
Roles of PEG10 in cancer and neurodegenerative disorder (Review)
- Authors:
- Dachao Mou
- Shasha Wu
- Yanqiong Chen
- Yun Wang
- Yufang Dai
- Min Tang
- Xiu Teng
- Shijun Bai
- Xiufeng Bai
-
Affiliations: Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Agriculture Forestry and Food Engineering, Yibin University, Lingang Economic and Technological Development Zone, Yibin, Sichuan 644000, P.R. China - Published online on: April 1, 2025 https://doi.org/10.3892/or.2025.8893
- Article Number: 60
-
Copyright: © Mou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lee MS, Kim JW, Park DG, Heo H, Kim J, Yoon JH and Chang J: Autophagic signatures in peripheral blood mononuclear cells from Parkinson's disease patients. Mol Cells. 48:1001732024. View Article : Google Scholar : PubMed/NCBI | |
Dopkins N and Nixon DF: Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol. 25:212–222. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jakobsson J and Vincendeau M: SnapShot: Human endogenous retroviruses. Cell. 185:400–400.e1. 2022. View Article : Google Scholar : PubMed/NCBI | |
Youngson NA, Kocialkowski S, Peel N and Ferguson-Smith AC: A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J Mol Evol. 61:481–490. 2005. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki S, Suzuki S, Pelekanos M, Clark H, Ono R, Shaw G, Renfree MB, Kaneko-Ishino T and Ishino F: Identification of a novel PNMA-MS1 gene in marsupials suggests the LTR retrotransposon-derived PNMA genes evolved differently in marsupials and eutherians. DNA Res. 20:425–436. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T, Kaneko-Ishino T and Ishino F: A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics. 73:232–237. 2001. View Article : Google Scholar : PubMed/NCBI | |
Renfree MB, Suzuki S and Kaneko-Ishino T: The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci. 368:201201512013. View Article : Google Scholar : PubMed/NCBI | |
Suzuki S, Ono R, Narita T, Pask AJ, Shaw G, Wang C, Kohda T, Alsop AE, Marshall Graves JA, Kohara Y, et al: Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 3:e552007. View Article : Google Scholar : PubMed/NCBI | |
Segel M, Lash B, Song J, Ladha A, Liu CC, Jin X, Mekhedov SL, Macrae RK, Koonin EV and Zhang F: Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science. 373:882–889. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Guo L, Wei T, Chen T, Yang H, Ye H, Lin F, Zeng Y, Yu H, Cai Z and Liu X: Engineering PEG10 assembled endogenous virus-like particles with genetically encoded neoantigen peptides for cancer vaccination. Elife. 13:RP985792024. View Article : Google Scholar : PubMed/NCBI | |
Campodonico W, Mohan HM, Huynh PT, Black HH, Lau CI, Paulson HL, Sharkey LM and Whiteley AM: The gag-like gene RTL8 antagonizes PEG10-mediated virus like particles. PLoS One. 19:e03109462024. View Article : Google Scholar : PubMed/NCBI | |
Li M, Liu Z, Wang D, Ye J, Shi Z, Pan C, Zhang Q, Ju R, Zheng Y and Liu Y: Intraocular mRNA delivery with endogenous MmPEG10-based virus-like particles. Exp Eye Res. 243:1098992024. View Article : Google Scholar : PubMed/NCBI | |
Abed M, Verschueren E, Budayeva H, Liu P, Kirkpatrick DS, Reja R, Kummerfeld SK, Webster JD, Gierke S, Reichelt M, et al: The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS One. 14:e02141102019. View Article : Google Scholar : PubMed/NCBI | |
Pollard KS, Serre D, Wang X, Tao H, Grundberg E, Hudson TJ, Clark AG and Frazer K: A genome-wide approach to identifying novel-imprinted genes. Hum Genet. 122:625–634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Smallwood A, Papageorghiou A, Nicolaides K, Alley MK, Jim A, Nargund G, Ojha K, Campbell S and Banerjee S: Temporal regulation of the expression of syncytin (HERV-W), maternally imprinted PEG10, and SGCE in human placenta. Biol Reprod. 69:286–293. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, et al: Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 38:101–106. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xie T, Pan S, Zheng H, Luo Z, Tembo KM, Jamal M, Yu Z, Yu Y, Xia J, Yin Q, et al: PEG10 as an oncogene: Expression regulatory mechanisms and role in tumor progression. Cancer Cell Inte. 18:1122018. View Article : Google Scholar : PubMed/NCBI | |
Clark MB, Jänicke M, Gottesbühren U, Kleffmann T, Legge M, Poole ES and Tate WP: Mammalian gene PEG10 expresses two reading frames by high efficiency-1 frameshifting in embryonic-associated tissues. J Biol Chem. 282:37359–37369. 2007. View Article : Google Scholar : PubMed/NCBI | |
Manktelow E, Shigemoto K and Brierley I: Characterization of the frameshift signal of Edr, a mammalian example of programmed-1 ribosomal frameshifting. Nucleic Acids Res. 33:1553–1563. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cardno TS, Shimaki Y, Sleebs BE, Lackovic K, Parisot JP, Moss RM, Crowe-McAuliffe C, Mathew SF, Edgar CD, Kleffmann T and Tate WP: HIV-1 and human PEG10 frameshift elements are functionally distinct and distinguished by novel small molecule modulators. PLoS One. 10:e01390362015. View Article : Google Scholar : PubMed/NCBI | |
Lux H, Flammann H, Hafner M and Lux A: Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation. PLoS One. 5:e86862010. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Gao Y, Xu B, Xiong S, Yi S, Sun J, Chen Z, Liu X, Li Y, Lin Y, et al: PEG10 amplification at 7q21.3 potentiates large-cell transformation in cutaneous T-cell lymphoma. Blood. 139:554–571. 2022. View Article : Google Scholar : PubMed/NCBI | |
Black HH, Hanson JL, Roberts JE, Leslie SN, Campodonico W, Ebmeier CC, Holling GA, Tay JW, Matthews AM, Ung E, et al: UBQLN2 restrains the domesticated retrotransposon PEG10 to maintain neuronal health in ALS. Elife. 12:e794522023. View Article : Google Scholar : PubMed/NCBI | |
Pandya NJ, Wang C, Costa V, Lopatta P, Meier S, Zampeta FI, Punt AM, Mientjes E, Grossen P, Distler T, et al: Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology. Cell Rep Med. 2:1003602021. View Article : Google Scholar : PubMed/NCBI | |
Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F, Kim S, Tse C, Wang K, Mo F, Haegert A, et al: The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep. 12:922–936. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang J and Wang X: Role of long non-coding RNAs in lymphoma: A systematic review and clinical perspectives. Crit Rev Oncol Hematol. 141:13–22. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Su L and Jiang J: Long Non-coding RNA paternally expressed imprinted gene 10 (PEG10) elevates diffuse large B-Cell lymphoma progression by regulating kinesin family member 2A (KIF2A) via targeting MiR-101-3p. Med Sci Monit. 26:e9228102020. View Article : Google Scholar : PubMed/NCBI | |
Peng W, Fan H, Wu G, Wu J and Feng J: Upregulation of long noncoding RNA PEG10 associates with poor prognosis in diffuse large B cell lymphoma with facilitating tumorigenicity. Clin Exp Med. 16:177–182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu W, Ji P and Zhang Y: Silencing of long chain noncoding RNA paternally expressed gene (PEG10) inhibits the progression of neuroblastoma by regulating microRNA-449a (miR-449a)/ribosomal protein S2 (RPS2) axis. Bioengineered. 13:6309–6322. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, et al: The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget. 8:74567–74581. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Chu XQ, Zhang D and Kong DF: Knockdown of long non-coding RNA PEG10 inhibits growth, migration and invasion of gastric carcinoma cells via up-regulating miR-3200. Neoplasma. 65:769–778. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiao H, Ding N, Liao H, Yao Z, Cheng X, Zhang J and Zhao M: Prediction of relapse and prognosis by expression levels of long noncoding RNA PEG10 in glioma patients. Medicine (Baltimore). 98:e175832019. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Bi Y, Wang F, Chen X and Liu H: Declination of long noncoding RNA paternally expressed gene 10 inhibits A375 cells proliferation, migration, and invasion via mediating microRNA-33a. J Cell Biochem. 120:19868–19877. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zang W, Wang T, Huang J, Li M, Wang Y, Du Y, Chen X and Zhao G: Long noncoding RNA PEG10 regulates proliferation and invasion of esophageal cancer cells. Cancer Gene Ther. 22:138–144. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Sun D, Li X, Xu Y, Zhang H, Qin Y and Xia M: Overexpression of long noncoding RNA PEG10 promotes proliferation, invasion and metastasis of hypopharyngeal squamous cell carcinoma. Oncol Lett. 14:2919–2925. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Kumar V, Rattan V, Jha V and Bhattacharyya S: Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie. 155:129–139. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jung S and Lee JS: Single-cell genomics for investigating pathogenesis of inflammatory diseases. Mol Cells. 46:120–129. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ and Li ZH: Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct Target Ther. 8:982023. View Article : Google Scholar : PubMed/NCBI | |
Bar S, Vershkov D, Keshet G, Lezmi E, Meller N, Yilmaz A, Yanuka O, Nissim-Rafinia M, Meshorer E, Eldar-Geva T and Benvenisty N: Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun. 12:67182021. View Article : Google Scholar : PubMed/NCBI | |
Bretz CL, Langohr IM, Lee S and Kim J: Epigenetic instability at imprinting control regions in a Kras(G12D)-induced T-cell neoplasm. Epigenetics. 10:1111–1120. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi S, Shen L, Liu Y, Sendler D and Zhang Y: Role of Tet1 in erasure of genomic imprinting. Nature. 504:460–464. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kempinska K, Malik B, Borkin D, Klossowski S, Shukla S, Miao H, Wang J, Cierpicki T and Grembecka J: Pharmacologic inhibition of the Menin-MLL interaction leads to transcriptional repression of PEG10 and blocks hepatocellular carcinoma. Mol Cancer Ther. 17:26–38. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shoshani O, Brunner SF, Yaeger R, Ly P, Nechemia-Arbely Y, Kim DH, Fang R, Castillon GA, Yu M, Li JSZ, et al: Chromothripsis drives the evolution of gene amplification in cancer. Nature. 591:137–141. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Zhang H, Liang J, Yan H, Chen Y, Shen Y, Kong Y, Wang S, Zhao G and Jin W: Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma. BMC Med Genomics. 4:602011. View Article : Google Scholar : PubMed/NCBI | |
Tsuji K, Yasui K, Gen Y, Endo M, Dohi O, Zen K, Mitsuyoshi H, Minami M, Itoh Y, Taniwaki M and Tanaka S: PEG10 is a probable target for the amplification at 7q21 detected in hepatocellular carcinoma. Cancer Genet Cytogenet. 198:118–125. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Sheng HH, Shen T, Hu YJ, Xiao HS, Zhang Q, Zhang QH and Han ZG: Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B virus-associated hepatocellular carcinoma. FEBS Lett. 580:3571–3581. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kwon HC, Bae Y and Lee SV: The role of mRNA quality control in the aging of caenorhabditis elegans. Mole Cells. 46:664–671. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dou X, Kong Q, Li Y and Zhou X: Circ_0075804 promotes the malignant behaviors of retinoblastoma cells by binding to miR-138-5p to induce PEG10 expression. Int Ophthalmol. 42:509–523. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wan Y, Zhang Z, Jiang Y, Gu Z, Ma X, Nie S, Yang J, Lang J, Cheng W and Zhu L: IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression. Theranostics. 11:1100–1114. 2021. View Article : Google Scholar : PubMed/NCBI | |
Santiago M, Antunes C, Guedes M, Iacovino M, Kyba M, Reik W, Sousa N, Pinto L, Branco MR and Marques CJ: Tet3 regulates cellular identity and DNA methylation in neural progenitor cells. Cell Mol Life Sci. 77:2871–2883. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shyu YC, Lee TL, Lu MJ, Chen JR, Chien RN, Chen HY, Lin JF, Tsou AP, Chen YH, Hsieh CW and Huang TS: miR-122-mediated translational repression of PEG10 and its suppression in human hepatocellular carcinoma. J Transl Med. 14:2002016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Guo D, Lu G, Mohiuddin Chowdhury ATM, Zhang D, Ren M, Chen Y, Wang R and He S: LncRNA SNAI3-AS1 promotes PEG10-mediated proliferation and metastasis via decoying of miR-27a-3p and miR-34a-5p in hepatocellular carcinoma. Cell Death Dis. 11:6852020. View Article : Google Scholar : PubMed/NCBI | |
Li B, Shi C, Li B, Zhao JM and Wang L: The effects of Curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway. J Cell Biochem. 119:3091–3098. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ye M, Zhao L, Zhang L, Wu S, Li Z, Qin Y, Lin F and Pan L: LncRNA NALT1 promotes colorectal cancer progression via targeting PEG10 by sponging microRNA-574-5p. Cell Death Dis. 13:9602022. View Article : Google Scholar : PubMed/NCBI | |
Jiménez Martín O, Schlosser A, Furtwängler R, Wegert J and Gessler M: MYCN and MAX alterations in Wilms tumor and identification of novel N-MYC interaction partners as biomarker candidates. Cancer Cell Int. 21:5552021. View Article : Google Scholar : PubMed/NCBI | |
Li CM, Margolin AA, Salas M, Memeo L, Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A and Tycko B: PEG10 is a c-MYC target gene in cancer cells. Cancer Res. 66:665–672. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Xiao Y, Hu Z, Chen Y, Liu N and Hu G: PEG10 directly regulated by E2Fs might have a role in the development of hepatocellular carcinoma. FEBS Lett. 582:2793–2798. 2008. View Article : Google Scholar : PubMed/NCBI | |
Peng YP, Zhu Y, Yin LD, Zhang JJ, Wei JS, Liu X, Liu XC, Gao WT, Jiang KR and Miao Y: PEG10 overexpression induced by E2F-1 promotes cell proliferation, migration, and invasion in pancreatic cancer. J Exp Clin Cancer Res. 36:302017. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Sui C, Dai B, Shen W, Lu J and Yang J: PEG10 is imperative for TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Oncol Rep. 37:510–518. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Liu ZY, Wu R, Zhang CM, Cao K, Shan WG, Liu Z, Ji M, Tian ZL, Sethi G, et al: Transcriptional regulator CTR9 promotes hepatocellular carcinoma progression and metastasis via increasing PEG10 transcriptional activity. Acta Pharmacol Sin. 43:2109–2118. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yahiro Y, Maeda S, Shinohara N, Jokoji G, Sakuma D, Setoguchi T, Ishidou Y, Nagano S, Komiya S and Taniguchi N: PEG10 counteracts signaling pathways of TGF-β and BMP to regulate growth, motility and invasion of SW1353 chondrosarcoma cells. J Bone Miner Metab. 37:441–454. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shinohara N, Maeda S, Yahiro Y, Sakuma D, Matsuyama K, Imamura K, Kawamura I, Setoguchi T, Ishidou Y, Nagano S and Komiya S: TGF-β signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci Rep. 7:134942017. View Article : Google Scholar : PubMed/NCBI | |
Rotinen M, You S, Yang J, Coetzee SG, Reis-Sobreiro M, Huang WC, Huang F, Pan X, Yáñez A, Hazelett DJ, et al: ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat Med. 24:1887–1898. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee A, Gallent B, Katiki M, Qian C, Harter MR, Silletti S, Komives EA, Freeman MR and Murali R: The homeodomain regulates stable DNA binding of prostate cancer target ONECUT2. Nat Commun. 15:90372024. View Article : Google Scholar : PubMed/NCBI | |
Akamatsu S, Inoue T, Ogawa O and Gleave ME: Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol. 25:345–351. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feng H, Cheng AS, Tsang DP, Li MS, Go MY, Cheung YS, Zhao GJ, Ng SS, Lin MC, Yu J, et al: Cell cycle-related kinase is a direct androgen receptor-regulated gene that drives β-catenin/T cell factor-dependent hepatocarcinogenesis. J Clin Invest. 121:3159–3175. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qin J, Liu M, Ding Q, Ji X, Hao Y, Wu X and Xiong J: The direct effect of estrogen on cell viability and apoptosis in human gastric cancer cells. Mol Cell Biochem. 395:99–107. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kreutz D, Sinthuvanich C, Bileck A, Janker L, Muqaku B, Slany A and Gerner C: Curcumin exerts its antitumor effects in a context dependent fashion. J Proteomics. 182:65–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Wu Z, Yang W and Wang L: Dysregulation of DNA methylation and expression of imprinted genes in mouse placentas of fetal growth restriction induced by maternal cadmium exposure. Toxicology. 390:109–116. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu JJ, Cai A, Greenslade JE, Higgins NR, Fan C, Le NTT, Tatman M, Whiteley AM, Prado MA, Dieriks BV, et al: ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc Natl Acad Sci USA. 117:15230–15241. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Gao Y, Miao J, Chen S, Li J, Li Z, Yin C and Yue W: Single-cell RNA-seq highlights a specific carcinoembryonic cluster in ovarian cancer. Cell Death Dis. 12:10822021. View Article : Google Scholar : PubMed/NCBI | |
Lux A, Beil C, Majety M, Barron S, Gallione CJ, Kuhn HM, Berg JN, Kioschis P, Marchuk DA and Hafner M: Human retroviral gag- and gag-pol-like proteins interact with the transforming growth factor-beta receptor activin receptor-like kinase 1. J Biol Chem. 280:8482–8493. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Tian Z, Cao K, Zhang B, Wen Q, Zhou X, Yang W, Wang T, Shi H and Wang R: TSG101 promotes the proliferation, migration and invasion of hepatocellular carcinoma cells by regulating the PEG10. J Cell Mol Med. 23:70–82. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Qin J, Zheng Y, Peng X, Luo Y and Meng X: PEG10 promotes the migration of human Burkitt's lymphoma cells by up-regulating the expression of matrix metalloproteinase-2 and −9. Clin Invest Med. 35:E117–125. 2012. View Article : Google Scholar : PubMed/NCBI | |
Golda M, Mótyán JA, Mahdi M and Tőzsér J: Functional study of the Retrotransposon-Derived human PEG10 Protease. Int J Mol Sci. 21:24242020. View Article : Google Scholar : PubMed/NCBI | |
Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y and Nakamura Y: Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res. 63:3043–3048. 2003.PubMed/NCBI | |
Tang Y, Wu Y, Xue M, Zhu B, Fan W and Li J: A 10-Gene signature identified by machine learning for predicting the response to transarterial chemoembolization in patients with hepatocellular carcinoma. J Oncol. 2022:38227732022. View Article : Google Scholar : PubMed/NCBI | |
Bang H, Ha SY, Hwang SH and Park CK: Expression of PEG10 is associated with poor survival and tumor recurrence in hepatocellular carcinoma. Cancer Res Treat. 47:844–852. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peng W, Zhao G, Ma Y, Yu H and Wang X: Dendritic cells transfected with PEG10 recombinant adenovirus elicit anti-tumor immune response in vitro and in vivo. Vaccine. 29:3501–3506. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jie X, Lang C, Jian Q, Chaoqun L, Dehua Y, Yi S, Yanping J, Luokun X, Qiuping Z, Hui W, et al: Androgen activates PEG10 to promote carcinogenesis in hepatic cancer cells. Oncogene. 26:5741–5751. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jia HL, Ye QH, Qin LX, Budhu A, Forgues M, Chen Y, Liu YK, Sun HC, Wang L, Lu HZ, et al: Gene expression profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin Cancer Res. 13:1133–1139. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ip WK, Lai PB, Wong NL, Sy SM, Beheshti B, Squire JA and Wong N: Identification of PEG10 as a progression related biomarker for hepatocellular carcinoma. Cancer Lett. 250:284–291. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wang L, Feng F and Tian S: Weighted gene expression profiles identify diagnostic and prognostic genes for lung adenocarcinoma and squamous cell carcinoma. J Int Med Res. 48:3000605198938372020. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Hu Y, Ding Q, Han R, Guo Q, Qin J, Li J, Xiao R, Tian S, Hu W, et al: PEG10 plays a crucial role in human lung cancer proliferation, progression, prognosis and metastasis. Oncol Rep. 32:2159–2167. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sinha A, Zou Y, Patel AS, Yoo S, Jiang F, Sato T, Kong R, Watanabe H, Zhu J, Massion PP, et al: Early-stage lung adenocarcinoma MDM2 genomic amplification predicts clinical outcome and response to targeted therapy. Cancers (Basel). 14:7082022. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhao J, Li S, Wei J, Nan L, Mallampalli RK, Weathington NM, Ma H and Zhao Y: Phosphorylated E2F1 is stabilized by nuclear USP11 to drive Peg10 gene expression and activate lung epithelial cells. J Mol Cell Biol. 10:60–73. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa N, Miyake N, Ochi N, Yamane H, Takeyama M, Nagasaki Y, Ikeda T, Yokota E, Fukazawa T, Nakanishi H, et al: Targeting ROR1 in combination with osimertinib in EGFR mutant lung cancer cells. Exp Cell Res. 409:1129402021. View Article : Google Scholar : PubMed/NCBI | |
De Marco C, Laudanna C, Rinaldo N, Oliveira DM, Ravo M, Weisz A, Ceccarelli M, Caira E, Rizzuto A, Zoppoli P, et al: Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS One. 12:e01788652017. View Article : Google Scholar : PubMed/NCBI | |
Xing Q, Liu S, Luan J, Wang Y and Ma L: A novel 13 RNA binding proteins (RBPs) signature could predict prostate cancer biochemical recurrence. Pathol Res Pract. 225:1535872021. View Article : Google Scholar : PubMed/NCBI | |
Lundin-Ström KB, Biloglav A, Lazarevic V, Behrendtz M, Castor A and Johansson B: Parental origin of monosomy 7 in acute leukaemia. Br J Haematol. 192:e132–e135. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yoshie H, Sedukhina AS, Minagawa K, Oda K, Ohnuma S, Yanagisawa N, Maeda I, Takagi M, Kudo H, Nakazawa R, et al: A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: A new method for precision oncology? Oncotarget. 8:99601–99611. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shapovalova M, Lee JK, Li Y, Vander Griend DJ, Coleman IM, Nelson PS, Dehm SM and LeBeau AM: PEG10 Promoter-driven expression of reporter genes enables molecular imaging of lethal prostate cancer. Cancer Res. 79:5668–5680. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Thaper D, Bidnur S, Toren P, Akamatsu S, Bishop JL, Colins C, Vahid S and Zoubeidi A: PEG10 is associated with treatment-induced neuroendocrine prostate cancer. J Mol Endocrinol. 63:39–49. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Xiong J, Zhang L, Huang B, Zhang Q, Li Q, Yang M, Wu Y, Wu Q, Shen Q, et al: PEG10 activation by co-stimulation of CXCR5 and CCR7 essentially contributes to resistance to apoptosis in CD19+CD34+ B cells from patients with B cell lineage acute and chronic lymphocytic leukemia. Cell Mol Immunol. 1:280–294. 2004.PubMed/NCBI | |
Wu H, Luo H, Wang M, Du Y and Li J: NAP1L5 promotes epithelial-mesenchymal transition by regulating PEG10 expression in acute myeloid leukaemia. Leuk Res. 148:1076232025. View Article : Google Scholar : PubMed/NCBI | |
Haider Z, Landfors M, Golovleva I, Erlanson M, Schmiegelow K, Flægstad T, Kanerva J, Norén-Nyström U, Hultdin M and Degerman S: DNA methylation and copy number variation profiling of T-cell lymphoblastic leukemia and lymphoma. Blood Cancer J. 10:452020. View Article : Google Scholar : PubMed/NCBI | |
Xiong S, Liu F, Sun J, Gao S, Wong CCL, Tu P and Wang Y: Abrogation of USP9X is a potential strategy to decrease PEG10 levels and impede tumor progression in cutaneous T-cell lymphoma. J Invest Dermatol. 144:2778–2788.e9. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kainz B, Shehata M, Bilban M, Kienle D, Heintel D, Krömer-Holzinger E, Le T, Kröber A, Heller G, Schwarzinger I, et al: Overexpression of the paternally expressed gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int J Cancer. 121:1984–1993. 2007. View Article : Google Scholar : PubMed/NCBI | |
Alanazi I, Hoffmann P and Adelson DL: MicroRNAs are part of the regulatory network that controls EGF induced apoptosis, including elements of the JAK/STAT pathway, in A431 cells. PLoS One. 10:e01203372015. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Park S, Lee SH and Lee H: Characterization of genetic aberrations in a single case of metastatic thymic adenocarcinoma. BMC Cancer. 17:3302017. View Article : Google Scholar : PubMed/NCBI | |
Yan S, Du L, Jiang X, Duan W, Li J, Xie Y, Zhan Y, Zhang S, Wang L, Li S and Wang C: Evaluation of serum exosomal lncRNAs as diagnostic and prognostic biomarkers for esophageal squamous cell carcinoma. Cancer Manag Res. 12:9753–9763. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge H, Yan Y, Wu D, Huang Y and Tian F: Prognostic value of PEG10 in Asian solid tumors: A meta-analysis. Clin Chim Acta. 483:197–203. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sumitani N, Ishida K, Sawada K, Kimura T, Kaneda Y and Nimura K: Identification of malignant cell populations associated with poor prognosis in High-grade serous ovarian cancer using Single-Cell RNA sequencing. Cancers (Basel). 14:35802022. View Article : Google Scholar : PubMed/NCBI | |
Gov E: Co-expressed functional module-related genes in ovarian cancer stem cells represent novel prognostic biomarkers in ovarian cancer. Syst Biol Reprod Med. 66:255–266. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, Ma X, Liu X, Yuan X, Qin H and Zhang X: Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma. APMIS. 125:93–100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Watson KM, Gardner IH, Byrne RM, Ruhl RR, Lanciault CP, Dewey EN, Anand S and Tsikitis VL: Differential expression of PEG10 contributes to aggressive disease in early versus Late-onset colorectal cancer. Dis Colon Rectum. 63:1610–1620. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kawai Y, Imada K, Akamatsu S, Zhang F, Seiler R, Hayashi T, Leong J, Beraldi E, Saxena N, Kretschmer A, et al: Paternally expressed gene 10 (PEG10) promotes growth, invasion, and survival of bladder cancer. Mol Cancer Ther. 19:2210–2220. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Yang Z, Liu D, Li D, Zou Q, Yuan Y, Li J, Liang L, Chen M and Chen S: TSG101 and PEG10 are prognostic markers in squamous cell/adenosquamous carcinomas and adenocarcinoma of the gallbladder. Oncol Lett. 7:1128–1138. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu DC, Yang ZL and Jiang S: Identification of PEG10 and TSG101 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Pathol Oncol Res. 17:859–866. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J and Zhang Q: PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol. 48:1933–1942. 2016. View Article : Google Scholar : PubMed/NCBI | |
Katuwal NB, Kang MS, Ghosh M, Hong SD, Jeong YG, Park SM, Kim SG, Sohn J, Kim TH, Moon YW, et al: Targeting PEG10 as a novel therapeutic approach to overcome CDK4/6 inhibitor resistance in breast cancer. J Exp Clin Cancer Res. 42:3252023. View Article : Google Scholar : PubMed/NCBI | |
Tang FH, Chang WA, Tsai EM, Tsai MJ and Kuo PL: Investigating novel genes potentially involved in endometrial adenocarcinoma using Next-generation sequencing and bioinformatic approaches. Inte J Med Sci. 16:1338–1348. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sharan Singh S, Kumar R, Singh Kushwaha V, Bhatt MLBB, Singh A, Mishra A, Ram H, Parmar D and Gupta R: Expression of radioresistant gene PEG10 in OSCC patients and its prognostic significance. Asian Pac J Cancer Prev. 18:1513–1518. 2017.PubMed/NCBI | |
Liang J, Liu N and Xin H: Knockdown long non-coding RNA PEG10 inhibits proliferation, migration and invasion of glioma cell line U251 by regulating miR-506. Gen Physiol Biophys. 38:295–304. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, et al: Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 477:211–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Nichols KD, Anderson EN, Liu Y, Ramesh N, Jia W, Kuerbis CJ, Scalf M, Smith LM, Pandey UB and Tibbetts RS: Axon guidance genes modulate neurotoxicity of ALS-associated UBQLN2. Elife. 12:e843822023. View Article : Google Scholar : PubMed/NCBI | |
Whiteley AM, Prado MA, de Poot SAH, Paulo JA, Ashton M, Dominguez S, Weber M, Ngu H, Szpyt J, Jedrychowski MP, et al: Global proteomics of Ubqln2-based murine models of ALS. J Biol Chem. 296:1001532021. View Article : Google Scholar : PubMed/NCBI | |
Huber F, Arnaud M, Stevenson BJ, Michaux J, Benedetti F, Thevenet J, Bobisse S, Chiffelle J, Gehert T, Müller M, et al: A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy. Nat Biotechnol. October 11–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Tang Q and Khvorova A: RNAi-based drug design: Considerations and future directions. Nat Rev Drug Discov. 23:341–364. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hill CH and Brierley I: Structural and functional insights into viral programmed ribosomal frameshifting. Annu Rev Virol. 10:217–242. 2023. View Article : Google Scholar : PubMed/NCBI |