Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
May-2025 Volume 53 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 53 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of PEG10 in cancer and neurodegenerative disorder (Review)

  • Authors:
    • Dachao Mou
    • Shasha Wu
    • Yanqiong Chen
    • Yun Wang
    • Yufang Dai
    • Min Tang
    • Xiu Teng
    • Shijun Bai
    • Xiufeng Bai
  • View Affiliations / Copyright

    Affiliations: Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Agriculture Forestry and Food Engineering, Yibin University, Lingang Economic and Technological Development Zone, Yibin, Sichuan 644000, P.R. China
    Copyright: © Mou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 60
    |
    Published online on: April 1, 2025
       https://doi.org/10.3892/or.2025.8893
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Paternally expressed gene 10 (PEG10) is an imprinting gene. In addition to its known roles in placental development, as well as mouse embryonic stem cell and trophoblast stem cell differentiation, PEG10 has recently been shown to have significance in cancers. High expression of PEG10 is observed in various cancer types and is associated with poor prognosis. Of note, disruption of PEG10 expression leads to increased apoptosis, as well as decreased proliferation, invasion and migration of cancer cells. PEG10 is expected to become a target for cancer and neurodegenerative disorder therapy. This article reviewed the latest progress in the role of PEG10 in cancers.
View Figures

Figure 1

Figure 2

View References

1 

Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI

2 

Lee MS, Kim JW, Park DG, Heo H, Kim J, Yoon JH and Chang J: Autophagic signatures in peripheral blood mononuclear cells from Parkinson's disease patients. Mol Cells. 48:1001732024. View Article : Google Scholar : PubMed/NCBI

3 

Dopkins N and Nixon DF: Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol. 25:212–222. 2024. View Article : Google Scholar : PubMed/NCBI

4 

Jakobsson J and Vincendeau M: SnapShot: Human endogenous retroviruses. Cell. 185:400–400.e1. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Youngson NA, Kocialkowski S, Peel N and Ferguson-Smith AC: A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J Mol Evol. 61:481–490. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Iwasaki S, Suzuki S, Pelekanos M, Clark H, Ono R, Shaw G, Renfree MB, Kaneko-Ishino T and Ishino F: Identification of a novel PNMA-MS1 gene in marsupials suggests the LTR retrotransposon-derived PNMA genes evolved differently in marsupials and eutherians. DNA Res. 20:425–436. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T, Kaneko-Ishino T and Ishino F: A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics. 73:232–237. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Renfree MB, Suzuki S and Kaneko-Ishino T: The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci. 368:201201512013. View Article : Google Scholar : PubMed/NCBI

9 

Suzuki S, Ono R, Narita T, Pask AJ, Shaw G, Wang C, Kohda T, Alsop AE, Marshall Graves JA, Kohara Y, et al: Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 3:e552007. View Article : Google Scholar : PubMed/NCBI

10 

Segel M, Lash B, Song J, Ladha A, Liu CC, Jin X, Mekhedov SL, Macrae RK, Koonin EV and Zhang F: Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science. 373:882–889. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Tang R, Guo L, Wei T, Chen T, Yang H, Ye H, Lin F, Zeng Y, Yu H, Cai Z and Liu X: Engineering PEG10 assembled endogenous virus-like particles with genetically encoded neoantigen peptides for cancer vaccination. Elife. 13:RP985792024. View Article : Google Scholar : PubMed/NCBI

12 

Campodonico W, Mohan HM, Huynh PT, Black HH, Lau CI, Paulson HL, Sharkey LM and Whiteley AM: The gag-like gene RTL8 antagonizes PEG10-mediated virus like particles. PLoS One. 19:e03109462024. View Article : Google Scholar : PubMed/NCBI

13 

Li M, Liu Z, Wang D, Ye J, Shi Z, Pan C, Zhang Q, Ju R, Zheng Y and Liu Y: Intraocular mRNA delivery with endogenous MmPEG10-based virus-like particles. Exp Eye Res. 243:1098992024. View Article : Google Scholar : PubMed/NCBI

14 

Abed M, Verschueren E, Budayeva H, Liu P, Kirkpatrick DS, Reja R, Kummerfeld SK, Webster JD, Gierke S, Reichelt M, et al: The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS One. 14:e02141102019. View Article : Google Scholar : PubMed/NCBI

15 

Pollard KS, Serre D, Wang X, Tao H, Grundberg E, Hudson TJ, Clark AG and Frazer K: A genome-wide approach to identifying novel-imprinted genes. Hum Genet. 122:625–634. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Smallwood A, Papageorghiou A, Nicolaides K, Alley MK, Jim A, Nargund G, Ojha K, Campbell S and Banerjee S: Temporal regulation of the expression of syncytin (HERV-W), maternally imprinted PEG10, and SGCE in human placenta. Biol Reprod. 69:286–293. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, et al: Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 38:101–106. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Xie T, Pan S, Zheng H, Luo Z, Tembo KM, Jamal M, Yu Z, Yu Y, Xia J, Yin Q, et al: PEG10 as an oncogene: Expression regulatory mechanisms and role in tumor progression. Cancer Cell Inte. 18:1122018. View Article : Google Scholar : PubMed/NCBI

19 

Clark MB, Jänicke M, Gottesbühren U, Kleffmann T, Legge M, Poole ES and Tate WP: Mammalian gene PEG10 expresses two reading frames by high efficiency-1 frameshifting in embryonic-associated tissues. J Biol Chem. 282:37359–37369. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Manktelow E, Shigemoto K and Brierley I: Characterization of the frameshift signal of Edr, a mammalian example of programmed-1 ribosomal frameshifting. Nucleic Acids Res. 33:1553–1563. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Cardno TS, Shimaki Y, Sleebs BE, Lackovic K, Parisot JP, Moss RM, Crowe-McAuliffe C, Mathew SF, Edgar CD, Kleffmann T and Tate WP: HIV-1 and human PEG10 frameshift elements are functionally distinct and distinguished by novel small molecule modulators. PLoS One. 10:e01390362015. View Article : Google Scholar : PubMed/NCBI

22 

Lux H, Flammann H, Hafner M and Lux A: Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation. PLoS One. 5:e86862010. View Article : Google Scholar : PubMed/NCBI

23 

Liu F, Gao Y, Xu B, Xiong S, Yi S, Sun J, Chen Z, Liu X, Li Y, Lin Y, et al: PEG10 amplification at 7q21.3 potentiates large-cell transformation in cutaneous T-cell lymphoma. Blood. 139:554–571. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Black HH, Hanson JL, Roberts JE, Leslie SN, Campodonico W, Ebmeier CC, Holling GA, Tay JW, Matthews AM, Ung E, et al: UBQLN2 restrains the domesticated retrotransposon PEG10 to maintain neuronal health in ALS. Elife. 12:e794522023. View Article : Google Scholar : PubMed/NCBI

25 

Pandya NJ, Wang C, Costa V, Lopatta P, Meier S, Zampeta FI, Punt AM, Mientjes E, Grossen P, Distler T, et al: Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology. Cell Rep Med. 2:1003602021. View Article : Google Scholar : PubMed/NCBI

26 

Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F, Kim S, Tse C, Wang K, Mo F, Haegert A, et al: The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep. 12:922–936. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Yang J and Wang X: Role of long non-coding RNAs in lymphoma: A systematic review and clinical perspectives. Crit Rev Oncol Hematol. 141:13–22. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Zhao J, Su L and Jiang J: Long Non-coding RNA paternally expressed imprinted gene 10 (PEG10) elevates diffuse large B-Cell lymphoma progression by regulating kinesin family member 2A (KIF2A) via targeting MiR-101-3p. Med Sci Monit. 26:e9228102020. View Article : Google Scholar : PubMed/NCBI

29 

Peng W, Fan H, Wu G, Wu J and Feng J: Upregulation of long noncoding RNA PEG10 associates with poor prognosis in diffuse large B cell lymphoma with facilitating tumorigenicity. Clin Exp Med. 16:177–182. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Zhang J, Liu W, Ji P and Zhang Y: Silencing of long chain noncoding RNA paternally expressed gene (PEG10) inhibits the progression of neuroblastoma by regulating microRNA-449a (miR-449a)/ribosomal protein S2 (RPS2) axis. Bioengineered. 13:6309–6322. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, et al: The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget. 8:74567–74581. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Wang J, Chu XQ, Zhang D and Kong DF: Knockdown of long non-coding RNA PEG10 inhibits growth, migration and invasion of gastric carcinoma cells via up-regulating miR-3200. Neoplasma. 65:769–778. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Xiao H, Ding N, Liao H, Yao Z, Cheng X, Zhang J and Zhao M: Prediction of relapse and prognosis by expression levels of long noncoding RNA PEG10 in glioma patients. Medicine (Baltimore). 98:e175832019. View Article : Google Scholar : PubMed/NCBI

34 

Fu Y, Bi Y, Wang F, Chen X and Liu H: Declination of long noncoding RNA paternally expressed gene 10 inhibits A375 cells proliferation, migration, and invasion via mediating microRNA-33a. J Cell Biochem. 120:19868–19877. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Zang W, Wang T, Huang J, Li M, Wang Y, Du Y, Chen X and Zhao G: Long noncoding RNA PEG10 regulates proliferation and invasion of esophageal cancer cells. Cancer Gene Ther. 22:138–144. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Zhao M, Sun D, Li X, Xu Y, Zhang H, Qin Y and Xia M: Overexpression of long noncoding RNA PEG10 promotes proliferation, invasion and metastasis of hypopharyngeal squamous cell carcinoma. Oncol Lett. 14:2919–2925. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Kumar A, Kumar V, Rattan V, Jha V and Bhattacharyya S: Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie. 155:129–139. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Jung S and Lee JS: Single-cell genomics for investigating pathogenesis of inflammatory diseases. Mol Cells. 46:120–129. 2023. View Article : Google Scholar : PubMed/NCBI

39 

Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ and Li ZH: Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct Target Ther. 8:982023. View Article : Google Scholar : PubMed/NCBI

40 

Bar S, Vershkov D, Keshet G, Lezmi E, Meller N, Yilmaz A, Yanuka O, Nissim-Rafinia M, Meshorer E, Eldar-Geva T and Benvenisty N: Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun. 12:67182021. View Article : Google Scholar : PubMed/NCBI

41 

Bretz CL, Langohr IM, Lee S and Kim J: Epigenetic instability at imprinting control regions in a Kras(G12D)-induced T-cell neoplasm. Epigenetics. 10:1111–1120. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Yamaguchi S, Shen L, Liu Y, Sendler D and Zhang Y: Role of Tet1 in erasure of genomic imprinting. Nature. 504:460–464. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Kempinska K, Malik B, Borkin D, Klossowski S, Shukla S, Miao H, Wang J, Cierpicki T and Grembecka J: Pharmacologic inhibition of the Menin-MLL interaction leads to transcriptional repression of PEG10 and blocks hepatocellular carcinoma. Mol Cancer Ther. 17:26–38. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Shoshani O, Brunner SF, Yaeger R, Ly P, Nechemia-Arbely Y, Kim DH, Fang R, Castillon GA, Yu M, Li JSZ, et al: Chromothripsis drives the evolution of gene amplification in cancer. Nature. 591:137–141. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Dong H, Zhang H, Liang J, Yan H, Chen Y, Shen Y, Kong Y, Wang S, Zhao G and Jin W: Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma. BMC Med Genomics. 4:602011. View Article : Google Scholar : PubMed/NCBI

46 

Tsuji K, Yasui K, Gen Y, Endo M, Dohi O, Zen K, Mitsuyoshi H, Minami M, Itoh Y, Taniwaki M and Tanaka S: PEG10 is a probable target for the amplification at 7q21 detected in hepatocellular carcinoma. Cancer Genet Cytogenet. 198:118–125. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Huang J, Sheng HH, Shen T, Hu YJ, Xiao HS, Zhang Q, Zhang QH and Han ZG: Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B virus-associated hepatocellular carcinoma. FEBS Lett. 580:3571–3581. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Kwon HC, Bae Y and Lee SV: The role of mRNA quality control in the aging of caenorhabditis elegans. Mole Cells. 46:664–671. 2023. View Article : Google Scholar : PubMed/NCBI

49 

Zhang Y, Dou X, Kong Q, Li Y and Zhou X: Circ_0075804 promotes the malignant behaviors of retinoblastoma cells by binding to miR-138-5p to induce PEG10 expression. Int Ophthalmol. 42:509–523. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Zhang L, Wan Y, Zhang Z, Jiang Y, Gu Z, Ma X, Nie S, Yang J, Lang J, Cheng W and Zhu L: IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression. Theranostics. 11:1100–1114. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Santiago M, Antunes C, Guedes M, Iacovino M, Kyba M, Reik W, Sousa N, Pinto L, Branco MR and Marques CJ: Tet3 regulates cellular identity and DNA methylation in neural progenitor cells. Cell Mol Life Sci. 77:2871–2883. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Shyu YC, Lee TL, Lu MJ, Chen JR, Chien RN, Chen HY, Lin JF, Tsou AP, Chen YH, Hsieh CW and Huang TS: miR-122-mediated translational repression of PEG10 and its suppression in human hepatocellular carcinoma. J Transl Med. 14:2002016. View Article : Google Scholar : PubMed/NCBI

53 

Li Y, Guo D, Lu G, Mohiuddin Chowdhury ATM, Zhang D, Ren M, Chen Y, Wang R and He S: LncRNA SNAI3-AS1 promotes PEG10-mediated proliferation and metastasis via decoying of miR-27a-3p and miR-34a-5p in hepatocellular carcinoma. Cell Death Dis. 11:6852020. View Article : Google Scholar : PubMed/NCBI

54 

Li B, Shi C, Li B, Zhao JM and Wang L: The effects of Curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway. J Cell Biochem. 119:3091–3098. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Ye M, Zhao L, Zhang L, Wu S, Li Z, Qin Y, Lin F and Pan L: LncRNA NALT1 promotes colorectal cancer progression via targeting PEG10 by sponging microRNA-574-5p. Cell Death Dis. 13:9602022. View Article : Google Scholar : PubMed/NCBI

56 

Jiménez Martín O, Schlosser A, Furtwängler R, Wegert J and Gessler M: MYCN and MAX alterations in Wilms tumor and identification of novel N-MYC interaction partners as biomarker candidates. Cancer Cell Int. 21:5552021. View Article : Google Scholar : PubMed/NCBI

57 

Li CM, Margolin AA, Salas M, Memeo L, Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A and Tycko B: PEG10 is a c-MYC target gene in cancer cells. Cancer Res. 66:665–672. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Wang C, Xiao Y, Hu Z, Chen Y, Liu N and Hu G: PEG10 directly regulated by E2Fs might have a role in the development of hepatocellular carcinoma. FEBS Lett. 582:2793–2798. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Peng YP, Zhu Y, Yin LD, Zhang JJ, Wei JS, Liu X, Liu XC, Gao WT, Jiang KR and Miao Y: PEG10 overexpression induced by E2F-1 promotes cell proliferation, migration, and invasion in pancreatic cancer. J Exp Clin Cancer Res. 36:302017. View Article : Google Scholar : PubMed/NCBI

60 

Zhang M, Sui C, Dai B, Shen W, Lu J and Yang J: PEG10 is imperative for TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Oncol Rep. 37:510–518. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Zhang B, Liu ZY, Wu R, Zhang CM, Cao K, Shan WG, Liu Z, Ji M, Tian ZL, Sethi G, et al: Transcriptional regulator CTR9 promotes hepatocellular carcinoma progression and metastasis via increasing PEG10 transcriptional activity. Acta Pharmacol Sin. 43:2109–2118. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Yahiro Y, Maeda S, Shinohara N, Jokoji G, Sakuma D, Setoguchi T, Ishidou Y, Nagano S, Komiya S and Taniguchi N: PEG10 counteracts signaling pathways of TGF-β and BMP to regulate growth, motility and invasion of SW1353 chondrosarcoma cells. J Bone Miner Metab. 37:441–454. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Shinohara N, Maeda S, Yahiro Y, Sakuma D, Matsuyama K, Imamura K, Kawamura I, Setoguchi T, Ishidou Y, Nagano S and Komiya S: TGF-β signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci Rep. 7:134942017. View Article : Google Scholar : PubMed/NCBI

64 

Rotinen M, You S, Yang J, Coetzee SG, Reis-Sobreiro M, Huang WC, Huang F, Pan X, Yáñez A, Hazelett DJ, et al: ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat Med. 24:1887–1898. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Chatterjee A, Gallent B, Katiki M, Qian C, Harter MR, Silletti S, Komives EA, Freeman MR and Murali R: The homeodomain regulates stable DNA binding of prostate cancer target ONECUT2. Nat Commun. 15:90372024. View Article : Google Scholar : PubMed/NCBI

66 

Akamatsu S, Inoue T, Ogawa O and Gleave ME: Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol. 25:345–351. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Feng H, Cheng AS, Tsang DP, Li MS, Go MY, Cheung YS, Zhao GJ, Ng SS, Lin MC, Yu J, et al: Cell cycle-related kinase is a direct androgen receptor-regulated gene that drives β-catenin/T cell factor-dependent hepatocarcinogenesis. J Clin Invest. 121:3159–3175. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Qin J, Liu M, Ding Q, Ji X, Hao Y, Wu X and Xiong J: The direct effect of estrogen on cell viability and apoptosis in human gastric cancer cells. Mol Cell Biochem. 395:99–107. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Kreutz D, Sinthuvanich C, Bileck A, Janker L, Muqaku B, Slany A and Gerner C: Curcumin exerts its antitumor effects in a context dependent fashion. J Proteomics. 182:65–72. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Xu P, Wu Z, Yang W and Wang L: Dysregulation of DNA methylation and expression of imprinted genes in mouse placentas of fetal growth restriction induced by maternal cadmium exposure. Toxicology. 390:109–116. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Wu JJ, Cai A, Greenslade JE, Higgins NR, Fan C, Le NTT, Tatman M, Whiteley AM, Prado MA, Dieriks BV, et al: ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc Natl Acad Sci USA. 117:15230–15241. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Zhao H, Gao Y, Miao J, Chen S, Li J, Li Z, Yin C and Yue W: Single-cell RNA-seq highlights a specific carcinoembryonic cluster in ovarian cancer. Cell Death Dis. 12:10822021. View Article : Google Scholar : PubMed/NCBI

73 

Lux A, Beil C, Majety M, Barron S, Gallione CJ, Kuhn HM, Berg JN, Kioschis P, Marchuk DA and Hafner M: Human retroviral gag- and gag-pol-like proteins interact with the transforming growth factor-beta receptor activin receptor-like kinase 1. J Biol Chem. 280:8482–8493. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Liu Z, Tian Z, Cao K, Zhang B, Wen Q, Zhou X, Yang W, Wang T, Shi H and Wang R: TSG101 promotes the proliferation, migration and invasion of hepatocellular carcinoma cells by regulating the PEG10. J Cell Mol Med. 23:70–82. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Xiong J, Qin J, Zheng Y, Peng X, Luo Y and Meng X: PEG10 promotes the migration of human Burkitt's lymphoma cells by up-regulating the expression of matrix metalloproteinase-2 and −9. Clin Invest Med. 35:E117–125. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Golda M, Mótyán JA, Mahdi M and Tőzsér J: Functional study of the Retrotransposon-Derived human PEG10 Protease. Int J Mol Sci. 21:24242020. View Article : Google Scholar : PubMed/NCBI

77 

Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y and Nakamura Y: Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res. 63:3043–3048. 2003.PubMed/NCBI

78 

Tang Y, Wu Y, Xue M, Zhu B, Fan W and Li J: A 10-Gene signature identified by machine learning for predicting the response to transarterial chemoembolization in patients with hepatocellular carcinoma. J Oncol. 2022:38227732022. View Article : Google Scholar : PubMed/NCBI

79 

Bang H, Ha SY, Hwang SH and Park CK: Expression of PEG10 is associated with poor survival and tumor recurrence in hepatocellular carcinoma. Cancer Res Treat. 47:844–852. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Peng W, Zhao G, Ma Y, Yu H and Wang X: Dendritic cells transfected with PEG10 recombinant adenovirus elicit anti-tumor immune response in vitro and in vivo. Vaccine. 29:3501–3506. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Jie X, Lang C, Jian Q, Chaoqun L, Dehua Y, Yi S, Yanping J, Luokun X, Qiuping Z, Hui W, et al: Androgen activates PEG10 to promote carcinogenesis in hepatic cancer cells. Oncogene. 26:5741–5751. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Jia HL, Ye QH, Qin LX, Budhu A, Forgues M, Chen Y, Liu YK, Sun HC, Wang L, Lu HZ, et al: Gene expression profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin Cancer Res. 13:1133–1139. 2007. View Article : Google Scholar : PubMed/NCBI

83 

Ip WK, Lai PB, Wong NL, Sy SM, Beheshti B, Squire JA and Wong N: Identification of PEG10 as a progression related biomarker for hepatocellular carcinoma. Cancer Lett. 250:284–291. 2007. View Article : Google Scholar : PubMed/NCBI

84 

Wu X, Wang L, Feng F and Tian S: Weighted gene expression profiles identify diagnostic and prognostic genes for lung adenocarcinoma and squamous cell carcinoma. J Int Med Res. 48:3000605198938372020. View Article : Google Scholar : PubMed/NCBI

85 

Deng X, Hu Y, Ding Q, Han R, Guo Q, Qin J, Li J, Xiao R, Tian S, Hu W, et al: PEG10 plays a crucial role in human lung cancer proliferation, progression, prognosis and metastasis. Oncol Rep. 32:2159–2167. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Sinha A, Zou Y, Patel AS, Yoo S, Jiang F, Sato T, Kong R, Watanabe H, Zhu J, Massion PP, et al: Early-stage lung adenocarcinoma MDM2 genomic amplification predicts clinical outcome and response to targeted therapy. Cancers (Basel). 14:7082022. View Article : Google Scholar : PubMed/NCBI

87 

Wang D, Zhao J, Li S, Wei J, Nan L, Mallampalli RK, Weathington NM, Ma H and Zhao Y: Phosphorylated E2F1 is stabilized by nuclear USP11 to drive Peg10 gene expression and activate lung epithelial cells. J Mol Cell Biol. 10:60–73. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Nakagawa N, Miyake N, Ochi N, Yamane H, Takeyama M, Nagasaki Y, Ikeda T, Yokota E, Fukazawa T, Nakanishi H, et al: Targeting ROR1 in combination with osimertinib in EGFR mutant lung cancer cells. Exp Cell Res. 409:1129402021. View Article : Google Scholar : PubMed/NCBI

89 

De Marco C, Laudanna C, Rinaldo N, Oliveira DM, Ravo M, Weisz A, Ceccarelli M, Caira E, Rizzuto A, Zoppoli P, et al: Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS One. 12:e01788652017. View Article : Google Scholar : PubMed/NCBI

90 

Xing Q, Liu S, Luan J, Wang Y and Ma L: A novel 13 RNA binding proteins (RBPs) signature could predict prostate cancer biochemical recurrence. Pathol Res Pract. 225:1535872021. View Article : Google Scholar : PubMed/NCBI

91 

Lundin-Ström KB, Biloglav A, Lazarevic V, Behrendtz M, Castor A and Johansson B: Parental origin of monosomy 7 in acute leukaemia. Br J Haematol. 192:e132–e135. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Yoshie H, Sedukhina AS, Minagawa K, Oda K, Ohnuma S, Yanagisawa N, Maeda I, Takagi M, Kudo H, Nakazawa R, et al: A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: A new method for precision oncology? Oncotarget. 8:99601–99611. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Shapovalova M, Lee JK, Li Y, Vander Griend DJ, Coleman IM, Nelson PS, Dehm SM and LeBeau AM: PEG10 Promoter-driven expression of reporter genes enables molecular imaging of lethal prostate cancer. Cancer Res. 79:5668–5680. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Kim S, Thaper D, Bidnur S, Toren P, Akamatsu S, Bishop JL, Colins C, Vahid S and Zoubeidi A: PEG10 is associated with treatment-induced neuroendocrine prostate cancer. J Mol Endocrinol. 63:39–49. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Hu C, Xiong J, Zhang L, Huang B, Zhang Q, Li Q, Yang M, Wu Y, Wu Q, Shen Q, et al: PEG10 activation by co-stimulation of CXCR5 and CCR7 essentially contributes to resistance to apoptosis in CD19+CD34+ B cells from patients with B cell lineage acute and chronic lymphocytic leukemia. Cell Mol Immunol. 1:280–294. 2004.PubMed/NCBI

96 

Wu H, Luo H, Wang M, Du Y and Li J: NAP1L5 promotes epithelial-mesenchymal transition by regulating PEG10 expression in acute myeloid leukaemia. Leuk Res. 148:1076232025. View Article : Google Scholar : PubMed/NCBI

97 

Haider Z, Landfors M, Golovleva I, Erlanson M, Schmiegelow K, Flægstad T, Kanerva J, Norén-Nyström U, Hultdin M and Degerman S: DNA methylation and copy number variation profiling of T-cell lymphoblastic leukemia and lymphoma. Blood Cancer J. 10:452020. View Article : Google Scholar : PubMed/NCBI

98 

Xiong S, Liu F, Sun J, Gao S, Wong CCL, Tu P and Wang Y: Abrogation of USP9X is a potential strategy to decrease PEG10 levels and impede tumor progression in cutaneous T-cell lymphoma. J Invest Dermatol. 144:2778–2788.e9. 2024. View Article : Google Scholar : PubMed/NCBI

99 

Kainz B, Shehata M, Bilban M, Kienle D, Heintel D, Krömer-Holzinger E, Le T, Kröber A, Heller G, Schwarzinger I, et al: Overexpression of the paternally expressed gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int J Cancer. 121:1984–1993. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Alanazi I, Hoffmann P and Adelson DL: MicroRNAs are part of the regulatory network that controls EGF induced apoptosis, including elements of the JAK/STAT pathway, in A431 cells. PLoS One. 10:e01203372015. View Article : Google Scholar : PubMed/NCBI

101 

Lee Y, Park S, Lee SH and Lee H: Characterization of genetic aberrations in a single case of metastatic thymic adenocarcinoma. BMC Cancer. 17:3302017. View Article : Google Scholar : PubMed/NCBI

102 

Yan S, Du L, Jiang X, Duan W, Li J, Xie Y, Zhan Y, Zhang S, Wang L, Li S and Wang C: Evaluation of serum exosomal lncRNAs as diagnostic and prognostic biomarkers for esophageal squamous cell carcinoma. Cancer Manag Res. 12:9753–9763. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Ge H, Yan Y, Wu D, Huang Y and Tian F: Prognostic value of PEG10 in Asian solid tumors: A meta-analysis. Clin Chim Acta. 483:197–203. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Sumitani N, Ishida K, Sawada K, Kimura T, Kaneda Y and Nimura K: Identification of malignant cell populations associated with poor prognosis in High-grade serous ovarian cancer using Single-Cell RNA sequencing. Cancers (Basel). 14:35802022. View Article : Google Scholar : PubMed/NCBI

105 

Gov E: Co-expressed functional module-related genes in ovarian cancer stem cells represent novel prognostic biomarkers in ovarian cancer. Syst Biol Reprod Med. 66:255–266. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Hua Y, Ma X, Liu X, Yuan X, Qin H and Zhang X: Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma. APMIS. 125:93–100. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Watson KM, Gardner IH, Byrne RM, Ruhl RR, Lanciault CP, Dewey EN, Anand S and Tsikitis VL: Differential expression of PEG10 contributes to aggressive disease in early versus Late-onset colorectal cancer. Dis Colon Rectum. 63:1610–1620. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Kawai Y, Imada K, Akamatsu S, Zhang F, Seiler R, Hayashi T, Leong J, Beraldi E, Saxena N, Kretschmer A, et al: Paternally expressed gene 10 (PEG10) promotes growth, invasion, and survival of bladder cancer. Mol Cancer Ther. 19:2210–2220. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Liu Z, Yang Z, Liu D, Li D, Zou Q, Yuan Y, Li J, Liang L, Chen M and Chen S: TSG101 and PEG10 are prognostic markers in squamous cell/adenosquamous carcinomas and adenocarcinoma of the gallbladder. Oncol Lett. 7:1128–1138. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Liu DC, Yang ZL and Jiang S: Identification of PEG10 and TSG101 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Pathol Oncol Res. 17:859–866. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J and Zhang Q: PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol. 48:1933–1942. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Katuwal NB, Kang MS, Ghosh M, Hong SD, Jeong YG, Park SM, Kim SG, Sohn J, Kim TH, Moon YW, et al: Targeting PEG10 as a novel therapeutic approach to overcome CDK4/6 inhibitor resistance in breast cancer. J Exp Clin Cancer Res. 42:3252023. View Article : Google Scholar : PubMed/NCBI

113 

Tang FH, Chang WA, Tsai EM, Tsai MJ and Kuo PL: Investigating novel genes potentially involved in endometrial adenocarcinoma using Next-generation sequencing and bioinformatic approaches. Inte J Med Sci. 16:1338–1348. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Sharan Singh S, Kumar R, Singh Kushwaha V, Bhatt MLBB, Singh A, Mishra A, Ram H, Parmar D and Gupta R: Expression of radioresistant gene PEG10 in OSCC patients and its prognostic significance. Asian Pac J Cancer Prev. 18:1513–1518. 2017.PubMed/NCBI

115 

Liang J, Liu N and Xin H: Knockdown long non-coding RNA PEG10 inhibits proliferation, migration and invasion of glioma cell line U251 by regulating miR-506. Gen Physiol Biophys. 38:295–304. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, et al: Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 477:211–215. 2011. View Article : Google Scholar : PubMed/NCBI

117 

Kim SH, Nichols KD, Anderson EN, Liu Y, Ramesh N, Jia W, Kuerbis CJ, Scalf M, Smith LM, Pandey UB and Tibbetts RS: Axon guidance genes modulate neurotoxicity of ALS-associated UBQLN2. Elife. 12:e843822023. View Article : Google Scholar : PubMed/NCBI

118 

Whiteley AM, Prado MA, de Poot SAH, Paulo JA, Ashton M, Dominguez S, Weber M, Ngu H, Szpyt J, Jedrychowski MP, et al: Global proteomics of Ubqln2-based murine models of ALS. J Biol Chem. 296:1001532021. View Article : Google Scholar : PubMed/NCBI

119 

Huber F, Arnaud M, Stevenson BJ, Michaux J, Benedetti F, Thevenet J, Bobisse S, Chiffelle J, Gehert T, Müller M, et al: A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy. Nat Biotechnol. October 11–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

120 

Tang Q and Khvorova A: RNAi-based drug design: Considerations and future directions. Nat Rev Drug Discov. 23:341–364. 2024. View Article : Google Scholar : PubMed/NCBI

121 

Hill CH and Brierley I: Structural and functional insights into viral programmed ribosomal frameshifting. Annu Rev Virol. 10:217–242. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mou D, Wu S, Chen Y, Wang Y, Dai Y, Tang M, Teng X, Bai S and Bai X: Roles of PEG10 in cancer and neurodegenerative disorder (Review). Oncol Rep 53: 60, 2025.
APA
Mou, D., Wu, S., Chen, Y., Wang, Y., Dai, Y., Tang, M. ... Bai, X. (2025). Roles of PEG10 in cancer and neurodegenerative disorder (Review). Oncology Reports, 53, 60. https://doi.org/10.3892/or.2025.8893
MLA
Mou, D., Wu, S., Chen, Y., Wang, Y., Dai, Y., Tang, M., Teng, X., Bai, S., Bai, X."Roles of PEG10 in cancer and neurodegenerative disorder (Review)". Oncology Reports 53.5 (2025): 60.
Chicago
Mou, D., Wu, S., Chen, Y., Wang, Y., Dai, Y., Tang, M., Teng, X., Bai, S., Bai, X."Roles of PEG10 in cancer and neurodegenerative disorder (Review)". Oncology Reports 53, no. 5 (2025): 60. https://doi.org/10.3892/or.2025.8893
Copy and paste a formatted citation
x
Spandidos Publications style
Mou D, Wu S, Chen Y, Wang Y, Dai Y, Tang M, Teng X, Bai S and Bai X: Roles of PEG10 in cancer and neurodegenerative disorder (Review). Oncol Rep 53: 60, 2025.
APA
Mou, D., Wu, S., Chen, Y., Wang, Y., Dai, Y., Tang, M. ... Bai, X. (2025). Roles of PEG10 in cancer and neurodegenerative disorder (Review). Oncology Reports, 53, 60. https://doi.org/10.3892/or.2025.8893
MLA
Mou, D., Wu, S., Chen, Y., Wang, Y., Dai, Y., Tang, M., Teng, X., Bai, S., Bai, X."Roles of PEG10 in cancer and neurodegenerative disorder (Review)". Oncology Reports 53.5 (2025): 60.
Chicago
Mou, D., Wu, S., Chen, Y., Wang, Y., Dai, Y., Tang, M., Teng, X., Bai, S., Bai, X."Roles of PEG10 in cancer and neurodegenerative disorder (Review)". Oncology Reports 53, no. 5 (2025): 60. https://doi.org/10.3892/or.2025.8893
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team