|
1
|
Misra JR and Irvine KD: The Hippo
signaling network and its biological functions. Annu Rev Genet.
52:65–87. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ma S, Meng Z, Chen R and Guan KL: The
Hippo pathway: Biology and pathophysiology. Annu Rev Biochem.
88:577–604. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lorenzetto E, Brenca M, Boeri M, Verri C,
Piccinin E, Gasparini P, Facchinetti F, Rossi S, Salvatore G,
Massimino M, et al: YAP1 acts as oncogenic target of 11q22
amplification in multiple cancer subtypes. Oncotarget. 5:2608–2621.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wu Z and Guan KL: Hippo signaling in
embryogenesis and development. Trends Biochem Sci. 46:51–63. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pocaterra A, Romani P and Dupont S:
YAP/TAZ functions and their regulation at a glance. J Cell Sci.
133:jcs2304252020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zanconato F, Cordenonsi M and Piccolo S:
YAP/TAZ at the roots of cancer. Cancer Cell. 29:783–803. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhong Z, Jiao Z and Yu FX: The Hippo
signaling pathway in development and regeneration. Cell Rep.
43:1139262024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Morciano G, Vezzani B, Missiroli S,
Boncompagni C, Pinton P and Giorgi C: An updated understanding of
the role of YAP in driving oncogenic responses. Cancers (Basel).
13:31002021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Abylkassov R and Xie Y: Role of
Yes-associated protein in cancer: An update. Oncol Lett.
12:2277–2282. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Galsky MD, Stensland KD, Moshier E,
Sfakianos JP, McBride RB, Tsao CK, Casey M, Boffetta P, Oh WK,
Mazumdar M and Wisnivesky JP: Effectiveness of adjuvant
chemotherapy for locally advanced bladder cancer. J Clin Oncol.
34:825–832. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Luo J, Deng L, Zou H, Guo Y, Tong T, Huang
M, Ling G and Li P: New insights into the ambivalent role of
YAP/TAZ in human cancers. J Exp Clin Cancer Res. 42:1302023.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Fu M, Hu Y, Lan T, Guan KL, Luo T and Luo
M: The Hippo signalling pathway and its implications in human
health and diseases. Signal Transduct Target Ther. 7:3762022.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhao X, Fu J, Hu B, Chen L, Wang J, Fang
J, Ge C, Lin H, Pan K, Fu L, et al: Serine metabolism regulates YAP
activity through USP7 in colon cancer. Front Cell Dev Biol.
9:6391112021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhu H, Yan F, Yuan T, Qian M, Zhou T, Dai
X, Cao J, Ying M, Dong X, He Q and Yang B: USP10 promotes
proliferation of hepatocellular carcinoma by deubiquitinating and
stabilizing YAP/TAZ. Cancer Res. 80:2204–2216. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Eibl G and Rozengurt E: KRAS, YAP, and
obesity in pancreatic cancer: A signaling network with multiple
loops. Semin Cancer Biol. 54:50–62. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lee JY, Chang JK, Dominguez AA, Lee HP,
Nam S, Chang J, Varma S, Qi LS, West RB and Chaudhuri O:
YAP-independent mechanotransduction drives breast cancer
progression. Nat Commun. 10:18482019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Driskill JH and Pan D: The Hippo pathway
in liver homeostasis and pathophysiology. Annu Rev Pathol.
16:299–322. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Antoni S, Ferlay J, Soerjomataram I, Znaor
A, Jemal A and Bray F: Bladder cancer incidence and mortality: A
global overview and recent trends. Eur Urol. 71:96–108. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lenis AT, Lec PM, Chamie K and Mshs MD:
Bladder cancer: A review. JAMA. 324:1980–1991. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu JY, Li YH, Lin HX, Liao YJ, Mai SJ,
Liu ZW, Zhang ZL, Jiang LJ, Zhang JX, Kung HF, et al:
Overexpression of YAP 1 contributes to progressive features and
poor prognosis of human urothelial carcinoma of the bladder. BMC
Cancer. 13:3492013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Huang Z, Wang X, Ma L, Guo Z, Liu H, Du M,
Chu H, Wang M, Wang Z and Zhang Z: Genetic variations in Hippo
pathway genes influence bladder cancer risk in a Chinese
population. Arch Toxicol. 94:785–794. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Di X, Xiang L and Jian Z: YAP-mediated
mechanotransduction in urinary bladder remodeling: Based on RNA-seq
and CUT&Tag. Front Genet. 14:11069272023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tong T, Huang M, Yan B, Lin B, Yu J, Teng
Q, Li P and Pang J: Hippo signaling modulation and its biological
implications in urological malignancies. Mol Aspects Med.
98:1012802024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cucci MA, Compagnone A, Daga M, Grattarola
M, Ullio C, Roetto A, Palmieri A, Rosa AC, Argenziano M, Cavalli R,
et al: Post-translational inhibition of YAP oncogene expression by
4-hydroxynonenal in bladder cancer cells. Free Radic Biol Med.
141:205–219. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang Q and Jiang J: Regulation of
hedgehog signal transduction by ubiquitination and
deubiquitination. Int J Mol Sci. 22:133382021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Luo Y, Zhou J, Tang J, Zhou F, He Z and
Liu T and Liu T: MINDY1 promotes bladder cancer progression by
stabilizing YAP. Cancer Cell Int. 21:3952021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dong L, Lin F, Wu W, Huang W and Cai Z:
Transcriptional cofactor Mask2 is required for YAP-induced cell
growth and migration in bladder cancer cell. J Cancer. 7:2132–2138.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rovida E and Tusa I: Targeting MAPK in
cancer 2.0. Int J Mol Sci. 23:57022022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Qiu D, Zhu Y and Cong Z: YAP triggers
bladder cancer proliferation by affecting the MAPK pathway. Cancer
Manag Res. 12:12205–12214. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang J, Wang H, Zhang Y, Zhen N, Zhang L,
Qiao Y, Weng W, Liu X, Ma L, Xiao W, et al: Mutual inhibition
between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced
tumourigenesis in liver cancer. Cell Signal. 26:1048–1059. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li S, Yu Z, Chen SS, Li F, Lei CY, Chen
XX, Bao JM, Luo Y, Lin GZ, Pang SY and Tan WL: The YAP1 oncogene
contributes to bladder cancer cell proliferation and migration by
regulating the H19 long noncoding RNA. Urol Oncol. 33:427.e1–e10.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lv M, Zhong Z, Huang M, Tian Q, Jiang R
and Chen J: lncRNA H19 regulates epithelial-mesenchymal transition
and metastasis of bladder cancer by miR-29b-3p as competing
endogenous RNA. Biochim Biophys Acta Mol Cell Res. 1864:1887–1899.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jafri I: MiRNA a new insight in metabolic
and human diseases: A review. Cell Mol Biol (Noisy-le-grand).
69:102–110. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Luo K: Signaling cross talk between
TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect
Biol. 9:a0221372017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhuang C, Liu Y, Fu S, Yuan C, Luo J,
Huang X, Yang W, Xie W and Zhuang C: Silencing of lncRNA MIR497HG
via CRISPR/Cas13d induces bladder cancer progression through
promoting the crosstalk between Hippo/Yap and TGF-β/Smad signaling.
Front Mol Biosci. 7:6167682020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou X, Zhang P, Han H, Lei H and Zhang X:
Hypermethylated in cancer 1 (HIC1) suppresses bladder cancer
progression by targeting yes-associated protein (YAP) pathway. J
Cell Biochem. 120:6471–6481. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang J and Deng X: Effects of miR-599
targeting YAP1 on proliferation, invasion and apoptosis of bladder
urothelial carcinoma cells. Exp Mol Pathol. 118:1045992021.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hade MD, Suire CN and Suo Z: Mesenchymal
stem cell-derived exosomes: Applications in regenerative medicine.
Cells. 10:19592021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Huang ZM, Wang H and Ji ZG: Bladder
mesenchymal stromal cell-derived exosomal miRNA-217 modulates
bladder cancer cell survival through Hippo-YAP pathway. Inflamm
Res. 70:959–969. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Schmitz-Dräger BJ, Droller M, Lokeshwar
VB, Lotan Y, Hudson MA, van Rhijn BW, Marberger MJ, Fradet Y,
Hemstreet GP, Malmstrom PU, et al: Molecular markers for bladder
cancer screening, early diagnosis, and surveillance: The WHO/ICUD
consensus. Urol Int. 94:1–24. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li S, Zhu H, Chen H, Xia J, Zhang F, Xu R
and Lin Q: Glucose promotes epithelial-mesenchymal transitions in
bladder cancer by regulating the functions of YAP1 and TAZ. J Cell
Mol Med. 24:10391–10401. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zakrzewski W, Dobrzyński M, Szymonowicz M
and Rybak Z: Stem cells: Past, present, and future. Stem Cell Res
Ther. 10:682019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fuchs E and Blau HM: Tissue stem cells:
Architects of their niches. Cell Stem Cell. 27:532–556. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Huang T, Song X, Xu D, Tiek D, Goenka A,
Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer
initiation, progression, and therapy resistance. Theranostics.
10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Nassar D and Blanpain C: Cancer stem
cells: Basic concepts and therapeutic implications. Annu Rev
Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Driskill JH and Pan D: Control of stem
cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol.
24:895–911. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Luo J and Li P: Context-dependent
transcriptional regulations of YAP/TAZ in stem cell and
differentiation. Stem Cell Res Ther. 13:102022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Damkham N, Issaragrisil S and
Lorthongpanich C: Role of YAP as a mechanosensing molecule in stem
cells and stem cell-derived hematopoietic cells. Int J Mol Sci.
23:146342022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhao AY, Dai YJ, Lian JF, Huang Y, Lin JG,
Dai YB and Xu TW: YAP regulates ALDH1A1 expression and stem cell
property of bladder cancer cells. Onco Targets Ther. 11:6657–6663.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ooki A, Del Carmen Rodriguez Pena M,
Marchionni L, Dinalankara W, Begum A, Hahn NM, VandenBussche CJ,
Rasheed ZA, Mao S, Netto GJ, et al: YAP1 and COX2 coordinately
regulate urothelial cancer stem-like cells. Cancer Res. 78:168–181.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang T, Yang Y, Wang Z, Zhang X, Li D and
Wei J: A SNP of miR-146a is involved in bladder cancer relapse by
affecting the function of bladder cancer stem cells via the
miR-146a signallings. J Cell Mol Med. 24:8545–8556. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ghasemi H, Mousavibahar SH, Hashemnia M,
Karimi J, Khodadadi I, Mirzaei F and Tavilani H: Tissue stiffness
contributes to YAP activation in bladder cancer patients undergoing
transurethral resection. Ann N Y Acad Sci. 1473:48–61. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gwak HS, Youn SM, Kwon AH, Lee SH, Kim JH
and Rhee CH: ACNU-cisplatin continuous infusion chemotherapy as
salvage therapy for recurrent glioblastomas: Phase II study. J
Neurooncol. 75:173–180. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gentilin E: New advancements in
cisplatin-based treatments. Int J Mol Sci. 24:59202023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gómez-Ruiz S, Maksimović-Ivanić D,
Mijatović S and Kaluđerović GN: On the discovery, biological
effects, and use of Cisplatin and metallocenes in anticancer
chemotherapy. Bioinorg Chem Appl. 2012:1402842012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Galluzzi L, Senovilla L, Vitale I, Michels
J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms
of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wenmaekers S, Viergever BJ, Kumar G,
Kranenburg O, Black PC, Daugaard M and Meijer RP: A potential role
for HUWE1 in modulating cisplatin sensitivity. Cells. 10:12622021.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Rebucci M and Michiels C: Molecular
aspects of cancer cell resistance to chemotherapy. Biochem
Pharmacol. 85:1219–1226. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nguyen CDK and Yi C: YAP/TAZ Signaling and
resistance to cancer therapy. Trends Cancer. 5:283–296. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kim MH and Kim J: Role of YAP/TAZ
transcriptional regulators in resistance toanti-cancer therapies.
Cell Mol Life Sci. 74:1457–1474. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fan Q, Cai Q and Xu Y: FOXM1 is a
downstream target of LPA and YAP oncogenic signaling pathways in
high grade serous ovarian cancer. Oncotarget. 6:27688–27699. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ciamporcero E, Daga M, Pizzimenti S,
Roetto A, Dianzani C, Compagnone A, Palmieri A, Ullio C, Cangemi L,
Pili R and Barrera G: Crosstalk between Nrf2 and YAP contributes to
maintaining the antioxidant potential and chemoresistance in
bladder cancer. Free Radic Biol Med. 115:447–457. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hayden A, Douglas J, Sommerlad M, Andrews
L, Gould K, Hussain S, Thomas GJ, Packham G and Crabb SJ: The Nrf2
transcription factor contributes to resistance to cisplatin in
bladder cancer. Urol Oncol. 32:806–814. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Daga M, Pizzimenti S, Dianzani C, Cucci
MA, Cavalli R, Grattarola M, Ferrara B, Scariot V, Trotta F and
Barrera G: Ailanthone inhibits cell growth and migration of
cisplatin resistant bladder cancer cells through down-regulation of
Nrf2, YAP, and c-Myc expression. Phytomedicine. 56:156–164. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cucci MA, Grattarola M, Dianzani C, Damia
G, Ricci F, Roetto A, Trotta F, Barrera G and Pizzimenti S:
Ailanthone increases oxidative stress in CDDP-resistant ovarian and
bladder cancer cells by inhibiting of Nrf2 and YAP expression
through a post-translational mechanism. Free Radic Biol Med.
150:125–135. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dhillon S: Decitabine/cedazuridine: First
approval. Drugs. 80:1373–1378. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Khandelwal M, Anand V, Appunni S, Seth A,
Singh P, Mathur S and Sharma A: Decitabine augments cytotoxicity of
cisplatin and doxorubicin to bladder cancer cells by activating
hippo pathway through RASSF1A. Mol Cell Biochem. 446:105–114. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ciamporcero E, Shen H, Ramakrishnan S, Yu
Ku S, Chintala S, Shen L, Adelaiye R, Miles KM, Ullio C, Pizzimenti
S, et al: YAP activation protects urothelial cell carcinoma from
treatment-induced DNA damage. Oncogene. 35:1541–1553. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hong WX, Haebe S, Lee AS, Westphalen CB,
Norton JA, Jiang W and Levy R: Intratumoral immunotherapy for
early-stage solid tumors. Clin Cancer Res. 26:3091–3099. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Demaria O, Gauthier L, Debroas G and
Vivier E: Natural killer cell engagers in cancer immunotherapy:
Next generation of immuno-oncology treatments. Eur J Immunol.
51:1934–1942. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Rui R, Zhou L and He S: Cancer
immunotherapies: Advances and bottlenecks. Front Immunol.
14:12124762023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Han J, Gu X, Li Y and Wu Q: Mechanisms of
BCG in the treatment of bladder cancer-current understanding and
the prospect. Biomed Pharmacother. 129:1103932020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Donin NM, Lenis AT, Holden S, Drakaki A,
Pantuck A, Belldegrun A and Chamie K: Immunotherapy for the
treatment of urothelial carcinoma. J Urol. 197:14–22. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gill J and Prasad V: Pembrolizumab for
non-muscle-invasive bladder cancer-a costly therapy in search of
evidence. JAMA Oncol. 7:501–502. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Song D, Powles T, Shi L, Zhang L,
Ingersoll MA and Lu YJ: Bladder cancer, a unique model to
understand cancer immunity and develop immunotherapy approaches. J
Pathol. 249:151–165. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Baek SW, Jang IH, Kim SK, Nam JK, Leem SH
and Chu IS: Transcriptional profiling of advanced urothelial cancer
predicts prognosis and response to immunotherapy. Int J Mol Sci.
21:18502020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Baek SW, Mun JY, Jang IH, Yang GE, Jeong
MS, Kim SK, Nam JK, Chu IS and Leem SH: YAP1 activation is
associated with the progression and response to immunotherapy of
non-muscle invasive bladder cancer. EBioMedicine. 81:1040922022.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Grossman H, Natale RB, Tangen CM, Speights
VO, Vogelzang NJ, Trump DL, deVere White RW, Sarosdy MF, Wood DP
Jr, Raghavan D and Crawford ED: Neoadjuvant chemotherapy plus
cystectomy compared with cystectomy alone for locally advanced
bladder cancer. N Engl J Med. 349:859–866. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Joo WD, Visintin I and Mor G: Targeted
cancer therapy-are the days of systemic chemotherapy numbered?
Maturitas. 76:308–314. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Pérez-Herrero E and Fernández-Medarde A:
Advanced targeted therapies in cancer: Drug nanocarriers, the
future of chemotherapy. Eur J Pharm Biopharm. 93:52–79. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rouprêt M, Seisen T, Birtle AJ, Capoun O,
Compérat EM, Dominguez-Escrig JL, Gürses Andersson I, Liedberg F,
Mariappan P, Hugh Mostafid A, et al: European association of
urology guidelines on upper urinary tract urothelial carcinoma:
2023 Update. Eur Urol. 84:49–64. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yu EY, Petrylak DP, O'Donnell PH, Lee JL,
van der Heijden MS, Loriot Y, Stein MN, Necchi A, Kojima T,
Harrison MR, et al: Enfortumab vedotin after PD-1 or PD-L1
inhibitors in cisplatin-ineligible patients with advanced
urothelial carcinoma (EV-201): A multicentre, single-arm, phase 2
trial. Lancet Oncol. 22:872–882. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Dong L, Lin F, Wu W, Liu Y and Huang W:
Verteporfin inhibits YAP-induced bladder cancer cell growth and
invasion via Hippo signaling pathway. Int J Med Sci. 15:645–652.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Elbadawy M, Sato Y, Mori T, Goto Y,
Hayashi K, Yamanaka M, Azakami D, Uchide T, Fukushima R, Yoshida T,
et al: Anti-tumor effect of trametinib in bladder cancer organoid
and the underlying mechanism. Cancer Biol Ther. 22:357–371. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chen H, Yang W, Li Y and Ji Z: PLAGL2
promotes bladder cancer progression via RACGAP1/RhoA GTPase/YAP1
signaling. Cell Death Dis. 14:4332023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sudol M: YAP1 oncogene and its eight
isoforms. Oncogene. 32:39222013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Fang L, Teng H, Wang Y, Liao G, Weng L, Li
Y, Wang X, Jin J, Jiao C, Chen L, et al: SET1A-mediated
mono-methylation at K342 regulates YAP activation by blocking its
nuclear export and promotes tumorigenesis. Cancer Cell.
34:103–118.e9. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mao B, Hu F, Cheng J, Wang P, Xu M, Yuan
F, Meng S, Wang Y, Yuan Z and Bi W: SIRT1 regulates YAP2-mediated
cell proliferation and chemoresistance in hepatocellular carcinoma.
Oncogene. 33:1468–1474. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yan F, Qian M, He Q, Zhu H and Yang B: The
posttranslational modifications of Hippo-YAP pathway in cancer.
Biochim Biophys Acta Gen Subj. 1864:1293972020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wu L, Ou Z, Liu P, Zhao C, Tong S, Wang R,
Li Y, Yuan J, Chen M, Fan B, et al: ATXN3 promotes prostate cancer
progression by stabilizing YAP. Cell Commun Signal. 21:1522023.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Xu TH, Sheng Z, Li Y, Qiu X, Tian B and
Yao L: OGT knockdown counteracts high phosphate-induced vascular
calcification in chronic kidney disease through autophagy
activation by downregulating YAP. Life Sci. 261:1181212020.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Santinon G, Pocaterra A and Dupont S:
Control of YAP/TAZ activity by metabolic and nutrient-sensing
pathways. Trends Cell Biol. 26:289–299. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang R, Yang S, Wang M, Zhou Y, Li X, Chen
W, Liu W, Huang Y, Wu J, Cao J, et al: A sustainable approach to
universal metabolic cancer diagnosis. Nat Sustain. 7:602–615. 2024.
View Article : Google Scholar
|
|
97
|
Kashihara T, Mukai R, Oka SI, Zhai P,
Nakada Y, Yang Z, Mizushima W, Nakahara T, Warren JS, Abdellatif M
and Sadoshima J: YAP mediates compensatory cardiac hypertrophy
through aerobic glycolysis in response to pressure overload. J Clin
Invest. 132:e1505952022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Li X, Wu Z, He J, Jin Y, Chu C, Cao Y, Gu
F, Wang H, Hou C, Liu X and Zou Q: OGT regulated O-GlcNAcylation
promotes papillary thyroid cancer malignancy via activating YAP.
Oncogene. 40:4859–4871. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu
X, Zhu G, Zhao Y, Chen Y, Yu Y, et al: The essential role of YAP
O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat
Commun. 8:152802017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Pei C, Wang Y, Ding Y, Li R, Shu W, Zeng
Y, Yin X and Wan J: Designed concave octahedron heterostructures
decode distinct metabolic patterns of epithelial ovarian tumors.
Adv Mater. 35:22090832023. View Article : Google Scholar
|
|
101
|
Sun T and Chi JT: Regulation of
ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: The
therapeutic implications. Genes Dis. 8:241–249. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wei C and Fu Q: Cell death mediated by
nanotechnology via the cuproptosis pathway: A novel horizon for
cancer therapy. VIEW. 4:202300012023. View Article : Google Scholar
|