Advances in research on the carcinogenic mechanisms and therapeutic potential of YAP1 in bladder cancer (Review)
- Authors:
- Tianyu Huang
- Longmei Fan
- Jiajia Tang
- Shicheng Chen
- Guotu Du
- Neng Zhang
-
Affiliations: Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China - Published online on: November 12, 2024 https://doi.org/10.3892/or.2024.8843
- Article Number: 10
-
Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Misra JR and Irvine KD: The Hippo signaling network and its biological functions. Annu Rev Genet. 52:65–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Meng Z, Chen R and Guan KL: The Hippo pathway: Biology and pathophysiology. Annu Rev Biochem. 88:577–604. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lorenzetto E, Brenca M, Boeri M, Verri C, Piccinin E, Gasparini P, Facchinetti F, Rossi S, Salvatore G, Massimino M, et al: YAP1 acts as oncogenic target of 11q22 amplification in multiple cancer subtypes. Oncotarget. 5:2608–2621. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu Z and Guan KL: Hippo signaling in embryogenesis and development. Trends Biochem Sci. 46:51–63. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pocaterra A, Romani P and Dupont S: YAP/TAZ functions and their regulation at a glance. J Cell Sci. 133:jcs2304252020. View Article : Google Scholar : PubMed/NCBI | |
Zanconato F, Cordenonsi M and Piccolo S: YAP/TAZ at the roots of cancer. Cancer Cell. 29:783–803. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhong Z, Jiao Z and Yu FX: The Hippo signaling pathway in development and regeneration. Cell Rep. 43:1139262024. View Article : Google Scholar : PubMed/NCBI | |
Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P and Giorgi C: An updated understanding of the role of YAP in driving oncogenic responses. Cancers (Basel). 13:31002021. View Article : Google Scholar : PubMed/NCBI | |
Abylkassov R and Xie Y: Role of Yes-associated protein in cancer: An update. Oncol Lett. 12:2277–2282. 2016. View Article : Google Scholar : PubMed/NCBI | |
Galsky MD, Stensland KD, Moshier E, Sfakianos JP, McBride RB, Tsao CK, Casey M, Boffetta P, Oh WK, Mazumdar M and Wisnivesky JP: Effectiveness of adjuvant chemotherapy for locally advanced bladder cancer. J Clin Oncol. 34:825–832. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Deng L, Zou H, Guo Y, Tong T, Huang M, Ling G and Li P: New insights into the ambivalent role of YAP/TAZ in human cancers. J Exp Clin Cancer Res. 42:1302023. View Article : Google Scholar : PubMed/NCBI | |
Fu M, Hu Y, Lan T, Guan KL, Luo T and Luo M: The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther. 7:3762022. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Fu J, Hu B, Chen L, Wang J, Fang J, Ge C, Lin H, Pan K, Fu L, et al: Serine metabolism regulates YAP activity through USP7 in colon cancer. Front Cell Dev Biol. 9:6391112021. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Yan F, Yuan T, Qian M, Zhou T, Dai X, Cao J, Ying M, Dong X, He Q and Yang B: USP10 promotes proliferation of hepatocellular carcinoma by deubiquitinating and stabilizing YAP/TAZ. Cancer Res. 80:2204–2216. 2020. View Article : Google Scholar : PubMed/NCBI | |
Eibl G and Rozengurt E: KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin Cancer Biol. 54:50–62. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee JY, Chang JK, Dominguez AA, Lee HP, Nam S, Chang J, Varma S, Qi LS, West RB and Chaudhuri O: YAP-independent mechanotransduction drives breast cancer progression. Nat Commun. 10:18482019. View Article : Google Scholar : PubMed/NCBI | |
Driskill JH and Pan D: The Hippo pathway in liver homeostasis and pathophysiology. Annu Rev Pathol. 16:299–322. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A and Bray F: Bladder cancer incidence and mortality: A global overview and recent trends. Eur Urol. 71:96–108. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lenis AT, Lec PM, Chamie K and Mshs MD: Bladder cancer: A review. JAMA. 324:1980–1991. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu JY, Li YH, Lin HX, Liao YJ, Mai SJ, Liu ZW, Zhang ZL, Jiang LJ, Zhang JX, Kung HF, et al: Overexpression of YAP 1 contributes to progressive features and poor prognosis of human urothelial carcinoma of the bladder. BMC Cancer. 13:3492013. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Wang X, Ma L, Guo Z, Liu H, Du M, Chu H, Wang M, Wang Z and Zhang Z: Genetic variations in Hippo pathway genes influence bladder cancer risk in a Chinese population. Arch Toxicol. 94:785–794. 2020. View Article : Google Scholar : PubMed/NCBI | |
Di X, Xiang L and Jian Z: YAP-mediated mechanotransduction in urinary bladder remodeling: Based on RNA-seq and CUT&Tag. Front Genet. 14:11069272023. View Article : Google Scholar : PubMed/NCBI | |
Tong T, Huang M, Yan B, Lin B, Yu J, Teng Q, Li P and Pang J: Hippo signaling modulation and its biological implications in urological malignancies. Mol Aspects Med. 98:1012802024. View Article : Google Scholar : PubMed/NCBI | |
Cucci MA, Compagnone A, Daga M, Grattarola M, Ullio C, Roetto A, Palmieri A, Rosa AC, Argenziano M, Cavalli R, et al: Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells. Free Radic Biol Med. 141:205–219. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q and Jiang J: Regulation of hedgehog signal transduction by ubiquitination and deubiquitination. Int J Mol Sci. 22:133382021. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Zhou J, Tang J, Zhou F, He Z and Liu T and Liu T: MINDY1 promotes bladder cancer progression by stabilizing YAP. Cancer Cell Int. 21:3952021. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Lin F, Wu W, Huang W and Cai Z: Transcriptional cofactor Mask2 is required for YAP-induced cell growth and migration in bladder cancer cell. J Cancer. 7:2132–2138. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rovida E and Tusa I: Targeting MAPK in cancer 2.0. Int J Mol Sci. 23:57022022. View Article : Google Scholar : PubMed/NCBI | |
Qiu D, Zhu Y and Cong Z: YAP triggers bladder cancer proliferation by affecting the MAPK pathway. Cancer Manag Res. 12:12205–12214. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang H, Zhang Y, Zhen N, Zhang L, Qiao Y, Weng W, Liu X, Ma L, Xiao W, et al: Mutual inhibition between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer. Cell Signal. 26:1048–1059. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li S, Yu Z, Chen SS, Li F, Lei CY, Chen XX, Bao JM, Luo Y, Lin GZ, Pang SY and Tan WL: The YAP1 oncogene contributes to bladder cancer cell proliferation and migration by regulating the H19 long noncoding RNA. Urol Oncol. 33:427.e1–e10. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lv M, Zhong Z, Huang M, Tian Q, Jiang R and Chen J: lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim Biophys Acta Mol Cell Res. 1864:1887–1899. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jafri I: MiRNA a new insight in metabolic and human diseases: A review. Cell Mol Biol (Noisy-le-grand). 69:102–110. 2023. View Article : Google Scholar : PubMed/NCBI | |
Luo K: Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. 9:a0221372017. View Article : Google Scholar : PubMed/NCBI | |
Zhuang C, Liu Y, Fu S, Yuan C, Luo J, Huang X, Yang W, Xie W and Zhuang C: Silencing of lncRNA MIR497HG via CRISPR/Cas13d induces bladder cancer progression through promoting the crosstalk between Hippo/Yap and TGF-β/Smad signaling. Front Mol Biosci. 7:6167682020. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Zhang P, Han H, Lei H and Zhang X: Hypermethylated in cancer 1 (HIC1) suppresses bladder cancer progression by targeting yes-associated protein (YAP) pathway. J Cell Biochem. 120:6471–6481. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J and Deng X: Effects of miR-599 targeting YAP1 on proliferation, invasion and apoptosis of bladder urothelial carcinoma cells. Exp Mol Pathol. 118:1045992021. View Article : Google Scholar : PubMed/NCBI | |
Hade MD, Suire CN and Suo Z: Mesenchymal stem cell-derived exosomes: Applications in regenerative medicine. Cells. 10:19592021. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Huang ZM, Wang H and Ji ZG: Bladder mesenchymal stromal cell-derived exosomal miRNA-217 modulates bladder cancer cell survival through Hippo-YAP pathway. Inflamm Res. 70:959–969. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schmitz-Dräger BJ, Droller M, Lokeshwar VB, Lotan Y, Hudson MA, van Rhijn BW, Marberger MJ, Fradet Y, Hemstreet GP, Malmstrom PU, et al: Molecular markers for bladder cancer screening, early diagnosis, and surveillance: The WHO/ICUD consensus. Urol Int. 94:1–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhu H, Chen H, Xia J, Zhang F, Xu R and Lin Q: Glucose promotes epithelial-mesenchymal transitions in bladder cancer by regulating the functions of YAP1 and TAZ. J Cell Mol Med. 24:10391–10401. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zakrzewski W, Dobrzyński M, Szymonowicz M and Rybak Z: Stem cells: Past, present, and future. Stem Cell Res Ther. 10:682019. View Article : Google Scholar : PubMed/NCBI | |
Fuchs E and Blau HM: Tissue stem cells: Architects of their niches. Cell Stem Cell. 27:532–556. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nassar D and Blanpain C: Cancer stem cells: Basic concepts and therapeutic implications. Annu Rev Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI | |
Driskill JH and Pan D: Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol. 24:895–911. 2023. View Article : Google Scholar : PubMed/NCBI | |
Luo J and Li P: Context-dependent transcriptional regulations of YAP/TAZ in stem cell and differentiation. Stem Cell Res Ther. 13:102022. View Article : Google Scholar : PubMed/NCBI | |
Damkham N, Issaragrisil S and Lorthongpanich C: Role of YAP as a mechanosensing molecule in stem cells and stem cell-derived hematopoietic cells. Int J Mol Sci. 23:146342022. View Article : Google Scholar : PubMed/NCBI | |
Zhao AY, Dai YJ, Lian JF, Huang Y, Lin JG, Dai YB and Xu TW: YAP regulates ALDH1A1 expression and stem cell property of bladder cancer cells. Onco Targets Ther. 11:6657–6663. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, Dinalankara W, Begum A, Hahn NM, VandenBussche CJ, Rasheed ZA, Mao S, Netto GJ, et al: YAP1 and COX2 coordinately regulate urothelial cancer stem-like cells. Cancer Res. 78:168–181. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Yang Y, Wang Z, Zhang X, Li D and Wei J: A SNP of miR-146a is involved in bladder cancer relapse by affecting the function of bladder cancer stem cells via the miR-146a signallings. J Cell Mol Med. 24:8545–8556. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ghasemi H, Mousavibahar SH, Hashemnia M, Karimi J, Khodadadi I, Mirzaei F and Tavilani H: Tissue stiffness contributes to YAP activation in bladder cancer patients undergoing transurethral resection. Ann N Y Acad Sci. 1473:48–61. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gwak HS, Youn SM, Kwon AH, Lee SH, Kim JH and Rhee CH: ACNU-cisplatin continuous infusion chemotherapy as salvage therapy for recurrent glioblastomas: Phase II study. J Neurooncol. 75:173–180. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gentilin E: New advancements in cisplatin-based treatments. Int J Mol Sci. 24:59202023. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Ruiz S, Maksimović-Ivanić D, Mijatović S and Kaluđerović GN: On the discovery, biological effects, and use of Cisplatin and metallocenes in anticancer chemotherapy. Bioinorg Chem Appl. 2012:1402842012. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wenmaekers S, Viergever BJ, Kumar G, Kranenburg O, Black PC, Daugaard M and Meijer RP: A potential role for HUWE1 in modulating cisplatin sensitivity. Cells. 10:12622021. View Article : Google Scholar : PubMed/NCBI | |
Rebucci M and Michiels C: Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol. 85:1219–1226. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nguyen CDK and Yi C: YAP/TAZ Signaling and resistance to cancer therapy. Trends Cancer. 5:283–296. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim MH and Kim J: Role of YAP/TAZ transcriptional regulators in resistance toanti-cancer therapies. Cell Mol Life Sci. 74:1457–1474. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fan Q, Cai Q and Xu Y: FOXM1 is a downstream target of LPA and YAP oncogenic signaling pathways in high grade serous ovarian cancer. Oncotarget. 6:27688–27699. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ciamporcero E, Daga M, Pizzimenti S, Roetto A, Dianzani C, Compagnone A, Palmieri A, Ullio C, Cangemi L, Pili R and Barrera G: Crosstalk between Nrf2 and YAP contributes to maintaining the antioxidant potential and chemoresistance in bladder cancer. Free Radic Biol Med. 115:447–457. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hayden A, Douglas J, Sommerlad M, Andrews L, Gould K, Hussain S, Thomas GJ, Packham G and Crabb SJ: The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer. Urol Oncol. 32:806–814. 2014. View Article : Google Scholar : PubMed/NCBI | |
Daga M, Pizzimenti S, Dianzani C, Cucci MA, Cavalli R, Grattarola M, Ferrara B, Scariot V, Trotta F and Barrera G: Ailanthone inhibits cell growth and migration of cisplatin resistant bladder cancer cells through down-regulation of Nrf2, YAP, and c-Myc expression. Phytomedicine. 56:156–164. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cucci MA, Grattarola M, Dianzani C, Damia G, Ricci F, Roetto A, Trotta F, Barrera G and Pizzimenti S: Ailanthone increases oxidative stress in CDDP-resistant ovarian and bladder cancer cells by inhibiting of Nrf2 and YAP expression through a post-translational mechanism. Free Radic Biol Med. 150:125–135. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dhillon S: Decitabine/cedazuridine: First approval. Drugs. 80:1373–1378. 2020. View Article : Google Scholar : PubMed/NCBI | |
Khandelwal M, Anand V, Appunni S, Seth A, Singh P, Mathur S and Sharma A: Decitabine augments cytotoxicity of cisplatin and doxorubicin to bladder cancer cells by activating hippo pathway through RASSF1A. Mol Cell Biochem. 446:105–114. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ciamporcero E, Shen H, Ramakrishnan S, Yu Ku S, Chintala S, Shen L, Adelaiye R, Miles KM, Ullio C, Pizzimenti S, et al: YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene. 35:1541–1553. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hong WX, Haebe S, Lee AS, Westphalen CB, Norton JA, Jiang W and Levy R: Intratumoral immunotherapy for early-stage solid tumors. Clin Cancer Res. 26:3091–3099. 2020. View Article : Google Scholar : PubMed/NCBI | |
Demaria O, Gauthier L, Debroas G and Vivier E: Natural killer cell engagers in cancer immunotherapy: Next generation of immuno-oncology treatments. Eur J Immunol. 51:1934–1942. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rui R, Zhou L and He S: Cancer immunotherapies: Advances and bottlenecks. Front Immunol. 14:12124762023. View Article : Google Scholar : PubMed/NCBI | |
Han J, Gu X, Li Y and Wu Q: Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed Pharmacother. 129:1103932020. View Article : Google Scholar : PubMed/NCBI | |
Donin NM, Lenis AT, Holden S, Drakaki A, Pantuck A, Belldegrun A and Chamie K: Immunotherapy for the treatment of urothelial carcinoma. J Urol. 197:14–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gill J and Prasad V: Pembrolizumab for non-muscle-invasive bladder cancer-a costly therapy in search of evidence. JAMA Oncol. 7:501–502. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song D, Powles T, Shi L, Zhang L, Ingersoll MA and Lu YJ: Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches. J Pathol. 249:151–165. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baek SW, Jang IH, Kim SK, Nam JK, Leem SH and Chu IS: Transcriptional profiling of advanced urothelial cancer predicts prognosis and response to immunotherapy. Int J Mol Sci. 21:18502020. View Article : Google Scholar : PubMed/NCBI | |
Baek SW, Mun JY, Jang IH, Yang GE, Jeong MS, Kim SK, Nam JK, Chu IS and Leem SH: YAP1 activation is associated with the progression and response to immunotherapy of non-muscle invasive bladder cancer. EBioMedicine. 81:1040922022. View Article : Google Scholar : PubMed/NCBI | |
Grossman H, Natale RB, Tangen CM, Speights VO, Vogelzang NJ, Trump DL, deVere White RW, Sarosdy MF, Wood DP Jr, Raghavan D and Crawford ED: Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 349:859–866. 2003. View Article : Google Scholar : PubMed/NCBI | |
Joo WD, Visintin I and Mor G: Targeted cancer therapy-are the days of systemic chemotherapy numbered? Maturitas. 76:308–314. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Herrero E and Fernández-Medarde A: Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 93:52–79. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rouprêt M, Seisen T, Birtle AJ, Capoun O, Compérat EM, Dominguez-Escrig JL, Gürses Andersson I, Liedberg F, Mariappan P, Hugh Mostafid A, et al: European association of urology guidelines on upper urinary tract urothelial carcinoma: 2023 Update. Eur Urol. 84:49–64. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu EY, Petrylak DP, O'Donnell PH, Lee JL, van der Heijden MS, Loriot Y, Stein MN, Necchi A, Kojima T, Harrison MR, et al: Enfortumab vedotin after PD-1 or PD-L1 inhibitors in cisplatin-ineligible patients with advanced urothelial carcinoma (EV-201): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 22:872–882. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Lin F, Wu W, Liu Y and Huang W: Verteporfin inhibits YAP-induced bladder cancer cell growth and invasion via Hippo signaling pathway. Int J Med Sci. 15:645–652. 2018. View Article : Google Scholar : PubMed/NCBI | |
Elbadawy M, Sato Y, Mori T, Goto Y, Hayashi K, Yamanaka M, Azakami D, Uchide T, Fukushima R, Yoshida T, et al: Anti-tumor effect of trametinib in bladder cancer organoid and the underlying mechanism. Cancer Biol Ther. 22:357–371. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yang W, Li Y and Ji Z: PLAGL2 promotes bladder cancer progression via RACGAP1/RhoA GTPase/YAP1 signaling. Cell Death Dis. 14:4332023. View Article : Google Scholar : PubMed/NCBI | |
Sudol M: YAP1 oncogene and its eight isoforms. Oncogene. 32:39222013. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Teng H, Wang Y, Liao G, Weng L, Li Y, Wang X, Jin J, Jiao C, Chen L, et al: SET1A-mediated mono-methylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis. Cancer Cell. 34:103–118.e9. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mao B, Hu F, Cheng J, Wang P, Xu M, Yuan F, Meng S, Wang Y, Yuan Z and Bi W: SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene. 33:1468–1474. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan F, Qian M, He Q, Zhu H and Yang B: The posttranslational modifications of Hippo-YAP pathway in cancer. Biochim Biophys Acta Gen Subj. 1864:1293972020. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Ou Z, Liu P, Zhao C, Tong S, Wang R, Li Y, Yuan J, Chen M, Fan B, et al: ATXN3 promotes prostate cancer progression by stabilizing YAP. Cell Commun Signal. 21:1522023. View Article : Google Scholar : PubMed/NCBI | |
Xu TH, Sheng Z, Li Y, Qiu X, Tian B and Yao L: OGT knockdown counteracts high phosphate-induced vascular calcification in chronic kidney disease through autophagy activation by downregulating YAP. Life Sci. 261:1181212020. View Article : Google Scholar : PubMed/NCBI | |
Santinon G, Pocaterra A and Dupont S: Control of YAP/TAZ activity by metabolic and nutrient-sensing pathways. Trends Cell Biol. 26:289–299. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Yang S, Wang M, Zhou Y, Li X, Chen W, Liu W, Huang Y, Wu J, Cao J, et al: A sustainable approach to universal metabolic cancer diagnosis. Nat Sustain. 7:602–615. 2024. View Article : Google Scholar | |
Kashihara T, Mukai R, Oka SI, Zhai P, Nakada Y, Yang Z, Mizushima W, Nakahara T, Warren JS, Abdellatif M and Sadoshima J: YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload. J Clin Invest. 132:e1505952022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wu Z, He J, Jin Y, Chu C, Cao Y, Gu F, Wang H, Hou C, Liu X and Zou Q: OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP. Oncogene. 40:4859–4871. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, Zhu G, Zhao Y, Chen Y, Yu Y, et al: The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun. 8:152802017. View Article : Google Scholar : PubMed/NCBI | |
Pei C, Wang Y, Ding Y, Li R, Shu W, Zeng Y, Yin X and Wan J: Designed concave octahedron heterostructures decode distinct metabolic patterns of epithelial ovarian tumors. Adv Mater. 35:22090832023. View Article : Google Scholar | |
Sun T and Chi JT: Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: The therapeutic implications. Genes Dis. 8:241–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei C and Fu Q: Cell death mediated by nanotechnology via the cuproptosis pathway: A novel horizon for cancer therapy. VIEW. 4:202300012023. View Article : Google Scholar |