|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
D'Augè TG, Donato VD and Giannini A:
Strategic approaches in management of early-stage cervical cancer:
A comprehensive editorial. Clin Exp Obstet Gynecol. 51:2352024.
View Article : Google Scholar
|
|
3
|
Garg P, Krishna M, Subbalakshmi AR,
Ramisetty S, Mohanty A, Kulkarni P, Horne D, Salgia R and Singhal
SS: Emerging biomarkers and molecular targets for precision
medicine in cervical cancer. Biochim Biophys Acta Rev Cancer.
1879:1891062024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
D'Oria O, Bogani G, Cuccu I, D'Auge TG, Di
Donato V, Caserta D and Giannini A: Pharmacotherapy for the
treatment of recurrent cervical cancer: An update of the
literature. Expert Opin Pharmacother. 25:55–65. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bausch-Fluck D, Goldmann U, Müller S, van
Oostrum M, Müller M, Schubert OT and Wollscheid B: The in silico
human surfaceome. Proc Natl Acad Sci USA. 115:E10988–E10997. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Friedlová N, Zavadil Kokáš F, Hupp TR,
Vojtěšek B and Nekulová M: IFITM protein regulation and functions:
Far beyond the fight against viruses. Front Immunol.
13:10423682022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Narayana SK, Helbig KJ, McCartney EM, Eyre
NS, Bull RA, Eltahla A, Lloyd AR and Beard MR: The
interferon-induced transmembrane proteins, IFITM1, IFITM2, and
IFITM3 inhibit hepatitis C virus entry. J Biol Chem.
290:25946–25959. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Prelli Bozzo C, Nchioua R, Volcic M,
Koepke L, Krüger J, Schütz D, Heller S, Stürzel CM, Kmiec D,
Conzelmann C, et al: IFITM proteins promote SARS-CoV-2 infection
and are targets for virus inhibition in vitro. Nat Commun.
12:45842021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ren L, Du S, Xu W, Li T, Wu S, Jin N and
Li C: Current progress on host antiviral factor IFITMs. Front
Immunol. 11:5434442020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liao Y, Goraya MU, Yuan X, Zhang B, Chiu
SH and Chen JL: Functional involvement of interferon-inducible
trans-membrane proteins in antiviral immunity. Front Microbiol.
10:10972019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gómez-Herranz M, Taylor J and Sloan RD:
IFITM proteins: Understanding their diverse roles in viral
infection, cancer, and immunity. J Biol Chem. 299:1027412023.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li K, Markosyan RM, Zheng YM, Golfetto O,
Bungart B, Li M, Ding S, He Y, Liang C, Lee JC, et al: IFITM
proteins restrict viral membrane hemifusion. PLoS Pathog.
9:e10031242013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Amini-Bavil-Olyaee S, Choi YJ, Lee JH, Shi
M, Huang IC, Farzan M and Jung JU: The antiviral effector IFITM3
disrupts intracellular cholesterol homeostasis to block viral
entry. Cell Host Microbe. 13:452–464. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rahman K, Datta SAK, Beaven AH, Jolley AA,
Sodt AJ and Compton AA: Cholesterol binds the amphipathic helix of
IFITM3 and regulates antiviral activity. J Mol Biol.
434:1677592022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Spence JS, He R, Hoffmann HH, Das T,
Thinon E, Rice CM, Peng T, Chandran K and Hang HC: IFITM3 directly
engages and shuttles incoming virus particles to lysosomes. Nat
Chem Biol. 15:259–268. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gerlach T, Hensen L, Matrosovich T,
Bergmann J, Winkler M, Peteranderl C, Klenk HD, Weber F, Herold S,
Pöhlmann S and Matrosovich M: pH optimum of hemagglutinin-mediated
membrane fusion determines sensitivity of influenza A viruses to
the interferon-induced antiviral state and IFITMs. J Virol.
91:e00246–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wee YS, Roundy KM, Weis JJ and Weis JH:
Interferon-inducible transmembrane proteins of the innate immune
response act as membrane organizers by influencing clathrin and
v-ATPase localization and function. Innate Immun. 18:834–845. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gómez-Herranz M, Nekulova M, Faktor J,
Hernychova L, Kote S, Sinclair EH, Nenutil R, Vojtesek B, Ball KL
and Hupp TR: The effects of IFITM1 and IFITM3 gene deletion on IFNγ
stimulated protein synthesis. Cell Signal. 60:39–56. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wiśniewski JR, Zougman A, Nagaraj N and
Mann M: Universal sample preparation method for proteome analysis.
Nat Methods. 6:359–362. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sherman BT, Hao M, Qiu J, Jiao X, Baseler
MW, Lane HC, Imamichi T and Chang W: DAVID: A web server for
functional enrichment analysis and functional annotation of gene
lists (2021 update). Nucleic Acids Res. 50:W216–W221. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Szklarczyk D, Gable AL, Nastou KC, Lyon D,
Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al:
The STRING database in 2021: Customizable protein-protein networks,
and functional characterization of user-uploaded gene/measurement
sets. Nucleic Acids Res. 49:D605–D612. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Perez-Riverol Y, Csordas A, Bai J,
Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J,
Mayer G, Eisenacher M, et al: The PRIDE database and related tools
and resources in 2019: Improving support for quantification data.
Nucleic Acids Res. 47:D442–D450. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Schindelin J, Arganda-Carreras I, Frise E,
Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, et al: Fiji: An open-source platform for biological-image
analysis. Nat Methods. 9:676–682. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Grada A, Otero-Vinas M, Prieto-Castrillo
F, Obagi Z and Falanga V: Research techniques made simple: Analysis
of collective cell migration using the wound healing assay. J
Invest Dermatol. 137:e11–e16. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Suarez-Arnedo A, Figueroa FT, Clavijo C,
Arbeláez P, Cruz JC and Muñoz-Camargo C: An image J plugin for the
high throughput image analysis of in vitro scratch wound healing
assays. PLoS One. 15:e02325652020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Aslan M, Hsu EC, Liu S and Stoyanova T:
Quantifying the invasion and migration ability of cancer cells with
a 3D Matrigel drop invasion assay. Biol Methods Protoc.
6:bpab0142021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Nekulová M, Wyszkowska M, Friedlová N,
Uhrík L, Zavadil Kokáš F, Hrabal V, Hernychová L, Vojtěšek B, Hupp
TR and Szymański MR: Biochemical evidence for conformational
variants in the anti-viral and pro-metastatic protein IFITM1. Biol
Chem. 405:311–324. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gómez-Herranz M, Faktor J, Yébenes
Mayordomo M, Pilch M, Nekulova M, Hernychova L, Ball KL, Vojtesek
B, Hupp TR and Kote S: Emergent role of IFITM1/3 towards splicing
factor (SRSF1) and antigen-presenting molecule (HLA-B) in cervical
cancer. Biomolecules. 12:10902022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Suh HS, Cosenza-Nashat M, Choi N, Zhao ML,
Li JF, Pollard JW, Jirtle RL, Goldstein H and Lee SC: Insulin-like
growth factor 2 receptor is an IFNgamma-inducible microglial
protein that facilitates intracellular HIV replication:
Implications for HIV-induced neurocognitive disorders. Am J Pathol.
177:2446–2458. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pirault J, Polyzos KA, Petri MH, Ketelhuth
DFJ, Bäck M and Hansson GK: The inflammatory cytokine
interferon-gamma inhibits sortilin-1 expression in hepatocytes via
the JAK/STAT pathway. Eur J Immunol. 47:1918–1924. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ferragut F, Vachetta VS, Troncoso MF,
Rabinovich GA and Elola MT: ALCAM/CD166: A pleiotropic mediator of
cell adhesion, stemness and cancer progression. Cytokine Growth
Factor Rev. 61:27–37. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wu Z, Wu Z, Li J, Yang X, Wang Y, Yu Y, Ye
J, Xu C, Qin W and Zhang Z: MCAM is a novel metastasis marker and
regulates spreading, apoptosis and invasion of ovarian cancer
cells. Tumour Biol. 33:1619–1628. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kawada M, Inoue H, Kajikawa M, Sugiura M,
Sakamoto S, Urano S, Karasawa C, Usami I, Futakuchi M and Masuda T:
A novel monoclonal antibody targeting coxsackie virus and
adenovirus receptor inhibits tumor growth in vivo. Sci Rep.
7:404002017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li J, Li Y, Wang H, Shen L, Wang Q, Shao
S, Shen Y, Xu H, Liu H, Cai R and Feng W: Neoadjuvant chemotherapy
with weekly cisplatin and paclitaxel followed by chemoradiation for
locally advanced cervical cancer. BMC Cancer. 23:512023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tewari KS, Colombo N, Monk BJ, Dubot C,
Cáceres MV, Hasegawa K, Shapira-Frommer R, Salman P, Yañez E, Gümüs
M, et al: Pembrolizumab or placebo plus chemotherapy with or
without bevacizumab for persistent, recurrent, or metastatic
cervical cancer: Subgroup analyses from the KEYNOTE-826 randomized
clinical trial. JAMA Oncol. 10:1852024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Monk BJ, Enomoto T, Kast WM, McCormack M,
Tan DSP, Wu X and González-Martín A: Integration of immunotherapy
into treatment of cervical cancer: Recent data and ongoing trials.
Cancer Treat Rev. 106:1023852022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kumar Kore R, Shirbhate E, Singh V, Mishra
A, Veerasamy R and Rajak H: New investigational drug's targeting
various molecular pathways for treatment of cervical cancer:
Current status and future prospects. Cancer Invest. 42:627–642.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bailey CC, Zhong G, Huang IC and Farzan M:
IFITM-family proteins: The cell's first line of antiviral defense.
Annu Rev Virol. 1:261–283. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liang R, Li X and Zhu X: Deciphering the
roles of IFITM1 in tumors. Mol Diagn Ther. 24:433–441. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Weichselbaum RR, Ishwaran H, Yoon T,
Nuyten DS, Baker SW, Khodarev N, Su AW, Shaikh AY, Roach P, Kreike
B, et al: An interferon-related gene signature for DNA damage
resistance is a predictive marker for chemotherapy and radiation
for breast cancer. Proc Natl Acad Sci USA. 105:18490–18495. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Popson SA, Ziegler ME, Chen X, Holderfield
MT, Shaaban CI, Fong AH, Welch-Reardon KM, Papkoff J and Hughes CC:
Interferon-induced transmembrane protein 1 regulates endothelial
lumen formation during angiogenesis. Arterioscler Thromb Vasc Biol.
34:1011–1019. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wilkins C, Woodward J, Lau DTY, Barnes A,
Joyce M, McFarlane N, McKeating JA, Tyrrell DL and Gale M Jr:
IFITM1 is a tight junction protein that inhibits hepatitis C virus
entry. Hepatology. 57:461–469. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Buchrieser J, Dufloo J, Hubert M, Monel B,
Planas D, Rajah MM, Planchais C, Porrot F, Guivel-Benhassine F, Van
der Werf S, et al: Syncytia formation by SARS-CoV-2-infected cells.
EMBO J. 39:e1062672020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chmielewska AM, Gómez-Herranz M, Gach P,
Nekulova M, Bagnucka MA, Lipińska AD, Rychłowski M, Hoffmann W,
Król E, Vojtesek B, et al: The role of IFITM proteins in tick-borne
encephalitis virus infection. J Virol. 96:e01130212022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Basile A, Zannella C, De Marco M, Sanna G,
Franci G, Galdiero M, Manzin A, De Laurenzi V, Chetta M, Rosati A,
et al: Spike-mediated viral membrane fusion is inhibited by a
specific anti-IFITM2 monoclonal antibody. Antiviral Res.
211:1055462023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Meischel T, Fritzlar S, Villalon-Letelier
F, Tessema MB, Brooks AG, Reading PC and Londrigan SL: IFITM
proteins that restrict the early stages of respiratory virus
infection do not influence late-stage replication. J Virol.
95:e00837212021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Jia R, Xu F, Qian J, Yao Y, Miao C, Zheng
YM, Liu SL, Guo F, Geng Y, Qiao W and Liang C: Identification of an
endocytic signal essential for the antiviral action of IFITM3. Cell
Microbiol. 16:1080–1093. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ishikawa-Sasaki K, Murata T and Sasaki J:
IFITM1 enhances nonenveloped viral RNA replication by facilitating
cholesterol transport to the Golgi. PLoS Pathog. 19:e10113832023.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
von Lersner A, Droesen L and Zijlstra A:
Modulation of cell adhesion and migration through regulation of the
immunoglobulin superfamily member ALCAM/CD166. Clin Exp Metastasis.
36:87–95. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shen X, Li M, Lei Y, Lu S, Wang S, Liu Z,
Wang C, Zhao Y, Wang A, Bi C and Zhu G: An integrated analysis of
single-cell and bulk transcriptomics reveals EFNA1 as a novel
prognostic biomarker for cervical cancer. Hum Cell. 35:705–720.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Owczarek C, Elmasry Y and Parsons M:
Contributions of coxsackievirus adenovirus receptor to
tumorigenesis. Biochem Soc Trans. 51:1143–1155. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu F, Wu Q, Dong Z and Liu K: Integrins
in cancer: Emerging mechanisms and therapeutic opportunities.
Pharmacol Ther. 247:1084582023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Diao B, Sun C, Yu P, Zhao Z and Yang P:
LAMA5 promotes cell proliferation and migration in ovarian cancer
by activating Notch signaling pathway. FASEB J. 37:e231092023.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang L, Zhou X, Zhou T, Ma D, Chen S, Zhi
X, Yin L, Shao Z, Ou Z and Zhou P: Ecto-5′-nucleotidase promotes
invasion, migration and adhesion of human breast cancer cells. J
Cancer Res Clin Oncol. 134:365–372. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang Y, Koh YW, Sari IN, Jun N, Lee S, Phi
LTH, Kim KS, Wijaya YT, Lee SH, Baek MJ, et al: Interferon-induced
transmembrane protein 1-mediated EGFR/SOX2 signaling axis is
essential for progression of non-small cell lung cancer. Int J
Cancer. 144:2020–2032. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hatano H, Kudo Y, Ogawa I, Tsunematsu T,
Kikuchi A, Abiko Y and Takata T: IFN-induced transmembrane protein
1 promotes invasion at early stage of head and neck cancer
progression. Clin Cancer Res. 14:6097–6105. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Liang Y, Li E, Min J, Gong C, Gao J, Ai J,
Liao W and Wu L: MiR-29a suppresses the growth and metastasis of
hepatocellular carcinoma through IFITM3. Oncol Rep. 40:3261–3272.
2018.PubMed/NCBI
|
|
59
|
Zheng W, Zhao Z, Yi X, Zuo Q, Li H, Guo X,
Li D, He H, Pan Z, Fan P, et al: Down-regulation of IFITM1 and its
growth inhibitory role in cervical squamous cell carcinoma. Cancer
Cell Int. 17:882017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Taylor BC and Balko JM: Mechanisms of
MHC-I downregulation and role in immunotherapy response. Front
Immunol. 13:8448662022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
She X, Shen S, Chen G, Gao Y, Ma J, Gao Y,
Liu Y, Gao G, Zhao Y, Wang C, et al: Immune surveillance of brain
metastatic cancer cells is mediated by IFITM1. EMBO J.
42:e1111122023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Saveanu L and van Endert P: The role of
insulin-regulated aminopeptidase in MHC class I antigen
presentation. Front Immunol. 3:572012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Elgueta R, Benson MJ, de Vries VC, Wasiuk
A, Guo Y and Noelle RJ: Molecular mechanism and function of
CD40/CD40L engagement in the immune system. Immunol Rev.
229:152–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Grewal IS, Foellmer HG, Grewal KD, Xu J,
Hardardottir F, Baron JL, Janeway CA Jr and Flavell RA: Requirement
for CD40 ligand in costimulation induction, T cell activation, and
experimental allergic encephalomyelitis. Science. 273:1864–1867.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Djureinovic D, Wang M and Kluger HM:
Agonistic CD40 antibodies in cancer treatment. Cancers (Basel).
13:13022021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang Y, Sanders AJ, Ruge F, Dong X, Cui Y,
Dou QP, Jia S, Hao C, Ji J and Jiang WG: Activated leukocyte cell
adhesion molecule (ALCAM)/CD166 in pancreatic cancer, a pivotal
link to clinical outcome and vascular embolism. Am J Cancer Res.
11:5917–5932. 2021.PubMed/NCBI
|
|
67
|
Jing L, An Y, Cai T, Xiang J, Li B, Guo J,
Ma X, Wei L, Tian Y, Cheng X, et al: A subpopulation of
CD146+ macrophages enhances antitumor immunity by
activating the NLRP3 inflammasome. Cell Mol Immunol. 20:908–923.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Duan H, Jing L, Jiang X, Ma Y, Wang D,
Xiang J, Chen X, Wu Z, Yan H, Jia J, et al: CD146 bound to LCK
promotes T cell receptor signaling and antitumor immune responses
in mice. J Clin Invest. 131:e1485682021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yánez DC, Ross S and Crompton T: The IFITM
protein family in adaptive immunity. Immunology. 159:365–372. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cai Y, Ji W, Sun C, Xu R, Chen X, Deng Y,
Pan J, Yang J, Zhu H and Mei J: Interferon-induced transmembrane
protein 3 shapes an inflamed tumor microenvironment and identifies
immuno-hot tumors. Front Immunol. 12:7049652021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shen C, Li YJ, Yin QQ, Jiao WW, Li QJ,
Xiao J, Sun L, Xu F, Li JQ, Qi H and Shen AD: Identification of
differentially expressed transcripts targeted by the knockdown of
endogenous IFITM3. Mol Med Rep. 14:4367–4373. 2016. View Article : Google Scholar : PubMed/NCBI
|