
Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review)
- Authors:
- Jiawei Zhao
- Xiaohui Bai
- Jingjing Du
- Yujing Chen
- Xiaotong Guo
- Juzheng Zhang
- Jinfeng Gan
- Peitao Wu
- Siqi Chen
- Xinwen Zhang
- Jinfeng Yang
- Jiamin Jin
- Li Gao
-
Affiliations: Department of Urology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China, Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi 541199, P.R. China - Published online on: May 28, 2025 https://doi.org/10.3892/or.2025.8919
- Article Number: 86
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Barik S: The uniqueness of tryptophan in biology: Properties, metabolism, interactions and localization in proteins. Int J Mol Sci. 21:87762020. View Article : Google Scholar : PubMed/NCBI | |
Palego L, Betti L, Rossi A and Giannaccini G: Tryptophan biochemistry: Structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids. 2016:89525202016. View Article : Google Scholar : PubMed/NCBI | |
Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS and Bjørklund G: How important is tryptophan in human health? Crit Rev Food Sci Nutr. 59:72–88. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schwarcz R, Bruno JP, Muchowski PJ and Wu HQ: Kynurenines in the mammalian brain: When physiology meets pathology. Nat Rev Neurosci. 13:465–477. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sharma L and Riva A: Intestinal barrier function in health and disease - Any role of SARS-CoV-2? Microorganisms. 8:17442020.https://doi.org/10.3390/microorganisms8111744 View Article : Google Scholar : PubMed/NCBI | |
Liu XH and Zhai XY: Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie. 182:131–139. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, et al: Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer. 23:2412024. View Article : Google Scholar : PubMed/NCBI | |
Perez-Castro L, Garcia R, Venkateswaran N, Barnes S and Conacci-Sorrell M: Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J. 290:7–27. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang HL, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF and Wang XJ: Targeting regulation of tryptophan metabolism for colorectal cancer therapy: A systematic review. RSC Adv. 9:3072–3080. 2019. View Article : Google Scholar : PubMed/NCBI | |
Badawy AA: Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int J Tryptophan Res. 10:11786469176919382017. View Article : Google Scholar : PubMed/NCBI | |
Stone TW and Darlington LG: Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov. 1:609–620. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lugo-Huitrón R, Ugalde Muñiz P, Pineda B, Pedraza-Chaverrí J, Ríos C and Pérez-de la Cruz V: Quinolinic acid: An endogenous neurotoxin with multiple targets. Oxid Med Cell Longev. 2013:1040242013. View Article : Google Scholar : PubMed/NCBI | |
Mandarano M, Orecchini E, Bellezza G, Vannucci J, Ludovini V, Baglivo S, Tofanetti FR, Chiari R, Loreti E, Puma F, et al: Kynurenine/tryptophan ratio as a potential blood-based biomarker in non-small cell lung cancer. Int J Mol Sci. 22:44032021. View Article : Google Scholar : PubMed/NCBI | |
Kwiatkowska I, Hermanowicz JM, Przybyszewska-Podstawka A and Pawlak D: Not only immune escape-the confusing role of the TRP metabolic pathway in carcinogenesis. Cancers (Basel). 13:26672021. View Article : Google Scholar : PubMed/NCBI | |
Suzuki Y, Suda T, Furuhashi K, Suzuki M, Fujie M, Hahimoto D, Nakamura Y, Inui N, Nakamura H and Chida K: Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer. 67:361–365. 2010. View Article : Google Scholar : PubMed/NCBI | |
Crotti S, D'Angelo E, Bedin C, Fassan M, Pucciarelli S, Nitti D, Bertazzo A and Agostini M: Tryptophan metabolism along the kynurenine and serotonin pathways reveals substantial differences in colon and rectal cancer. Metabolomics. 13:1482017. View Article : Google Scholar | |
Ogyu K, Kubo K, Noda Y, Iwata Y, Tsugawa S, Omura Y, Wada M, Tarumi R, Plitman E, Moriguchi S, et al: Kynurenine pathway in depression: A systematic review and meta-analysis. Neurosci Biobehav Rev. 90:16–25. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maddison DC and Giorgini F: The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol. 40:134–141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schwarcz R and Pellicciari R: Manipulation of brain kynurenines: Glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther. 303:1–10. 2002. View Article : Google Scholar : PubMed/NCBI | |
Walther DJ and Bader M: A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 66:1673–1680. 2003. View Article : Google Scholar : PubMed/NCBI | |
Patel PD, Pontrello C and Burke S: Robust and tissue-specific expression of TPH2 versus TPH1 in rat raphe and pineal gland. Biol Psychiatry. 55:428–433. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kalinichenko LS, Kornhuber J, Sinning S, Haase J and Müller CP: Serotonin signaling through lipid membranes. ACS Chem Neurosci. 15:1298–1320. 2024. View Article : Google Scholar : PubMed/NCBI | |
Murphy DL and Lesch KP: Targeting the murine serotonin transporter: Insights into human neurobiology. Nat Rev Neurosci. 9:85–96. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Zhao G, Li H, Zhao Z, Li W, Wu M and Du YL: Hydroxytryptophan biosynthesis by a family of heme-dependent enzymes in bacteria. Nat Chem Biol. 19:1415–1422. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jung KH, LoRusso P, Burris H, Gordon M, Bang YJ, Hellmann MD, Cervantes A, Ochoa de Olza M, Marabelle A, Hodi FS, et al: Phase I study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (Atezolizumab) in advanced solid tumors. Clin Cancer Res. 25:3220–3228. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ebata T, Shimizu T, Fujiwara Y, Tamura K, Kondo S, Iwasa S, Yonemori K, Shimomura A, Kitano S, Koyama T, et al: Phase I study of the indoleamine 2,3-dioxygenase 1 inhibitor navoximod (GDC-0919) as monotherapy and in combination with the PD-L1 inhibitor atezolizumab in Japanese patients with advanced solid tumours. Invest New Drugs. 38:468–477. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gomes B, Driessens G, Bartlett D, Cai D, Cauwenberghs S, Crosignani S, Dalvie D, Denies S, Dillon CP, Fantin VR, et al: Characterization of the selective indoleamine 2,3-dioxygenase-1 (IDO1) catalytic inhibitor EOS200271/PF-06840003 Supports IDO1 as a critical resistance mechanism to PD-(L)1 blockade therapy. Mol Cancer Ther. 17:2530–2542. 2018. View Article : Google Scholar : PubMed/NCBI | |
Crosignani S, Bingham P, Bottemanne P, Cannelle H, Cauwenberghs S, Cordonnier M, Dalvie D, Deroose F, Feng JL, Gomes B, et al: Discovery of a novel and selective indoleamine 2,3-dioxygenase (IDO-1) inhibitor 3-(5-Fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and Its characterization as a potential clinical candidate. J Med Chem. 60:9617–9629. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim M and Tomek P: Tryptophan: A rheostat of cancer immune escape mediated by immunosuppressive enzymes IDO1 and TDO. Front Immunol. 12:6360812021. View Article : Google Scholar : PubMed/NCBI | |
Roager HM and Licht TR: Microbial tryptophan catabolites in health and disease. Nat Commun. 9:32942018. View Article : Google Scholar : PubMed/NCBI | |
Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R and Overbeek SA: Microbial-derived tryptophan catabolites, kidney disease and gut inflammation. Toxins (Basel). 14:6452022. View Article : Google Scholar : PubMed/NCBI | |
Medvedev A and Buneeva O: Tryptophan metabolites as mediators of microbiota-gut-brain communication: Focus on isatin. Front Behav Neurosci. 16:9222742022. View Article : Google Scholar : PubMed/NCBI | |
Ghiboub M, Boneh RS, Sovran B, Wine E, Lefèvre A, Emond P, Verburgt CM, Benninga MA, de Jonge WJ and Van Limbergen JE: Sustained diet-induced remission in pediatric Crohn's disease is associated with kynurenine and serotonin pathways. Inflamm Bowel Dis. 29:684–694. 2023. View Article : Google Scholar : PubMed/NCBI | |
Vanholder R, Nigam SK, Burtey S and Glorieux G: What if not all metabolites from the uremic toxin generating pathways are toxic? A hypothesis. Toxins (Basel). 14:2212022. View Article : Google Scholar : PubMed/NCBI | |
Spaepen S and Vanderleyden J: Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. 3:a0014382011. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Yue L, Shi J, Shao M and Wu T: Role of IDO and TDO in cancers and related diseases and the therapeutic implications. J Cancer. 10:2771–2782. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jochems C, Fantini M, Fernando RI, Kwilas AR, Donahue RN, Lepone LM, Grenga I, Kim YS, Brechbiel MW, Gulley JL, et al: The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget. 7:37762–37772. 2016. View Article : Google Scholar : PubMed/NCBI | |
Someya S, Tohyama S, Kameda K, Tanosaki S, Morita Y, Sasaki K, Kang MI, Kishino Y, Okada M, Tani H, et al: Tryptophan metabolism regulates proliferative capacity of human pluripotent stem cells. iScience. 24:1020902021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q and Li W: Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy. World J Stem Cells. 14:267–286. 2022. View Article : Google Scholar : PubMed/NCBI | |
Munro MJ, Wickremesekera SK, Peng L, Tan ST and Itinteang T: Cancer stem cells in colorectal cancer: A review. J Clin Pathol. 71:110–116. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bishnupuri KS, Alvarado DM, Khouri AN, Shabsovich M, Chen B, Dieckgraefe BK and Ciorba MA: IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 79:1138–1150. 2019. View Article : Google Scholar : PubMed/NCBI | |
Thaker AI, Rao MS, Bishnupuri KS, Kerr TA, Foster L, Marinshaw JM, Newberry RD, Stenson WF and Ciorba MA: IDO1 metabolites activate β-catenin signaling to promote cancer cell proliferation and colon tumorigenesis in mice. Gastroenterology. 145:416–425.e1-e4. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Shao R, Li F, Monteiro M, Liu JP, Xu ZP and Gu W: PI 3K/Akt/mTOR pathway dual inhibitor BEZ 235 suppresses the stemness of colon cancer stem cells. Clin Exp Pharmacol Physiol. 42:1317–1326. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vermeulen L, De Sousa E, Melo F, Van Der Heijden M, Cameron K, De Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, et al: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 12:468–476. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu P, Lu T, Chen Z, Liu B, Fan D, Li C, Wu J, He L, Zhu X, Du Y, et al: 5-hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis. Neuron. 110:2268–2282. e42022. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Pang B, Gu G, Gao T, Zhang R, Pang Q and Liu Q: Melatonin inhibits glioblastoma stem-like cells through suppression of EZH2-NOTCH1 signaling axis. Int J Biol Sci. 13:245–253. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gürsel DB, Berry N and Boockvar JA: The contribution of Notch signaling to glioblastoma via activation of cancer stem cell self-renewal: the role of the endothelial network. Neurosurgery. 70:N19–N21. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pham QT, Oue N, Sekino Y, Yamamoto Y, Shigematsu Y, Sakamoto N, Sentani K, Uraoka N and Yasui W: TDO2 overexpression is associated with cancer stem cells and poor prognosis in esophageal squamous cell carcinoma. Oncology. 95:297–308. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Qin X, Pan D, Zhang B and Jin F: Amino acid-mediated metabolism: A new power to influence properties of stem cells. Stem Cells Int. 2019:69194632019. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Hu P, Zang Q, Yue X, Zhou Z, Xu X, Xu J, Li S, Chen Y, Qiang B, et al: LC-MS-based metabolomics reveals metabolic signatures related to glioma stem-like cell self-renewal and differentiation. RSC Adv. 7:24221–24232. 2017. View Article : Google Scholar | |
Venkateswaran N and Conacci-Sorrell M: Kynurenine: An oncometabolite in colon cancer. Cell Stress. 4:24–26. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi D, Wu X, Jian Y, Wang J, Huang C, Mo S, Li Y, Li F, Zhang C, Zhang D, et al: USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer. Nat Commun. 13:56442022. View Article : Google Scholar : PubMed/NCBI | |
Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Göbel G, et al: Prognostic value of indoleamine 2, 3-dioxygenase expression in colorectal cancer: Effect on tumor-infiltrating T cells. Clin Cancer Res. 12:1144–1151. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pan K, Wang H, Chen MS, Zhang HK, Weng DS, Zhou J, Huang W, Li JJ, Song HF and Xia JC: Expression and prognosis role of indoleamine 2, 3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin Oncol. 134:1247–1253. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li TJ and Zheng L: Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J Immunol. 188:1117–1124. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tummala KS, Gomes AL, Yilmaz M, Graña O, Bakiri L, Ruppen I, Ximénez-Embún P, Sheshappanavar V, Rodriguez-Justo M, Pisano DG, et al: Inhibition of de novo NAD+ synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell. 26:826–839. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Rao D, Zhu H, Liu Q, Huang W, Zhang L, Liang H, Song J and Ding Z: TDO2 was downregulated in hepatocellular carcinoma and inhibited cell proliferation by upregulating the expression of p21 and p27. Biomed Res Int. 2021:47084392021. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Yan L, Lin J, Ke K and Yang W: Constitutive TDO2 expression promotes liver cancer progression by an autocrine IL-6 signaling pathway. 2 Cancer Cell Int. 21:5382021. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wang T, Li S, Chen Z, Wu J, Cao W, Wo Q, Qin X and Xu J: TDO2 promotes the EMT of hepatocellular carcinoma through Kyn-AhR pathway. Front Oncol. 10:5628232021. View Article : Google Scholar : PubMed/NCBI | |
Jin H, Zhang Y, You H, Tao X, Wang C, Jin G, Wang N, Ruan H, Gu D, Huo X, et al: Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration and invasion of human hepatocellular carcinoma. Sci Rep. 5:104662015. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Gan G, Xu X, Zhang J, Yuan Y, Bi B, Gao X, Xu P, Zeng W, Li J, et al: Kynurenine derivative 3-HAA is an agonist ligand for transcription factor YY1. J Hematol Oncol. 14:1532021. View Article : Google Scholar : PubMed/NCBI | |
Zuo X, Chen Z, Cai J, Gao W, Zhang Y, Han G, Pu L, Wu Z, You W, Qin J, et al: 5-Hydroxytryptamine receptor 1D aggravates hepatocellular carcinoma progression through FoxO6 in AKT-dependent and independent manners. Hepatology. 69:2031–2047. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Tan XL, Xu Y, Wang ZZ, Xiao CH and Liu R: Expression and prognostic value of indoleamine 2, 3-dioxygenase in pancreatic cancer. Chin Med J (Engl). 130:710–716. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hezaveh K, Shinde RS, Klötgen A, Halaby MJ, Lamorte S, Ciudad MT, Quevedo R, Neufeld L, Liu ZQ, Jin R, et al: Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity. 55:324–40. e82022. View Article : Google Scholar : PubMed/NCBI | |
Koblish HK, Hansbury MJ, Bowman KJ, Yang G, Neilan CL, Haley PJ, Burn TC, Waeltz P, Sparks RB, Yue EW, et al: Hydroxyamidine inhibitors of indoleamine-2, 3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Mol Cancer Ther. 9:489–498. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guastella AR, Michelhaugh SK, Klinger NV, Fadel HA, Kiousis S, Ali-Fehmi R, Kupsky WJ, Juhász C and Mittal S: Investigation of the aryl hydrocarbon receptor and the intrinsic tumoral component of the kynurenine pathway of tryptophan metabolism in primary brain tumors. J Neurooncol. 139:239–249. 2018. View Article : Google Scholar : PubMed/NCBI | |
Panitz V, Končarević S, Sadik A, Friedel D, Bausbacher T, Trump S, Farztdinov V, Schulz S, Sievers P, Schmidt S, et al: Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma. Theranostics. 11:9217–9233. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhong C, Peng L, Tao B, Yin S, Lyu L, Ding H, Yang X, Peng T, He H and Zhou P: TDO2 and tryptophan metabolites promote kynurenine/AhR signals to facilitate glioma progression and immunosuppression. Am J Cancer Res. 12:2558–2575. 2022.PubMed/NCBI | |
Mohapatra SR, Sadik A, Tykocinski LO, Dietze J, Poschet G, Heiland I and Opitz CA: Hypoxia inducible factor 1α inhibits the expression of immunosuppressive tryptophan-2, 3-dioxygenase in glioblastoma. Front Immunol. 10:27622019. View Article : Google Scholar : PubMed/NCBI | |
Ladomersky E, Zhai L, Lauing KL, Bell A, Xu J, Kocherginsky M, Zhang B, Wu JD, Podojil JR, Platanias LC, et al: Advanced age increases immunosuppression in the brain and decreases immunotherapeutic efficacy in subjects with glioblastoma. Clin Cancer Res. 26:5232–5245. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sahm F, Oezen I, Opitz CA, Radlwimmer B, Von Deimling A, Ahrendt T, Adams S, Bode HB, Guillemin GJ, Wick W and Platten M: The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res. 73:3225–3234. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kamson DO, Lee TJ, Varadarajan K, Robinette NL, Muzik O, Chakraborty PK, Snyder M, Barger GR, Mittal S and Juhász C: Clinical significance of tryptophan metabolism in the nontumoral hemisphere in patients with malignant glioma. J Nucl Med. 55:1605–1610. 2014. View Article : Google Scholar : PubMed/NCBI | |
Juhász C, Chugani DC, Barger GR, Kupsky WJ, Chakraborty PK, Muzik O and Mittal S: Quantitative PET imaging of tryptophan accumulation in gliomas and remote cortex: Correlation with tumor proliferative activity. Clin Nucl Med. 37:838–842. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sadik A, Somarribas Patterson LF, Öztürk S, Mohapatra SR, Panitz V, Secker PF, Pfänder P, Loth S, Salem H, Prentzell MT, et al: IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell. 182:1252–70. e342020. View Article : Google Scholar : PubMed/NCBI | |
Batista CE, Juhász C, Muzik O, Kupsky WJ, Barger G, Chugani HT, Mittal S, Sood S, Chakraborty PK and Chugani DC: Imaging correlates of differential expression of indoleamine 2, 3-dioxygenase in human brain tumors. Mol Imaging Biol. 11:460–466. 2009. View Article : Google Scholar : PubMed/NCBI | |
Talari NK, Panigrahi M, Madigubba S, Challa S and Phanithi PB: Altered tryptophan metabolism in human meningioma. J Neurooncol. 130:69–77. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bosnyák E, Kamson DO, Guastella AR, Varadarajan K, Robinette NL, Kupsky WJ, Muzik O, Michelhaugh SK, Mittal S and Juhász C: Molecular imaging correlates of tryptophan metabolism via the kynurenine pathway in human meningiomas. Neuro Oncol. 17:1284–1292. 2015.PubMed/NCBI | |
Ino K, Yamamoto E, Shibata K, Kajiyama H, Yoshida N, Terauchi M, Nawa A, Nagasaka T, Takikawa O and Kikkawa F: Inverse correlation between tumoral indoleamine 2, 3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: Its association with disease progression and survival. Clin Cancer Res. 14:2310–2317. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yoshida N, Ino K, Ishida Y, Kajiyama H, Yamamoto E, Shibata K, Terauchi M, Nawa A, Akimoto H, Takikawa O, et al: Overexpression of indoleamine 2, 3-dioxygenase in human endometrial carcinoma cells induces rapid tumor growth in a mouse xenograft model. Clin Cancer Res. 14:7251–7259. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, Nawa A, Nomura S, et al: Indoleamine 2, 3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer. 95:1555–1561. 2006. View Article : Google Scholar : PubMed/NCBI | |
Inaba T, Ino K, Kajiyama H, Yamamoto E, Shibata K, Nawa A, Nagasaka T, Akimoto H, Takikawa O and Kikkawa F: Role of the immunosuppressive enzyme indoleamine 2, 3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol. 115:185–192. 2009. View Article : Google Scholar : PubMed/NCBI | |
Odunsi K, Qian F, Lugade AA, Yu H, Geller MA, Fling SP, Kaiser JC, Lacroix AM, D'Amico L, Ramchurren N, et al: Metabolic adaptation of ovarian tumors in patients treated with an IDO1 inhibitor constrains antitumor immune responses. Sci Transl Med. 14:eabg84022022. View Article : Google Scholar : PubMed/NCBI | |
Gostner JM, Obermayr E, Braicu IE, Concin N, Mahner S, Vanderstichele A, Sehouli J, Vergote I, Fuchs D and Zeillinger R: Immunobiochemical pathways of neopterin formation and tryptophan breakdown via indoleamine 2, 3-dioxygenase correlate with circulating tumor cells in ovarian cancer patients-A study of the OVCAD consortium. Gynecol Oncol. 149:371–380. 2018. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Shaik S, Negi BS, Rajguru JP, Patil PB, Parihar AS and Sharma U: Non-Hodgkin's lymphoma: A review. J Family Med Prim Care. 9:1834–1840. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shankland KR, Armitage JO and Hancock BW: Non-hodgkin lymphoma. Lancet. 380:848–857. 2012. View Article : Google Scholar : PubMed/NCBI | |
Feller AC and Diebold J: Histopathology of Nodal and Extranodal Non-Hodgkin's Lymphomas. Springer Science & Business Media; Heidelberg: 2003 | |
Liu XQ, Lu K, Feng LL, Ding M, Gao JM, Ge XL and Wang X: Up-regulated expression of indoleamine 2, 3-dioxygenase 1 in non-Hodgkin lymphoma correlates with increased regulatory T-cell infiltration. Leuk Lymphoma. 55:405–414. 2014. View Article : Google Scholar : PubMed/NCBI | |
El Kholy NM, Sallam MM, Ahmed MB, Sallam RM, Asfour IA, Hammouda JA, Habib HZ and Abu-Zahra F: Expression of indoleamine 2, 3-dioxygenase in acute myeloid leukemia and the effect of its inhibition on cultured leukemia blast cells. Med Oncol. 28:270–278. 2011. View Article : Google Scholar : PubMed/NCBI | |
Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, Salvestrini V, Bonanno G, Rutella S, Durelli I, et al: Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T regulatory cells. Blood. 109:2871–2877. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang ML, Kem M, Mooradian MJ, Eliane JP, Huynh TG, Iafrate AJ, Gainor JF and Mino-Kenudson M: Differential expression of PD-L1 and IDO1 in association with the immune microenvironment in resected lung adenocarcinomas. Mod Pathol. 32:511–523. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Yue L, Yao R, Zhou L, Yang Y, Lu L and Gao W: P53 prevent tumor invasion and metastasis by down-regulating IDO in lung cancer. Oncotarget. 8:545482017. View Article : Google Scholar : PubMed/NCBI | |
Hsu YL, Hung JY, Chiang SY, Jian SF, Wu CY, Lin YS, Tsai YM, Chou SH, Tsai MJ and Kuo PL: Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis. Oncotarget. 7:27584–27598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Feng H, Cao B, Peng X and Wei Q: Cancer-associated fibroblasts strengthen cell proliferation and EGFR TKIs resistance through aryl hydrocarbon receptor dependent signals in non-small cell lung cancer. BMC Cancer. 22:7642022. View Article : Google Scholar : PubMed/NCBI | |
Karayama M, Masuda J, Mori K, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Fujisawa T, Enomoto N, Nakamura Y, et al: Comprehensive assessment of multiple tryptophan metabolites as potential biomarkers for immune checkpoint inhibitors in patients with non-small cell lung cancer. Clin Transl Oncol. 23:418–423. 2021. View Article : Google Scholar : PubMed/NCBI | |
Levina V, Su Y and Gorelik E: Immunological and nonimmunological effects of indoleamine 2, 3-dioxygenase on breast tumor growth and spontaneous metastasis formation. Clin Dev Immunol. 2012:1730292012. View Article : Google Scholar : PubMed/NCBI | |
D'Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, Spoelstra NS, Nemkov TG, D'Alessandro A, Hansen KC and Richer JK: A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 75:4651–4664. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC and Puccetti P: T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9:1069–1077. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC and Puccetti P: T cell apoptosis by kynurenines. Adv Exp Med Biol. 527:183–190. 2003. View Article : Google Scholar : PubMed/NCBI | |
Platten M, Wick W and Van den Eynde BJ: Tryptophan catabolism in cancer: Beyond IDO and tryptophan depletion. Cancer Res. 72:5435–5440. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cui M, Liu D, Xiong W, Wang Y and Mi J: ERRFI1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov. 7:2742021. View Article : Google Scholar : PubMed/NCBI | |
Moroni F: Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol. 375:87–100. 1999. View Article : Google Scholar : PubMed/NCBI | |
Li F, Zhao Z, Zhang Z, Zhang Y and Guan W: Tryptophan metabolism induced by TDO2 promotes prostatic cancer chemotherapy resistance in a AhR/c-Myc dependent manner. BMC Cancer. 21:11122021. View Article : Google Scholar : PubMed/NCBI | |
Gao N, Yang Y, Liu S, Fang C, Dou X, Zhang L and Shan A: Gut-derived metabolites from dietary tryptophan supplementation quench intestinal inflammation through the AMPK-SIRT1-autophagy pathway. J Agric Food Chem. 70:16080–16095. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhuo J, Chu L, Liu D, Cai S and Dong H: Tryptophan metabolite indole-3-acetic acid ameliorates pulmonary fibrosis by regulating lung microbiota and inducing autophagy via inhibition of the PI3K/AKT/MTOR pathway. Am J Respir Crit Care Med. A24592024. | |
Osawa Y, Kanamori H, Seki E, Hoshi M, Ohtaki H, Yasuda Y, Ito H, Suetsugu A, Nagaki M, Moriwaki H, et al: L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J Biol Chem. 286:34800–34808. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rathmell JC: Metabolism and autophagy in the immune system: Immunometabolism comes of age. Immunol Rev. 249:52012. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhou W, Zhang X, Ding Y, Du Q and Hu R: 1-L-MT, an IDO inhibitor, prevented colitis-associated cancer by inducing CDC20 inhibition-mediated mitotic death of colon cancer cells. Int J Cancer. 143:1516–1529. 2018. View Article : Google Scholar : PubMed/NCBI | |
Prendergast GC, Malachowski WJ, Mondal A, Scherle P and Muller AJ: Indoleamine 2, 3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol. 336:175–203. 2018. View Article : Google Scholar : PubMed/NCBI | |
Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, et al: An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 478:197–203. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Liang CH, Huang B, Zhuang X, Cui W, Yang L, Yang Y, Zhang Y, Fu X, Zhang X, et al: Tryptophan metabolism acts as a new anti-ferroptotic pathway to mediate tumor growth. Adv Sci (Weinh). 10:22040062023. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Mao S, Shi D, Zhang J, Zhang Z, Guo Y, Wu Y, Wang R, Wang L, Huang Y and Yao X: MicroRNA-153 decreases tryptophan catabolism and inhibits angiogenesis in bladder cancer by targeting indoleamine 2, 3-dioxygenase 1. Front Oncol. 9:6192019. View Article : Google Scholar : PubMed/NCBI | |
Cecchi M, Anceschi C, Silvano A, Coniglio ML, Chinnici A, Magnelli L, Lapucci A, Laurenzana A and Parenti A: Unveiling the role of tryptophan 2, 3-dioxygenase in the angiogenic process. Pharmaceuticals (Basel). 17:5582024. View Article : Google Scholar : PubMed/NCBI | |
Nocito A, Dahm F, Jochum W, Jang JH, Georgiev P, Bader M, Graf R and Clavien PA: Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res. 68:5152–5158. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cerezo AB, Hornedo-Ortega R, Álvarez-Fernández MA, Troncoso AM and García-Parrilla MC: Inhibition of VEGF-induced VEGFR-2 activation and HUVEC migration by melatonin and other bioactive indolic compounds. Nutrients. 9:2492017. View Article : Google Scholar : PubMed/NCBI | |
Peters MA, Walenkamp AM, Kema IP, Meijer C, de Vries EG and Oosting SF: Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat. 17:96–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nayak-Kapoor A, Hao Z, Sadek R, Dobbins R, Marshall L, Vahanian NN, Jay Ramsey W, Kennedy E, Mautino MR, Link CJ, et al: Phase Ia study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) in patients with recurrent advanced solid tumors. J Immunother Cancer. 6:612018. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Zhao D, Huang Y, Wen X and Feng S: Synergetic impact of combined navoximod with cisplatin mitigates chemo-immune resistance via blockading IDO1(+) CAFs-secreted Kyn/AhR/IL-6 and pol ζ-prevented CIN in human oral squamous cell carcinoma. Life Sci. 335:1222392023. View Article : Google Scholar : PubMed/NCBI | |
Wang XX, Sun SY, Dong QQ, Wu XX, Tang W and Xing YQ: Recent advances in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Medchemcomm. 10:1740–1754. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oh JE, Shim KY, Lee JI, Choi SI, Baik SK and Eom YW: 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-γ by increasing the expression of IFN-γRβ, IRF-1 and FAS. Int J Mol Med. 40:576–582. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lewis HC, Chinnadurai R, Bosinger SE and Galipeau J: The IDO inhibitor 1-methyl tryptophan activates the aryl hydrocarbon receptor response in mesenchymal stromal cells. Oncotarget. 8:91914–91927. 2017. View Article : Google Scholar : PubMed/NCBI | |
Opitz CA, Litzenburger UM, Opitz U, Sahm F, Ochs K, Lutz C and Wick Wand Platten M: The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One. 6:e198232011. View Article : Google Scholar : PubMed/NCBI | |
Takada K, Kohashi K, Shimokawa M, Haro A, Osoegawa A, Tagawa T, Seto T, Oda Y and Maehara Y: Co-expression of IDO1 and PD-L1 in lung squamous cell carcinoma: Potential targets of novel combination therapy. Lung Cancer. 128:26–32. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ladomersky E, Zhai L, Lenzen A, Lauing KL, Qian J, Scholtens DM, Gritsina G, Sun X, Liu Y, Yu F, et al: IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin Cancer Res. 24:2559–2573. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kotecki N, Vuagnat P, O'Neil BH, Jalal S, Rottey S, Prenen H, Benhadji KA, Xia M, Szpurka AM, Saha A, et al: A Phase I study of an IDO-1 inhibitor (LY3381916) as monotherapy and in combination with an Anti-PD-L1 Antibody (LY3300054) in patients with advanced cancer. J Immunother. 44:264–275. 2021. View Article : Google Scholar : PubMed/NCBI | |
Balog A, Lin TA, Maley D, Gullo-Brown J, Kandoussi EH, Zeng J and Hunt JT: Preclinical characterization of linrodostat mesylate, a novel, potent, and selective oral indoleamine 2,3-dioxygenase 1 inhibitor. Mol Cancer Ther. 20:467–476. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Sun-Waterhouse D and Cui C: The therapeutic potential of diet on immune-related diseases: Based on the regulation on tryptophan metabolism. Crit Rev Food Sci Nutr. 62:8793–8811. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H and Zhu YZ: Update of indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother. 150:1129572022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang B, Hu Y and Zhao Y: New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front Pharmacol. 12:7695012021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Pei Z, Pan T, Wang H, Chen W and Lu W: Indole metabolites and colorectal cancer: Gut microbial tryptophan metabolism, host gut microbiome biomarkers, and potential intervention mechanisms. Microbiol Res. 272:1273922023. View Article : Google Scholar : PubMed/NCBI | |
Krause FF, Mangold KI, Ruppert AL, Leister H, Hellhund-Zingel A, Lopez Krol A, Pesek J, Watzer B, Winterberg S, Raifer H, et al: Clostridium sporogenes-derived metabolites protect mice against colonic inflammation. Gut Microbes. 16:24126692024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen H, Van Treuren W, Hou BH, Higginbottom SK and Dodd D: Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites. Nat Microbiol. 7:695–706. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang A, Guan C, Wang T, Mu G and Tuo Y: Lactiplantibacillus plantarum-derived indole-3-lactic acid ameliorates intestinal barrier integrity through the AhR/Nrf2/NF-κB Axis. J Agric Food Chem. April 10–2024.(Epub ahead of print). | |
Wang A, Guan C, Wang T, Mu G and Tuo Y: Indole-3-lactic acid, a tryptophan metabolite of lactiplantibacillus plantarum DPUL-S164, improved intestinal barrier damage by activating AhR and Nrf2 signaling pathways. J Agric Food Chem. 71:18792–18801. 2023. View Article : Google Scholar : PubMed/NCBI | |
Leclerc D, Staats Pires AC, Guillemin GJ and Gilot D: Detrimental activation of AhR pathway in cancer: An overview of therapeutic strategies. Curr Opin Immunol. 70:15–26. 2021. View Article : Google Scholar : PubMed/NCBI | |
Paris A, Tardif N, Galibert MD and Corre S: AhR and cancer: From gene profiling to targeted therapy. Int J Mol Sci. 22:7522022. View Article : Google Scholar | |
Wang Z, Monti S and Sherr DH: The diverse and important contributions of the AHR to cancer and cancer immunity. Current Opin Toxicol. 2:93–102. 2017. View Article : Google Scholar | |
Sun M, Ma N, He T, Johnston LJ and Ma X: Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit Rev Food Sci Nutr. 60:1760–1768. 2020. View Article : Google Scholar : PubMed/NCBI | |
Griffith BD and Frankel TL: The aryl hydrocarbon receptor: impact on the tumor immune microenvironment and modulation as a potential therapy. Cancers (Basel). 16:4722024. View Article : Google Scholar : PubMed/NCBI | |
Leja-Szpak A, Góralska M, Link-Lenczowski P, Czech U, Nawrot-Porąbka K, Bonior J and Jaworek J: The opposite effect of L-kynurenine and Ahr inhibitor Ch223191 on apoptotic protein expression in pancreatic carcinoma cells (Panc-1). Anticancer Agents Med Chem. 19:2079–2090. 2019. View Article : Google Scholar : PubMed/NCBI | |
Choi EY, Lee H, Dingle RW, Kim KB and Swanson HI: Development of novel CH223191-based antagonists of the aryl hydrocarbon receptor. Mol Pharmacol. 81:3–11. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ma YC, Song J, Jin Y and Bao YN: StemRegenin-1 reverses drug resistance of MCF-7/ADR Cells via AhR/ABC transports and AhR/UGTs pathways. Current Proteomics. 21:113–128. 2024. View Article : Google Scholar | |
Kober C, Roewe J, Schmees N, Roese L, Roehn U, Bader B, Stoeckigt D, Prinz F, Gorjánácz M, Roider HG, et al: Targeting the aryl hydrocarbon receptor (AhR) with BAY 2416964: A selective small molecule inhibitor for cancer immunotherapy. J Immunother Cancer. 11:e0074952023. View Article : Google Scholar : PubMed/NCBI | |
Parks AJ, Pollastri MP, Hahn ME, Stanford EA, Novikov O, Franks DG, Haigh SE, Narasimhan S, Ashton TD, Hopper TG, et al: In silico identification of an aryl hydrocarbon receptor antagonist with biological activity in vitro and in vivo. Mol Pharmacol. 86:593–608. 2014. View Article : Google Scholar : PubMed/NCBI | |
Garg A, Sharma A, Krishnamoorthy P, Garg J, Virmani D, Sharma T, Stefanini G, Kostis JB, Mukherjee D and Sikorskaya E: Role of niacin in current clinical practice: A systematic review. Am J Med. 130:173–187. 2017. View Article : Google Scholar : PubMed/NCBI |