|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Matulonis UA, Sood AK, Fallowfield L,
Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis
Primers. 2:160612016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
St Laurent J and Liu J: Treatment
approaches for platinum-resistant ovarian cancer. J Clin Oncol.
42:127–133. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Davis A, Tinker AV and Friedlander M:
‘Platinum resistant’ ovarian cancer: What is it, who to treat and
how to measure benefit? Gynecol Oncol. 133:624–631. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Beck A, Goetsch L, Dumontet C and Corvaïa
N: Strategies and challenges for the next generation of
antibody-drug conjugates. Nat Rev Drug Discov. 16:315–337. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tsuchikama K, Anami Y, Ha SYY and Yamazaki
CM: Exploring the next generation of antibody-drug conjugates. Nat
Rev Clin Oncol. 21:203–223. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Drago JZ, Modi S and Chandarlapaty S:
Unlocking the potential of antibody-drug conjugates for cancer
therapy. Nat Rev Clin Oncol. 18:327–344. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Dumontet C, Reichert JM, Senter PD,
Lambert JM and Beck A: Antibody-drug conjugates come of age in
oncology. Nat Rev Drug Discov. 22:641–661. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gonzalez-Ochoa E, Veneziani AC and Oza AM:
Mirvetuximab soravtansine in platinum-resistant ovarian cancer.
Clin Med Insights Oncol. 17:117955492311872642023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Joubert N, Beck A, Dumontet C and
Denevault-Sabourin C: Antibody-Drug conjugates: The last decade.
Pharmaceuticals (Basel). 13:2452020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mathe G, Tran BL and Bernard J: Effect on
mouse leukemia 1210 of a combination by diazo-reaction of
amethopterin and gamma-globulins from hamsters inoculated with such
leukemia by heterografts. C R Hebd Seances Acad Sci. 246:1626–1628.
1958.(In French). PubMed/NCBI
|
|
13
|
Perez HL, Cardarelli PM, Deshpande S,
Gangwar S, Schroeder GM, Vite GD and Borzilleri RM: Antibody-drug
conjugates: Current status and future directions. Drug Discov
Today. 19:869–881. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Khongorzul P, Ling CJ, Khan FU, Ihsan AU
and Zhang J: Antibody-drug conjugates: A comprehensive review. Mol
Cancer Res. 18:3–19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Samantasinghar A, Sunildutt NP, Ahmed F,
Soomro AM, Salih ARC, Parihar P, Memon FH, Kim KH, Kang IS and Choi
KH: A comprehensive review of key factors affecting the efficacy of
antibody drug conjugate. Biomed Pharmacother. 161:1144082023.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Staudacher AH and Brown MP: Antibody drug
conjugates and bystander killing: Is antigen-dependent
internalisation required? Br J Cancer. 117:1736–1742. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dubowchik GM and Walker MA:
Receptor-mediated and enzyme-dependent targeting of cytotoxic
anticancer drugs. Pharmacol Ther. 83:67–123. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Doronina SO, Toki BE, Torgov MY,
Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee
TD, Siegall CB, et al: Development of potent monoclonal antibody
auristatin conjugates for cancer therapy. Nat Biotechnol.
21:778–784. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lee EK and Liu JF: Antibody-drug
conjugates in gynecologic malignancies. Gynecol Oncol. 153:694–702.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Teicher BA and Chari RV: Antibody
conjugate therapeutics: Challenges and potential. Clin Cancer Res.
17:6389–6397. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jain N, Smith SW, Ghone S and Tomczuk B:
Current ADC linker chemistry. Pharm Res. 32:3526–3540. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bargh JD, Isidro-Llobet A, Parker JS and
Spring DR: Cleavable linkers in antibody-drug conjugates. Chem Soc
Rev. 48:4361–4374. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kovtun YV, Audette CA, Ye Y, Xie H,
Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blättler WA and
Goldmacher VS: Antibody-drug conjugates designed to eradicate
tumors with homogeneous and heterogeneous expression of the target
antigen. Cancer Res. 66:3214–3221. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tsuchikama K and An Z: Antibody-drug
conjugates: Recent advances in conjugation and linker chemistries.
Protein Cell. 9:33–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Dumontet C and Jordan MA:
Microtubule-binding agents: A dynamic field of cancer therapeutics.
Nat Rev Drug Discov. 9:790–803. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen H, Lin Z, Arnst KE, Miller DD and Li
W: Tubulin inhibitor-based antibody-drug conjugates for cancer
therapy. Molecules. 22:12812017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fuentes-Antrás J, Genta S, Vijenthira A
and Siu LL: Antibody-drug conjugates: In search of partners of
choice. Trends Cancer. 9:339–354. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Riccardi F, Dal Bo M, Macor P and Toffoli
G: A comprehensive overview on antibody-drug conjugates: From the
conceptualization to cancer therapy. Front Pharmacol.
14:12740882023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fu Z, Li S, Han S, Shi C and Zhang Y:
Antibody drug conjugate: The ‘biological missile’ for targeted
cancer therapy. Signal Transduct Target Ther. 7:932022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kaplon H, Crescioli S, Chenoweth A,
Visweswaraiah J and Reichert JM: Antibodies to watch in 2023. MAbs.
15:21534102023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yao P, Zhang Y, Zhang S, Wei X, Liu Y, Du
C, Hu M, Feng C, Li J, Zhao F, et al: Knowledge atlas of
antibody-drug conjugates on CiteSpace and clinical trial
visualization analysis. Front Oncol. 12:10398822022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Luhrs CA and Slomiany BL: A human
membrane-associated folate binding protein is anchored by a
glycosyl-phosphatidylinositol tail. J Biol Chem. 264:21446–21449.
1989. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS,
Li J, Yong EL, Xu HE and Melcher K: Structural basis for molecular
recognition of folic acid by folate receptors. Nature. 500:486–489.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhao R, Min SH, Wang Y, Campanella E, Low
PS and Goldman ID: A role for the proton-coupled folate transporter
(PCFT-SLC46A1) in folate receptor-mediated endocytosis. J Biol
Chem. 284:4267–4274. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cheung A, Opzoomer J, Ilieva KM, Gazinska
P, Hoffmann RM, Mirza H, Marlow R, Francesch-Domenech E, Fittall M,
Rodriguez DD, et al: Anti-Folate receptor alpha-directed antibody
therapies restrict the growth of triple-negative breast cancer.
Clin Cancer Res. 24:5098–5111. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ledermann JA, Canevari S and Thigpen T:
Targeting the folate receptor: Diagnostic and therapeutic
approaches to personalize cancer treatments. Ann Oncol.
26:2034–2043. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Heo YA: Mirvetuximab soravtansine: First
approval. Drugs. 83:265–273. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Dilawari A, Shah M, Ison G, Gittleman H,
Fiero MH, Shah A, Hamed SS, Qiu J, Yu J, Manheng W, et al: FDA
approval summary: Mirvetuximab soravtansine-gynx for FRα-positive,
platinum-resistant ovarian cancer. Clin Cancer Res. 29:3835–3840.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Oroudjev E, Lopus M, Wilson L, Audette C,
Provenzano C, Erickson H, Kovtun Y, Chari R and Jordan MA:
Maytansinoid-antibody conjugates induce mitotic arrest by
suppressing microtubule dynamic instability. Mol Cancer Ther.
9:2700–2713. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Moore KN, Martin LP, O'Malley DM,
Matulonis UA, Konner JA, Vergote I, Ponte JF and Birrer MJ: A
review of mirvetuximab soravtansine in the treatment of
platinum-resistant ovarian cancer. Future Oncol. 14:123–136. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tomao F, D'Incalci M, Biagioli E,
Peccatori FA and Colombo N: Restoring platinum sensitivity in
recurrent ovarian cancer by extending the platinum-free interval:
Myth or reality? Cancer. 123:3450–3459. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ab O, Whiteman KR, Bartle LM, Sun X, Singh
R, Tavares D, LaBelle A, Payne G, Lutz RJ, Pinkas J, et al:
IMGN853, a folate receptor-α (FRα)-targeting antibody-drug
conjugate, exhibits potent targeted antitumor activity against
FRα-expressing tumors. Mol Cancer Ther. 14:1605–1613. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Matulonis UA, Lorusso D, Oaknin A, Pignata
S, Dean A, Denys H, Colombo N, Van Gorp T, Konner JA, Marin MR, et
al: Efficacy and safety of mirvetuximab soravtansine in patients
with platinum-resistant ovarian cancer with high folate receptor
alpha expression: Results from the SORAYA study. J Clin Oncol.
41:2436–2445. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Martin LP, Konner JA, Moore KN, Seward SM,
Matulonis UA, Perez RP, Su Y, Berkenblit A, Ruiz-Soto R and Birrer
MJ: Characterization of folate receptor alpha (FRα) expression in
archival tumor and biopsy samples from relapsed epithelial ovarian
cancer patients: A phase I expansion study of the FRα-targeting
antibody-drug conjugate mirvetuximab soravtansine. Gynecol Oncol.
147:402–407. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Moore KN, Angelergues A, Konecny GE,
García Y, Banerjee S, Lorusso D, Lee JY, Moroney JW, Colombo N,
Roszak A, et al: Mirvetuximab soravtansine in FRα-positive,
platinum-resistant ovarian cancer. N Engl J Med. 389:2162–2174.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sidaway P: Mirvetuximab soravtansine
superior to chemotherapy in platinum-resistant epithelial ovarian
cancer. Nat Rev Clin Oncol. 21:832024. View Article : Google Scholar
|
|
47
|
Li X, Zhou S, Abrahams CL, Krimm S, Smith
J, Bajjuri K, Stephenson HT, Henningsen R, Hanson J, Heibeck TH, et
al: Discovery of STRO-002, a novel homogeneous ADC targeting folate
receptor alpha, for the treatment of ovarian and endometrial
cancers. Mol Cancer Ther. 22:155–167. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Furuuchi K, Rybinski K, Fulmer J, Moriyama
T, Drozdowski B, Soto A, Fernando S, Wilson K, Milinichik A, Dula
ML, et al: Antibody-drug conjugate MORAb-202 exhibits long-lasting
antitumor efficacy in TNBC PDx models. Cancer Sci. 112:2467–2480.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shimizu T, Fujiwara Y, Yonemori K, Koyama
T, Sato J, Tamura K, Shimomura A, Ikezawa H, Nomoto M, Furuuchi K,
et al: First-in-human phase 1 study of MORAb-202, an antibody-drug
conjugate comprising farletuzumab linked to eribulin mesylate, in
patients with folate receptor-α-positive advanced solid tumors.
Clin Cancer Res. 27:3905–3915. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Najjar MK, Manore SG, Regua AT and Lo HW:
Antibody-Drug conjugates for the treatment of HER2-positive breast
cancer. Genes (Basel). 13:20652022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yan M, Schwaederle M, Arguello D, Millis
SZ, Gatalica Z and Kurzrock R: HER2 expression status in diverse
cancers: Review of results from 37,992 patients. Cancer Metastasis
Rev. 34:157–164. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Oh DY and Bang YJ: HER2-targeted
therapies-a role beyond breast cancer. Nat Rev Clin Oncol.
17:33–48. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ogitani Y, Aida T, Hagihara K, Yamaguchi
J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, et
al: DS-8201a, A novel HER2-targeting ADC with a novel DNA
topoisomerase I inhibitor, demonstrates a promising antitumor
efficacy with differentiation from T-DM1. Clin Cancer Res.
22:5097–5108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mutlu L, McNamara B, Bellone S, Manavella
DD, Demirkiran C, Greenman M, Verzosa MSZ, Buza N, Hui P, Hartwich
TMP, et al: Trastuzumab deruxtecan (DS-8201a), a HER2-targeting
antibody-drug conjugate, demonstrates in vitro and in vivo
antitumor activity against primary and metastatic ovarian tumors
overexpressing HER2. Clin Exp Metastasis. 41:765–775. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Meric-Bernstam F, Makker V, Oaknin A, Oh
DY, Banerjee S, González-Martín A, Jung KH, Ługowska I, Manso L,
Manzano A, et al: Efficacy and safety of trastuzumab deruxtecan in
patients With HER2-expressing solid tumors: Primary results from
the DESTINY-PanTumor02 phase II trial. J Clin Oncol. 42:47–58.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Erickson BK, Zeybek B, Santin AD and Fader
AN: Targeting human epidermal growth factor receptor 2 (HER2) in
gynecologic malignancies. Curr Opin Obstet Gynecol. 32:57–64. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lipinski M, Parks DR, Rouse RV and
Herzenberg LA: Human trophoblast cell-surface antigens defined by
monoclonal antibodies. Proc Natl Acad Sci USA. 78:5147–5150. 1981.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liu X, Deng J, Yuan Y, Chen W, Sun W, Wang
Y, Huang H, Liang B, Ming T, Wen J, et al: Advances in
Trop2-targeted therapy: Novel agents and opportunities beyond
breast cancer. Pharmacol Ther. 239:1082962022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Okajima D, Yasuda S, Maejima T, Karibe T,
Sakurai K, Aida T, Toki T, Yamaguchi J, Kitamura M, Kamei R, et al:
Datopotamab deruxtecan, a novel TROP2-directed antibody-drug
conjugate, demonstrates potent antitumor activity by efficient drug
delivery to tumor cells. Mol Cancer Ther. 20:2329–2340. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
McNamara B, Greenman M, Bellone S, Santin
LA, Demirkiran C, Mutlu L, Hartwich TMP, Yang-Hartwich Y, Ratner E,
Schwartz PE and Santin AD: Preclinical activity of datopotamab
deruxtecan, a novel TROP2 directed antibody-drug conjugate
targeting trophoblast cell-surface antigen 2 (TROP2) in ovarian
carcinoma. Gynecol Oncol. 189:16–23. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Janjigian YY, Oaknin A, Lang JM, Ciombor
KK, Ray-Coquard IL, Oza AM, Yonemori K, Xu RH, Zhao J, Gajavelli S,
et al: TROPION-PanTumor03: Phase 2, multicenter study of
datopotamab deruxtecan (Dato-DXd) as monotherapy and in combination
with anticancer agents in patients (pts) with advanced/metastatic
solid tumors. J Clin Oncol. 41:TPS31532023. View Article : Google Scholar
|
|
62
|
Cheng WF, Huang CY, Chang MC, Hu YH,
Chiang YC, Chen YL, Hsieh CY and Chen CA: High mesothelin
correlates with chemoresistance and poor survival in epithelial
ovarian carcinoma. Br J Cancer. 100:1144–1153. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Golfier S, Kopitz C, Kahnert A, Heisler I,
Schatz CA, Stelte-Ludwig B, Mayer-Bartschmid A, Unterschemmann K,
Bruder S, Linden L, et al: Anetumab ravtansine: A novel
mesothelin-targeting antibody-drug conjugate cures tumors with
heterogeneous target expression favored by bystander effect. Mol
Cancer Ther. 13:1537–1548. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Santin AD, Vergote I, González-Martín A,
Moore K, Oaknin A, Romero I, Diab S, Copeland LJ, Monk BJ, Coleman
RL, et al: Safety and activity of anti-mesothelin antibody-drug
conjugate anetumab ravtansine in combination with
pegylated-liposomal doxorubicin in platinum-resistant ovarian
cancer: Multicenter, phase Ib dose escalation and expansion study.
Int J Gynecol Cancer. 33:562–570. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lheureux S, Alqaisi H, Cohn DE, Chern JY,
Duska LR, Jewell A, Corr B, Winer IS, Girda E, Crispens MA, et al:
A randomized phase II study of bevacizumab and weekly anetumab
ravtansine or weekly paclitaxel in platinum-resistant or refractory
ovarian cancer NCI trial#10150. J Clin Oncol. 40:55142022.
View Article : Google Scholar
|
|
66
|
Rottey S, Clarke J, Aung K, Machiels JP,
Markman B, Heinhuis KM, Millward M, Lolkema M, Patel SP, de Souza
P, et al: Phase I/IIa trial of BMS-986148, an anti-mesothelin
antibody-drug conjugate, alone or in combination with nivolumab in
patients with advanced solid tumors. Clin Cancer Res. 28:95–105.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Levan K, Mehryar M, Mateoiu C, Albertsson
P, Bäck T and Sundfeldt K: Immunohistochemical evaluation of
epithelial ovarian carcinomas identifies three different expression
patterns of the MX35 antigen, NaPi2b. BMC Cancer. 17:3032017.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Gerber DE, Infante JR, Gordon MS, Goldberg
SB, Martín M, Felip E, Garcia MM, Schiller JH, Spigel DR, Cordova
J, et al: Phase Ia study of anti-NaPi2b antibody-drug conjugate
lifastuzumab vedotin DNIB0600A in patients with non-small cell lung
cancer and platinum-resistant ovarian cancer. Clin Cancer Res.
26:364–372. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Moore KN, Birrer MJ, Marsters J, Wang Y,
Choi Y, Royer-Joo S, Lemahieu V, Armstrong K, Cordova J, Samineni
D, et al: Phase 1b study of anti-NaPi2b antibody-drug conjugate
lifastuzumab vedotin (DNIB0600A. in patients with
platinum-sensitive recurrent ovarian cancer. Gynecol Oncol.
158:631–639. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Banerjee S, Oza AM, Birrer MJ, Hamilton
EP, Hasan J, Leary A, Moore KN, Mackowiak-Matejczyk B, Pikiel J,
Ray-Coquard I, et al: Anti-NaPi2b antibody-drug conjugate
lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal
doxorubicin in patients with platinum-resistant ovarian cancer in a
randomized, open-label, phase II study. Ann Oncol. 29:917–923.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Suzuki H, Nagase S, Saito C, Takatsuka A,
Nagata M, Honda K, Kaneda Y, Nishiya Y, Honda T, Ishizaka T, et al:
Raludotatug deruxtecan, a CDH6-targeting antibody-drug conjugate
with a DNA topoisomerase I inhibitor DXd, is efficacious in human
ovarian and kidney cancer models. Mol Cancer Ther. 23:257–271.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gitto SB, Whicker M, Davies G, Kumar S,
Kinneer K, Xu H, Lewis A, Mamidi S, Medvedev S, Kim H, et al: A
B7-H4-targeting antibody-drug conjugate shows antitumor activity in
PARPi and platinum-resistant cancers with B7-H4 expression. Clin
Cancer Res. 30:1567–1581. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ponte JF, Ab O, Lanieri L, Lee J, Coccia
J, Bartle LM, Themeles M, Zhou Y, Pinkas J and Ruiz-Soto R:
Mirvetuximab soravtansine (IMGN853), a folate receptor
alpha-targeting antibody-drug conjugate, potentiates the activity
of standard of care therapeutics in ovarian cancer models.
Neoplasia. 18:775–784. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Quanz M, Hagemann UB, Zitzmann-Kolbe S,
Stelte-Ludwig B, Golfier S, Elbi C, Mumberg D, Ziegelbauer K and
Schatz CA: Anetumab ravtansine inhibits tumor growth and shows
additive effect in combination with targeted agents and
chemotherapy in mesothelin-expressing human ovarian cancer models.
Oncotarget. 9:34103–34121. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Moore KN, O'Malley DM, Vergote I, Martin
LP, Gonzalez-Martin A, Malek K and Birrer MJ: Safety and activity
findings from a phase 1b escalation study of mirvetuximab
soravtansine, a folate receptor alpha (FRalpha)-targeting
antibody-drug conjugate (ADC), in combination with carboplatin in
patients with platinum-sensitive ovarian cancer. Gynecol Oncol.
151:46–52. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jain RK: Normalization of tumor
vasculature: An emerging concept in antiangiogenic therapy.
Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Haunschild CE and Tewari KS: Bevacizumab
use in the frontline, maintenance and recurrent settings for
ovarian cancer. Future Oncol. 16:225–246. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Pignata S, Lorusso D, Joly F, Gallo C,
Colombo N, Sessa C, Bamias A, Salutari V, Selle F, Frezzini S, et
al: Carboplatin-based doublet plus bevacizumab beyond progression
versus carboplatin-based doublet alone in patients with
platinum-sensitive ovarian cancer: A randomised, phase 3 trial.
Lancet Oncol. 22:267–276. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
O'Malley DM, Matulonis UA, Birrer MJ,
Castro CM, Gilbert L, Vergote I, Martin LP, Mantia-Smaldone GM,
Martin AG, Bratos R, et al: Phase Ib study of mirvetuximab
soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug
conjugate (ADC), in combination with bevacizumab in patients with
platinum-resistant ovarian cancer. Gynecol Oncol. 157:379–385.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gilbert L, Oaknin A, Matulonis UA,
Mantia-Smaldone GM, Lim PC, Castro CM, Provencher D, Memarzadeh S,
Method M, Wang J, et al: Safety and efficacy of mirvetuximab
soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug
conjugate (ADC), in combination with bevacizumab in patients with
platinum-resistant ovarian cancer. Gynecol Oncol. 170:241–247.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Richardson DL, Moore KN, Vergote I,
Gilbert L, Martin LP, Mantia-Smaldone GM, Castro CM, Provencher D,
Matulonis UA, Stec J, et al: Phase 1b study of mirvetuximab
soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug
conjugate, in combination with carboplatin and bevacizumab in
patients with platinum-sensitive ovarian cancer. Gynecol Oncol.
185:186–193. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Nicolò E, Giugliano F, Ascione L,
Tarantino P, Corti C, Tolaney SM, Cristofanilli M and Curigliano G:
Combining antibody-drug conjugates with immunotherapy in solid
tumors: current landscape and future perspectives. Cancer Treat
Rev. 106:1023952022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gerber HP, Sapra P, Loganzo F and May C:
Combining antibody-drug conjugates and immune-mediated cancer
therapy: What to expect? Biochem Pharmacol. 102:1–6. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Vafa O, Gilliland GL, Brezski RJ, Strake
B, Wilkinson T, Lacy ER, Scallon B, Teplyakov A, Malia TJ and
Strohl WR: An engineered Fc variant of an IgG eliminates all immune
effector functions via structural perturbations. Methods.
65:114–126. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bauzon M, Drake PM, Barfield RM, Cornali
BM, Rupniewski I and Rabuka D: Maytansine-bearing antibody-drug
conjugates induce in vitro hallmarks of immunogenic cell death
selectively in antigen-positive target cells. Oncoimmunology.
8:e15658592019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Müller P, Martin K, Theurich S, Schreiner
J, Savic S, Terszowski G, Lardinois D, Heinzelmann-Schwarz VA,
Schlaak M, Kvasnicka HM, et al: Microtubule-depolymerizing agents
used in antibody-drug conjugates induce antitumor immunity by
stimulation of dendritic cells. Cancer Immunol Res. 2:741–755.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Iwata TN, Ishii C, Ishida S, Ogitani Y,
Wada T and Agatsuma T: A HER2-targeting antibody-drug conjugate,
trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a
mouse model. Mol Cancer Ther. 177:1494–1503. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Junttila TT, Li G, Parsons K, Phillips GL
and Sliwkowski MX: Trastuzumab-DM1 (T-DM1. retains all the
mechanisms of action of trastuzumab and efficiently inhibits growth
of lapatinib insensitive breast cancer. Breast Cancer Res Treat.
128:347–356. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wu S, Ge A, Deng X, Liu L and Wang Y:
Evolving immunotherapeutic solutions for triple-negative breast
carcinoma. Cancer Treat Rev. 130:1028172024. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bardia A, Mayer IA, Diamond JR, Moroose
RL, Isakoff SJ, Starodub AN, Shah NC, O'Shaughnessy J, Kalinsky K,
Guarino M, et al: Efficacy and safety of anti-trop-2 antibody drug
conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated
patients with metastatic triple-negative breast cancer. J Clin
Oncol. 35:2141–2148. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Camidge DR, Barlesi F, Goldman JW,
Morgensztern D, Heist R, Vokes E, Angevin E, Hong DS, Rybkin II,
Barve M, et al: A phase 1b study of telisotuzumab vedotin in
combination with nivolumab in patients with NSCLC. JTO Clin Res
Rep. 3:1002622022.PubMed/NCBI
|
|
92
|
Anastasio MK, Shuey S and Davidson BA:
Antibody-drug conjugates in gynecologic cancers. Curr Treat Options
Oncol. 25:1–19. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang Y, Liu L, Jin X and Yu Y: Efficacy
and safety of mirvetuximab soravtansine in recurrent ovarian cancer
with FRa positive expression: A systematic review and
meta-analysis. Crit Rev Oncol Hematol. 194:1042302024. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Modi S, Saura C, Yamashita T, Park YH, Kim
SB, Tamura K, Andre F, Iwata H, Ito Y, Tsurutani J, et al:
Trastuzumab deruxtecan in previously treated HER2-positive breast
cancer. N Engl J Med. 382:610–621. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kumagai K, Aida T, Tsuchiya Y, Kishino Y,
Kai K and Mori K: Interstitial pneumonitis related to trastuzumab
deruxtecan, a human epidermal growth factor receptor 2-targeting
Ab-drug conjugate, in monkeys. Cancer Sci. 111:4636–4645. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Swain SM, Nishino M, Lancaster LH, Li BT,
Nicholson AG, Bartholmai BJ, Naidoo J, Schumacher-Wulf E, Shitara
K, Tsurutani J, et al: Multidisciplinary clinical guidance on
trastuzumab deruxtecan (T-DXd)-related interstitial lung
disease/pneumonitis-Focus on proactive monitoring, diagnosis, and
management. Cancer Treat Rev. 106:1023782022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhu Y, Liu K, Wang K and Zhu H:
Treatment-related adverse events of antibody-drug conjugates in
clinical trials: A systematic review and meta-analysis. Cancer.
129:283–295. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Eaton JS, Miller PE, Mannis MJ and Murphy
CJ: Ocular adverse events associated with antibody-drug conjugates
in human clinical trials. J Ocul Pharmacol Ther. 31:589–604. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kim SK, Ursell P, Coleman RL, Monk BJ and
Vergote I: Mitigation and management strategies for ocular events
associated with tisotumab vedotin. Gynecol Oncol. 165:385–392.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kubo K, Azuma A, Kanazawa M, Kameda H,
Kusumoto M, Genma A, Saijo Y, Sakai F, Sugiyama Y, Tatsumi K, et
al: Consensus statement for the diagnosis and treatment of
drug-induced lung injuries. Respir Investig. 51:260–277. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Abelman RO, Wu B, Spring LM, Ellisen LW
and Bardia A: Mechanisms of resistance to antibody-drug conjugates.
Cancers (Basel). 15:12782023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Khoury R, Saleh K, Khalife N, Saleh M,
Chahine C, Ibrahim R and Lecesne A: Mechanisms of resistance to
antibody-drug conjugates. Int J Mol Sci. 24:96742023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Sung M, Tan X, Lu B, Golas J, Hosselet C,
Wang F, Tylaska L, King L, Zhou D, Dushin R, et al:
Caveolae-mediated endocytosis as a novel mechanism of resistance to
trastuzumab emtansine (T-DM1). Mol Cancer Ther. 17:243–253. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Loganzo F, Sung M and Gerber HP:
Mechanisms of resistance to antibody-drug conjugates. Mol Cancer
Ther. 15:2825–2834. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Loganzo F, Tan X, Sung M, Jin G, Myers JS,
Melamud E, Wang F, Diesl V, Follettie MT, Musto S, et al: Tumor
cells chronically treated with a trastuzumab-maytansinoid
antibody-drug conjugate develop varied resistance mechanisms but
respond to alternate treatments. Mol Cancer Ther. 14:952–963. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Collins DM, Bossenmaier B, Kollmorgen G
and Niederfellner G: Acquired resistance to antibody-drug
conjugates. Cancers (Basel). 11:3942019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yan T, Zhu L and Chen J: Current advances
and challenges in CAR T-Cell therapy for solid tumors:
tumor-associated antigens and the tumor microenvironment. Exp
Hematol Oncol. 12:142023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lin L and Lin DC: biological significance
of tumor heterogeneity in esophageal squamous cell carcinoma.
Cancers (Basel). 11:11562019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mitra A, Barua A, Huang L, Ganguly S, Feng
Q and He B: From bench to bedside: The history and progress of CAR
T cell therapy. Front Immunol. 14:11880492023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Norberg SM and Hinrichs CS: Engineered T
cell therapy for viral and non-viral epithelial cancers. Cancer
Cell. 41:58–69. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Paijens ST, Vledder A, de Bruyn M and
Nijman HW: Tumor-infiltrating lymphocytes in the immunotherapy era.
Cell Mol Immunol. 18:842–859. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Schlabach MR, Lin S, Collester ZR,
Wrocklage C, Shenker S, Calnan C, Xu T, Gannon HS, Williams LJ,
Thompson F, et al: Rational design of a SOCS1-edited
tumor-infiltrating lymphocyte therapy using CRISPR/Cas9 screens. J
Clin Invest. 133:e1630962023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Muthukutty P and Yoo SY: Oncolytic virus
engineering and utilizations: Cancer immunotherapy perspective.
Viruses. 15:16452023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yang C, Nguyen J and Yen Y: Complete
spectrum of adverse events associated with chimeric antigen
receptor (CAR)-T cell therapies. J Biomed Sci. 301:892023.
View Article : Google Scholar
|
|
115
|
Diaby V, Adunlin G, Ali AA, Zeichner SB,
de Lima Lopes G, Kohn CG and Montero AJ: Cost-effectiveness
analysis of 1st through 3rd line sequential targeted therapy in
HER2-positive metastatic breast cancer in the United States. Breast
Cancer Res Treat. 160:187–196. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Sato S, Shoji T, Jo A, Otsuka H, Abe M,
Tatsuki S, Chiba Y, Takatori E, Kaido Y, Nagasawa T, et al:
Antibody-drug conjugates: The new treatment approaches for ovarian
cancer. Cancers (Basel). 16:25452024. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
García-Alonso S, Ocaña A and Pandiella A:
Resistance to antibody-drug conjugates. Cancer Res. 78:2159–2165.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Cabaud O, Berger L, Crompot E, Adélaide J,
Finetti P, Garnier S, Guille A, Carbuccia N, Farina A, Agavnian E,
et al: Overcoming resistance to anti-nectin-4 antibody-drug
Conjugate. Mol Cancer Ther. 21:1227–1235. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Andreev J, Thambi N, Bay AE, Delfino F,
Martin J, Kelly MP, Kirshner JR, Rafique A, Kunz A, Nittoli T, et
al: Bispecific antibodies and antibody-drug conjugates (ADCs)
bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs.
Mol Cancer Ther. 16:681–693. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Yamazaki CM, Yamaguchi A, Anami Y, Xiong
W, Otani Y, Lee J, Ueno NT, Zhang N, An Z and Tsuchikama K:
Antibody-drug conjugates with dual payloads for combating breast
tumor heterogeneity and drug resistance. Nat Commun. 12:35282021.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wang AJ, Gao Y, Shi YY, Dai MY and Cai HB:
A review of recent advances on single use of antibody-drug
conjugates or combination with tumor immunology therapy for
gynecologic cancer. Front Pharmacol. 13:10936662022. View Article : Google Scholar : PubMed/NCBI
|