of ER-mitochondria and ER-vacuole contacts. J Cell
Biol. 209:539–548. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ishihara N, Eura Y and Mihara K: Mitofusin
1 and 2 play distinct roles in mitochondrial fusion reactions via
GTPase activity. J Cell Sci. 117:6535–6546. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ainbinder A, Boncompagni S, Protasi F and
Dirksen RT: Role of mitofusin-2 in mitochondrial localization and
calcium uptake in skeletal muscle. Cell Calcium. 57:14–24. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Basso V, Marchesan E, Peggion C,
Chakraborty J, von Stockum S, Giacomello M, Ottolini D, Debattisti
V, Caicci F, Tasca E, et al: Regulation of ER-mitochondria contacts
by Parkin via Mfn2. Pharmacol Res. 138:43–56. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Okamoto K and Shaw JM: Mitochondrial
morphology and dynamics in yeast and multicellular eukaryotes. Annu
Rev Genet. 39:503–536. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Galluzzi L, Kepp O, Trojel-Hansen C and
Kroemer G: Mitochondrial control of cellular life, stress, and
death. Circ Res. 111:1198–1207. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Iwasawa R, Mahul-Mellier AL, Datler C,
Pazarentzos E and Grimm S: Fis1 and Bap31 bridge the
mitochondria-ER interface to establish a platform for apoptosis
induction. EMBO J. 30:556–568. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Area-Gomez E and Schon EA: On the
pathogenesis of Alzheimer's disease: The MAM hypothesis. FASEB J.
31:864–867. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang B, Nguyen M, Chang NC and Shore GC:
Fis1, Bap31 and the kiss of death between mitochondria and
endoplasmic reticulum. EMBO J. 30:451–452. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
MacAskill AF and Kittler JT: Control of
mitochondrial transport and localization in neurons. Trends Cell
Biol. 20:102–112. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Upton JP, Austgen K, Nishino M, Coakley
KM, Hagen A, Han D, Papa FR and Oakes SA: Caspase-2 cleavage of BID
is a critical apoptotic signal downstream of endoplasmic reticulum
stress. Mol Cell Biol. 28:3943–3951. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Puthalakath H, O'Reilly LA, Gunn P, Lee L,
Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin
J, Motoyama N, et al: ER stress triggers apoptosis by activating
BH3-only protein Bim. Cell. 129:1337–1349. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li J, Lee B and Lee AS: Endoplasmic
reticulum stress-induced apoptosis: Multiple pathways and
activation of p53-up-regulated modulator of apoptosis (PUMA) and
NOXA by p53. J Biol Chem. 281:7260–7270. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Iwasawa R, Mahul-Mellier AL, Datler C,
Pazarentzos E and Grimm S: Fis1 and Bap31 bridge the
mitochondria-ER interface to establish a platform for apoptosis
induction. EMBO J. 30:556–568. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Area-Gomez E and Schon EA: On the
pathogenesis of Alzheimer's disease: The MAM hypothesis. FASEB J.
31:864–867. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang B, Nguyen M, Chang NC and Shore GC:
Fis1, Bap31 and the kiss of death between mitochondria and
endoplasmic reticulum. EMBO J. 30:451–452. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Siskind LJ, Kolesnick RN and Colombini M:
Ceramide channels increase the permeability of the mitochondrial
outer membrane to small proteins. J Biol Chem. 277:26796–26803.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Coleman RA, Lewin TM, Van Horn CG and
Gonzalez-Baró MR: Do long-chain acyl-CoA synthetases regulate fatty
acid entry into synthetic versus degradative pathways? J Nutr.
132:2123–2126. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Larsen BD and Sørensen CS: The
caspase-activated DNase: Apoptosis and beyond. FEBS J.
284:1160–1170. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
de Brito OM and Scorrano L: Mitofusin 2
tethers endoplasmic reticulum to mitochondria. Nature. 456:605–610.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mazure NM: VDAC in cancer. Biochim Biophys
Acta Bioenerg. 1858:665–673. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Vinay Kumar C, Kumar KM, Swetha R, Ramaiah
S and Anbarasu A: Protein aggregation due to nsSNP resulting in
P56S VABP protein is associated with amyotrophic lateral sclerosis.
J Theor Biol. 354:72–80. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Formosa LE and Ryan MT: Mitochondrial
fusion: Reaching the end of mitofusin's tether. J Cell Biol.
215:597–598. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Di Mattia T, Wilhelm LP, Ikhlef S,
Wendling C, Spehner D, Nominé Y, Giordano F, Mathelin C, Drin G,
Tomasetto C and Alpy F: Identification of MOSPD2, a novel scaffold
for endoplasmic reticulum membrane contact sites. EMBO Rep.
19:e454532018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lim Y, Cho IT, Schoel LJ, Cho G and Golden
JA: Hereditary spastic paraplegia-linked REEP1 modulates
endoplasmic reticulum/mitochondria contacts. Ann Neurol.
78:679–696. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Calì T, Ottolini D, Negro A and Brini M:
α-Synuclein controls mitochondrial calcium homeostasis by enhancing
endoplasmic reticulum-mitochondria interactions. J Biol Chem.
287:17914–17929. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu Y, Ma X, Fujioka H, Liu J, Chen S and
Zhu X: DJ-1 regulates the integrity and function of ER-mitochondria
association through interaction with IP3R3-Grp75-VDAC1. Proc Natl
Acad Sci USA. 116:25322–25328. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Stoica R, Paillusson S, Gomez-Suaga P,
Mitchell JC, Lau DH, Gray EH, Sancho RM, Vizcay-Barrena G, De Vos
KJ, Shaw CE, et al: ALS/FTD-associated FUS activates GSK-3β to
disrupt the VAPB-PTPIP51 interaction and ER-mitochondria
associations. EMBO Rep. 17:1326–1342. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Thoudam T, Ha CM, Leem J, Chanda D, Park
JS, Kim HJ, Jeon JH, Choi YK, Liangpunsakul S, Huh YH, et al: PDK4
augments ER-mitochondria contact to dampen skeletal muscle insulin
signaling during obesity. Diabetes. 68:571–586. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
D'Eletto M, Rossin F, Occhigrossi L,
Farrace MG, Faccenda D, Desai R, Marchi S, Refolo G, Falasca L,
Antonioli M, et al: Transglutaminase type 2 regulates
ER-mitochondria contact sites by interacting with GRP75. Cell Rep.
25:3573–3581.e4. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wu S, Lu Q, Wang Q, Ding Y, Ma Z, Mao X,
Huang K, Xie Z and Zou MH: Binding of FUN14 domain containing 1
with inositol 1,4,5-trisphosphate receptor in
mitochondria-associated endoplasmic reticulum membranes maintains
mitochondrial dynamics and function in hearts in vivo. Circulation.
136:2248–2266. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang W, Siraj S, Zhang R and Chen Q:
Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and
protects the heart from I/R injury. Autophagy. 13:1080–1081. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen
Q and Xia B: Structural basis for the phosphorylation of FUNDC1 LIR
as a molecular switch of mitophagy. Autophagy. 12:2363–2373. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li
Y, Han Z, Chen L, Gao R, Liu L and Chen Q: Mitophagy receptor
FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy.
12:689–702. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wu W, Li W, Chen H, Jiang L, Zhu R and
Feng D: FUNDC1 is a novel mitochondrial-associated-membrane (MAM)
protein required for hypoxia-induced mitochondrial fission and
mitophagy. Autophagy. 12:1675–1676. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang XL, Feng ST, Wang YT, Yuan YH, Li ZP,
Chen NH, Wang ZZ and Zhang Y: Mitophagy, a form of selective
autophagy, plays an essential role in mitochondrial dynamics of
Parkinson's disease. Cell Mol Neurobiol. 42:1321–1339. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gong Y, Luo Y, Liu S, Ma J, Liu F, Fang Y,
Cao F, Wang L, Pei Z and Ren J: Pentacyclic triterpene oleanolic
acid protects against cardiac aging through regulation of mitophagy
and mitochondrial integrity. Biochim Biophys Acta Mol Basis Dis.
1868:1664022022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu
S, Ren J and Chen Y: NR4A1 aggravates the cardiac microvascular
ischemia reperfusion injury through suppressing FUNDC1-mediated
mitophagy and promoting Mff-required mitochondrial fission by CK2α.
Basic Res Cardiol. 113:232018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Simmen T, Aslan JE, Blagoveshchenskaya AD,
Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM and
Thomas G: PACS-2 controls endoplasmic reticulum-mitochondria
communication and Bid-mediated apoptosis. EMBO J. 24:717–729. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Werneburg NW, Bronk SF, Guicciardi ME,
Thomas L, Dikeakos JD, Thomas G and Gores GJ: Tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) protein-induced
lysosomal translocation of proapoptotic effectors is mediated by
phosphofurin acidic cluster sorting protein-2 (PACS-2). J Biol
Chem. 287:24427–24437. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Köttgen M, Benzing T, Simmen T, Tauber R,
Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A,
Höpker K, et al: Trafficking of TRPP2 by PACS proteins represents a
novel mechanism of ion channel regulation. EMBO J. 24:705–716.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Myhill N, Lynes EM, Nanji JA,
Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G
and Simmen T: The subcellular distribution of calnexin is mediated
by PACS-2. Mol Biol Cell. 19:2777–2788. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Han S, Zhao F, Hsia J, Ma X, Liu Y, Torres
S, Fujioka H and Zhu X: The role of Mfn2 in the structure and
function of endoplasmic reticulum-mitochondrial tethering in vivo.
J Cel Sci. 134:jcs2534432021. View Article : Google Scholar
|
|
58
|
Leal NS, Schreiner B, Pinho CM, Filadi R,
Wiehager B, Karlström H, Pizzo P and Ankarcrona M: Mitofusin-2
knockdown increases ER-mitochondria contact and decreases amyloid
β-peptide production. J Cel Mol Med. 20:1686–1695. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li J, Qi F, Su H, Zhang C, Zhang Q, Chen
Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated
mitochondria-associated ER membrane (MAM) integrity controls
cisplatin-resistance in ovarian cancer patients. Int J Biol Sci.
18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Barroso-González J, Auclair S, Luan S,
Thomas L, Atkins KM, Aslan JE, Thomas LL, Zhao J, Zhao Y and Thomas
G: PACS-2 mediates the ATM and NF-κB-dependent induction of
anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ.
23:1448–1457. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhou H, Zhu P, Wang J, Toan S and Ren J:
DNA-PKcs promotes alcohol-related liver disease by activating
Drp1-related mitochondrial fission and repressing FUNDC1-required
mitophagy. Signal Transduct Target Ther. 4:562019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Filadi R, Greotti E, Turacchio G, Luini A,
Pozzan T and Pizzo P: Mitofusin 2 ablation increases endoplasmic
reticulum-mitochondria coupling. Proc Natl Acad Sci USA.
112:E2174–E2181. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li J, Qi F, Su H, Zhang C, Zhang Q, Chen
Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated
mitochondria-associated ER membrane (MAM) integrity controls
cisplatin-resistance in ovarian cancer patients. Int J Biol Sci.
18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen Y and Dorn GW II:
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling
damaged mitochondria. Science. 340:471–475. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cao Y, Chen Z, Hu J, Feng J, Zhu Z, Fan Y,
Lin Q and Ding G: Mfn2 regulates high glucose-induced MAMs
dysfunction and apoptosis in podocytes via PERK pathway. Front Cell
Dev Biol. 9:7692132021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Modi S, López-Doménech G, Halff EF,
Covill-Cooke C, Ivankovic D, Melandri D, Arancibia-Cárcamo IL,
Burden JJ, Lowe AR and Kittler JT: Miro clusters regulate
ER-mitochondria contact sites and link cristae organization to the
mitochondrial transport machinery. Nat Commun. 10:43992019.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hernández-Alvarez MI, Sebastián D, Vives
S, Ivanova S, Bartoccioni P, Kakimoto P, Plana N, Veiga SR,
Hernández V, Vasconcelos N, et al: Deficient endoplasmic
reticulum-mitochondrial phosphatidylserine transfer causes liver
disease. Cell. 177:881–895. e172019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Baker N, Patel J and Khacho M: Linking
mitochondrial dynamics, cristae remodeling and supercomplex
formation: How mitochondrial structure can regulate bioenergetics.
Mitochondrion. 49:259–268. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Glancy B, Kim Y, Katti P and Willingham
TB: The functional impact of mitochondrial structure across
subcellular scales. Front Physiol. 11:5410402020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gutiérrez T and Simmen T: Endoplasmic
reticulum chaperones tweak the mitochondrial calcium rheostat to
control metabolism and cell death. Cell Calcium. 70:64–75. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rouzier C, Bannwarth S, Chaussenot A,
Chevrollier A, Verschueren A, Bonello-Palot N, Fragaki K, Cano A,
Pouget J, Pellissier JF, et al: The MFN2 gene is responsible for
mitochondrial DNA instability and optic atrophy ‘plus’ phenotype.
Brain. 135:23–34. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vielhaber S, Debska-Vielhaber G, Peeva V,
Schoeler S, Kudin AP, Minin I, Schreiber S, Dengler R, Kollewe K,
Zuschratter W, et al: Mitofusin 2 mutations affect mitochondrial
function by mitochondrial DNA depletion. Acta Neuropathol.
125:245–256. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kawalec M, Boratyńska-Jasińska A,
Beręsewicz M, Dymkowska D, Zabłocki K and Zabłocka B: Mitofusin 2
deficiency affects energy metabolism and mitochondrial biogenesis
in MEF cells. PLoS One. 10:e01341622015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Parys JB and Vervliet T: New insights in
the IP3 receptor and its regulation. Adv Exp Med Biol.
1131:243–270. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mazure NM: VDAC in cancer. Biochim Biophys
Acta Bioenerg. 1858:665–673. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Szabadkai G, Bianchi K, Várnai P, De
Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto
R: Chaperone-mediated coupling of endoplasmic reticulum and
mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Rapizzi E, Pinton P, Szabadkai G,
Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE and
Rizzuto R: Recombinant expression of the voltage-dependent anion
channel enhances the transfer of Ca2+ microdomains to mitochondria.
J Cell Biol. 159:613–624. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tubbs E, Theurey P, Vial G, Bendridi N,
Bravard A, Chauvin MA, Ji-Cao J, Zoulim F, Bartosch B, Ovize M, et
al: Mitochondria-associated endoplasmic reticulum membrane (MAM)
integrity is required for insulin signaling and is implicated in
hepatic insulin resistance. Diabetes. 63:3279–3294. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Honrath B, Metz I, Bendridi N, Rieusset J,
Culmsee C and Dolga AM: Glucose-regulated protein 75 determines
ER-mitochondrial coupling and sensitivity to oxidative stress in
neuronal cells. Cell Death Discov. 3:170762017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Thoudam T, Ha CM, Leem J, Chanda D, Park
JS, Kim HJ, Jeon JH, Choi YK, Liangpunsakul S, Huh YH, et al: PDK4
augments ER-mitochondria contact to dampen skeletal muscle insulin
signaling during obesity. Diabetes. 68:571–586. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Vinay Kumar C, Kumar KM, Swetha R, Ramaiah
S and Anbarasu A: Protein aggregation due to nsSNP resulting in
P56S VABP protein is associated with amyotrophic lateral sclerosis.
J Theor Biol. 354:72–80. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kanekura K, Nishimoto I, Aiso S and
Matsuoka M: Characterization of amyotrophic lateral
sclerosis-linked P56S mutation of vesicle-associated membrane
protein-associated protein B (VAPB/ALS8). J Biol Chem.
281:30223–30233. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
De Vos KJ, Mórotz GM, Stoica R, Tudor EL,
Lau KF, Ackerley S, Warley A, Shaw CE and Miller CC: VAPB interacts
with the mitochondrial protein PTPIP51 to regulate calcium
homeostasis. Hum Mol Genet. 21:1299–1311. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Stoica R, De Vos KJ, Paillusson S, Mueller
S, Sancho RM, Lau KF, Vizcay-Barrena G, Lin WL, Xu YF, Lewis J, et
al: ER-mitochondria associations are regulated by the VAPB-PTPIP51
interaction and are disrupted by ALS/FTD-associated TDP-43. Nat
Commun. 5:39962014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Qiao X, Jia S, Ye J, Fang X, Zhang C, Cao
Y, Xu C, Zhao L, Zhu Y, Wang L and Zheng M: PTPIP51 regulates mouse
cardiac ischemia/reperfusion through mediating the mitochondria-SR
junction. Sci Rep. 7:453792017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Di Mattia T, Wilhelm LP, Ikhlef S,
Wendling C, Spehner D, Nominé Y, Giordano F, Mathelin C, Drin G,
Tomasetto C and Alpy F: Identification of MOSPD2, a novel scaffold
for endoplasmic reticulum membrane contact sites. EMBO Rep.
19:e454532018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Szado T, Vanderheyden V, Parys JB, De
Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U,
Söderberg O, et al: Phosphorylation of inositol 1,4,5-trisphosphate
receptors by protein kinase B/Akt inhibits Ca2+ release and
apoptosis. Proc Natl Acad Sci USA. 105:2427–2432. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Prevarskaya N, Ouadid-Ahidouch H, Skryma R
and Shuba Y: Remodelling of Ca2+ transport in cancer: How it
contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol
Sci. 369:201300972014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Monteith GR, Prevarskaya N and
Roberts-Thomson SJ: The calcium-cancer signalling nexus. Nat Rev
Cancer. 17:367–380. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li J, Qi F, Su H, Zhang C, Zhang Q, Chen
Y, Chen P, Su L, Chen Y, Yang Y, et al: GRP75-faciliated
mitochondria-associated ER membrane (MAM) integrity controls
cisplatin-resistance in ovarian cancer patients. Int J Biol Sci.
18:2914–2931. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lim Y, Cho IT, Schoel LJ, Cho G and Golden
JA: Hereditary spastic paraplegia-linked REEP1 modulates
endoplasmic reticulum/mitochondria contacts. Ann Neurol.
78:679–696. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zampieri LX, Grasso D, Bouzin C, Brusa D,
Rossignol R and Sonveaux P: Mitochondria participate in
chemoresistance to cisplatin in human ovarian cancer cells. Mol
Cancer Res. 18:1379–1391. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chang CM, Lan KL, Huang WS, Lee YJ, Lee
TW, Chang CH and Chuang CM: 188Re-liposome can induce
mitochondrial autophagy and reverse drug resistance for ovarian
cancer: From bench evidence to preliminary clinical
proof-of-concept. Int J Mol Sci. 18:9032017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Vianello C, Cocetta V, Catanzaro D, Dorn
GW II, De Milito A, Rizzolio F, Canzonieri V, Cecchin E, Roncato R,
Toffoli G, et al: Cisplatin resistance can be curtailed by blunting
Bnip3-mediated mitochondrial autophagy. Cell Death Dis. 13:3982022.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhou Z, Du LQ, Huang XM, Zhu LG, Wei QC,
Qin QP and Bian H: Novel glycosylation zinc(II)-cryptolepine
complexes perturb mitophagy pathways and trigger cancer cell
apoptosis and autophagy in SK-OV-3/DDP cells. Eur J Med Chem.
243:1147432022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yu Y, Xu L, Qi L, Wang C, Xu N, Liu S, Li
S, Tian H, Liu W, Xu Y and Li Z: ABT737 induces mitochondrial
pathway apoptosis and mitophagy by regulating DRP1-dependent
mitochondrial fission in human ovarian cancer cells. Biomed
Pharmacother. 96:22–29. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chen YP, Shih PC, Feng CW, Wu CC, Tsui KH,
Lin YH, Kuo HM and Wen ZH: Pardaxin activates excessive mitophagy
and mitochondria-mediated apoptosis in human ovarian cancer by
inducing reactive oxygen species. Antioxidants (Basel).
10:18832021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang J, Xu Z, Hu X, Yang Y, Su J, Liu Y,
Zhou L, Qin J, Zhang D and Yu H: Epoxycytochalasin H: An endophytic
phomopsis compound induces apoptosis in A2780 cells through
mitochondrial damage and endoplasmic reticulum stress. Onco Targets
Ther. 13:4987–4997. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Katreddy RR, Bollu LR, Su F, Xian N,
Srivastava S, Thomas R, Dai Y, Wu B, Xu Y, Rea MA, et al: Targeted
reduction of the EGFR protein, but not inhibition of its kinase
activity, induces mitophagy and death of cancer cells through
activation of mTORC2 and Akt. Oncogenesis. 7:52018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Meng Y, Qiu L, Zeng X, Hu X, Zhang Y, Wan
X, Mao X, Wu J, Xu Y, Xiong Q, et al: Targeting CRL4 suppresses
chemoresistant ovarian cancer growth by inducing mitophagy. Signal
Transduct Target Ther. 7:3882022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yuan X, Chen K, Zheng F, Xu S, Li Y, Wang
Y, Ni H, Wang F, Cui Z, Qin Y, et al: Low-dose BPA and its
substitute BPS promote ovarian cancer cell stemness via a
non-canonical PINK1/p53 mitophagic signaling. J Hazard Mater.
452:1312882023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Martinez-Outschoorn UE, Balliet RM, Lin Z,
Whitaker-Menezes D, Howell A, Sotgia F and Lisanti MP: Hereditary
ovarian cancer and two-compartment tumor metabolism: Epithelial
loss of BRCA1 induces hydrogen peroxide production, driving
oxidative stress and NFκB activation in the tumor stroma. Cell
Cycle. 11:4152–4166. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jin S, Gao J, Qi Y, Hao Y, Li X, Liu Q,
Liu J, Liu D, Zhu L and Lin B: TGF-β1 fucosylation enhances the
autophagy and mitophagy via PI3K/Akt and Ras-Raf-MEK-ERK in ovarian
carcinoma. Biochem Biophys Res Commun. 524:970–976. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bae H, Park S, Yang C, Song G and Lim W:
Disruption of endoplasmic reticulum and ROS production in human
ovarian cancer by campesterol. Antioxidants (Basel). 10:3792021.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Borgese N, Francolini M and Snapp E:
Endoplasmic reticulum architecture: Structures in flux. Curr Opin
Cell Biol. 18:358–364. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Shibata Y, Voeltz GK and Rapoport TA:
Rough sheets and smooth tubules. Cell. 126:435–439. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Green DR and Reed JC: Mitochondria and
apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lossi L: The concept of intrinsic versus
extrinsic apoptosis. Biochem J. 479:357–384. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hayashi T, Rizzuto R, Hajnoczky G and Su
TP: MAM: More than just a housekeeper. Trends Cell Biol. 19:81–88.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Toulmay A and Prinz WA: Lipid transfer and
signaling at organelle contact sites: The tip of the iceberg. Curr
Opin Cell Biol. 23:458–463. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Henne WM, Zhu L, Balogi Z, Stefan C,
Pleiss JA and Emr SD: Mdm1/Snx13 is a novel ER-endolysosomal
interorganelle tethering protein. J Cell Biol. 210:541–551. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hayashi-Nishino M, Fujita N, Noda T,
Yamaguchi A, Yoshimori T and Yamamoto A: Electron tomography
reveals the endoplasmic reticulum as a membrane source for
autophagosome formation. Autophagy. 6:301–303. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Uemura T, Yamamoto M, Kametaka A, Sou YS,
Yabashi A, Yamada A, Annoh H, Kametaka S, Komatsu M and Waguri S: A
cluster of thin tubular structures mediates transformation of the
endoplasmic reticulum to autophagic isolation membrane. Mol Cell
Biol. 34:1695–1706. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Cheng M, Yu H, Kong Q, Wang B, Shen L,
Dong D and Sun L: The mitochondrial PHB2/OMA1/DELE1 pathway
cooperates with endoplasmic reticulum stress to facilitate the
response to chemotherapeutics in ovarian cancer. Int J Mol Sci.
23:13202022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Jung E, Koh D, Lim Y, Shin SY and Lee YH:
Overcoming multidrug resistance by activating unfolded protein
response of the endoplasmic reticulum in cisplatin-resistant
A2780/CisR ovarian cancer cells. BMB Rep. 53:88–93. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Xu J, Bi G, Luo Q, Liu Y, Liu T, Li L,
Zeng Q, Wang Q, Wang Y, Yu J and Yi P: PHLDA1 modulates the
endoplasmic reticulum stress response and is required for
resistance to oxidative stress-induced cell death in human ovarian
cancer cells. J Cancer. 12:5486–5493. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kim TW and Lee HG: 6-Shogaol overcomes
gefitinib resistance via ER stress in ovarian cancer cells. Int J
Mol Sci. 24:26392023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Bahar E, Kim JY, Kim DC, Kim HS and Yoon
H: Combination of niraparib, cisplatin and twist knockdown in
cisplatin-resistant ovarian cancer cells potentially enhances
synthetic lethality through ER-stress mediated mitochondrial
apoptosis pathway. Int J Mol Sci. 22:39162021. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zhang Y, Wang Y, Zhao G, Orsulic S and
Matei D: Metabolic dependencies and targets in ovarian cancer.
Pharmacol Ther. 245:1084132023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Rezghi Barez S, Movahedian Attar A and
Aghaei M: MicroRNA-30c-2-3p regulates ER stress and induces
apoptosis in ovarian cancer cells underlying ER stress. EXCLI J.
20:922–934. 2021.PubMed/NCBI
|
|
121
|
Kong Q, Wei D, Xie P, Wang B, Yu K, Kang X
and Wang Y: Photothermal therapy via NIR II light irradiation
enhances DNA damage and endoplasmic reticulum stress for efficient
chemotherapy. Front Pharmacol. 12:6702072021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wang J, Xu Z, Hu X, Yang Y, Su J, Liu Y,
Zhou L, Qin J, Zhang D and Yu H: Epoxycytochalasin H: An endophytic
phomopsis compound induces apoptosis in A2780 cells through
mitochondrial damage and endoplasmic reticulum stress. Onco Targets
Ther. 13:4987–4997. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang YY, Lee KT, Lim MC and Choi JH: TRPV1
antagonist DWP05195 induces ER stress-dependent apoptosis through
the ROS-p38-CHOP pathway in human ovarian cancer cells. Cancers
(Basel). 12:17022020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Yart L, Bastida-Ruiz D, Allard M, Dietrich
PY, Petignat P and Cohen M: Linking unfolded protein response to
ovarian cancer cell fusion. BMC Cancer. 22:6222022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Chen X, Zha Z, Wang Y and Chen Y, Pang M,
Huang L and Chen Y: Knockdown of ENTPD5 inhibits tumor metastasis
and growth via regulating the GRP78/p-eIF-2α/CHOP pathway in serous
ovarian cancer. J Ovarian Res. 15:692022. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Barez SR, Atar AM and Aghaei M: Mechanism
of inositol-requiring enzyme 1-alpha inhibition in endoplasmic
reticulum stress and apoptosis in ovarian cancer cells. J Cell
Commun Signal. 14:403–415. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zundell JA, Fukumoto T, Lin J, Fatkhudinov
N, Nacarelli T, Kossenkov AV, Liu Q, Cassel J, Hu CA, Wu S and
Zhang R: Targeting the IRE1α/XBP1 endoplasmic reticulum stress
response pathway in ARID1A-mutant ovarian cancers. Cancer Res.
81:5325–5335. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ma L, Wei J, Wan J, Wang W, Wang L, Yuan
Y, Yang Z, Liu X and Ming L: Low glucose and metformin-induced
apoptosis of human ovarian cancer cells is connected to ASK1 via
mitochondrial and endoplasmic reticulum stress-associated pathways.
J Exp Clin Cancer Res. 38:772019. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Lin J, Liu H, Fukumoto T, Zundell J, Yan
Q, Tang CA, Wu S, Zhou W, Guo D, Karakashev S, et al: Targeting the
IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nat
Commun. 12:53212021. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Xiao R, You L, Zhang L, Guo X, Guo E, Zhao
F, Yang B, Li X, Fu Y, Lu F, et al: Inhibiting the IRE1α axis of
the unfolded protein response enhances the antitumor effect of
AZD1775 in TP53 mutant ovarian cancer. Adv Sci (Weinh).
9:e21054692022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zhang Q, Yu S, Lam MMT, Poon TCW, Sun L,
Jiao Y, Wong AST and Lee LTO: Angiotensin II promotes ovarian
cancer spheroid formation and metastasis by upregulation of lipid
desaturation and suppression of endoplasmic reticulum stress. J Exp
Clin Cancer Res. 38:1162019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Singla RK, Sharma P, Kumar D, Gautam RK,
Goyal R, Tsagkaris C, Dubey AK, Bansal H, Sharma R and Shen B: The
role of nanomaterials in enhancing natural product translational
potential and modulating endoplasmic reticulum stress in the
treatment of ovarian cancer. Front Pharmacol. 13:9870882022.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Hong T, Ham J, Song G and Lim W:
Alpinumisoflavone disrupts endoplasmic reticulum and mitochondria
leading to apoptosis in human ovarian cancer. Pharmaceutics.
14:5642022. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Li H, Chen H, Li R, Xin J, Wu S, Lan J,
Xue K, Li X, Zuo C, Jiang W and Zhu L: Cucurbitacin I induces
cancer cell death through the endoplasmic reticulum stress pathway.
J Cell Biochem. 120:2391–2403. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Bae H, Lee JY, Song G and Lim W:
Fucosterol suppresses the progression of human ovarian cancer by
inducing mitochondrial dysfunction and endoplasmic reticulum
stress. Mar Drugs. 18:2612020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhu J, Lin S, Zou X, Chen X, Liu Y, Yang
X, Gao J and Zhu H: Mechanisms of autophagy and endoplasmic
reticulum stress in the reversal of platinum resistance of
epithelial ovarian cancer cells by naringin. Mol Biol Rep.
50:6457–6468. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zhao Q, Peng C, Zheng C, He XH, Huang W
and Han B: Recent advances in characterizing natural products that
regulate autophagy. Anticancer Agents Med Chem. 19:2177–2196. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Bae H, Lee JY, Yang C, Song G and Lim W:
Fucoidan derived from fucus vesiculosus inhibits the development of
human ovarian cancer via the disturbance of calcium homeostasis,
endoplasmic reticulum stress, and angiogenesis. Mar Drugs.
18:452020. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Kim T and Ko SG: JI017, a complex herbal
medication, induces apoptosis via the Nox4-PERK-CHOP axis in
ovarian cancer cells. Int J Mol Sci. 22:122642021. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Abdullah TM, Whatmore J, Bremer E,
Slibinskas R, Michalak M and Eggleton P: Endoplasmic reticulum
stress-induced release and binding of calreticulin from human
ovarian cancer cells. Cancer Immunol Immunother. 71:1655–1669.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Kielbik M, Szulc-Kielbik I and Klink M:
Calreticulin-multifunctional chaperone in immunogenic cell death:
Potential significance as a prognostic biomarker in ovarian cancer
patients. Cells. 10:1302021. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Bi F, Jiang Z, Park W, Hartwich TMP, Ge Z,
Chong KY, Yang K, Morrison MJ, Kim D, Kim J, et al: A
Benzenesulfonamide-based mitochondrial uncoupler induces
endoplasmic reticulum stress and immunogenic cell death in
epithelial ovarian cancer. Mol Cancer Ther. 20:2398–2409. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Lau TS, Chan LKY, Man GCW, Wong CH, Lee
JHS, Yim SF, Cheung TH, McNeish IA and Kwong J: Paclitaxel induces
immunogenic cell death in ovarian cancer via
TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res.
8:1099–1111. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Le HV, Babak MV, Ehsan MA, Altaf M,
Reichert L, Gushchin AL, Ang WH and Isab AA: Highly cytotoxic
gold(i)-phosphane dithiocarbamate complexes trigger an ER
stress-dependent immune response in ovarian cancer cells. Dalton
Trans. 49:7355–7363. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Song M, Sandoval TA, Chae CS, Chopra S,
Tan C, Rutkowski MR, Raundhal M, Chaurio RA, Payne KK, Konrad C, et
al: IRE1α-XBP1 controls T cell function in ovarian cancer by
regulating mitochondrial activity. Nature. 562:423–428. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Cao Y, Trillo-Tinoco J, Sierra RA, Anadon
C, Dai W, Mohamed E, Cen L, Costich TL, Magliocco A, Marchion D, et
al: ER stress-induced mediator C/EBP homologous protein thwarts
effector T cell activity in tumors through T-bet repression. Nat
Commun. 10:12802019. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Yu S, Yan X, Tian R, Xu L, Zhao Y, Sun L
and Su J: An experimentally induced mutation in the UBA domain of
p62 changes the sensitivity of cisplatin by up-regulating HK2
localisation on the mitochondria and increasing mitophagy in A2780
ovarian cancer cells. Int J Mol Sci. 22:39832021. View Article : Google Scholar : PubMed/NCBI
|