Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July-2025 Volume 54 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 54 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review)

  • Authors:
    • Jiawei Zhao
    • Xiaohui Bai
    • Jingjing Du
    • Yujing Chen
    • Xiaotong Guo
    • Juzheng Zhang
    • Jinfeng Gan
    • Peitao Wu
    • Siqi Chen
    • Xinwen Zhang
    • Jinfeng Yang
    • Jiamin Jin
    • Li Gao
  • View Affiliations / Copyright

    Affiliations: Department of Urology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China, Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
    Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 86
    |
    Published online on: May 28, 2025
       https://doi.org/10.3892/or.2025.8919
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tryptophan (Trp) metabolism is a complex and important biochemical process in humans. It is vital in protein synthesis and is a precursor of various bioactive molecules. Trp is metabolized through the kynurenine, serotonin and indole pathways, mediating diverse physiological functions, including neurotransmitter synthesis, immune regulation, antioxidant effects, and biosynthesis of niacin and melatonin. These metabolic pathways maintain essential functions under normal physiological conditions. However, they are significantly affected by various types of cancers. Trp metabolites regulate tumor angiogenesis, affect the self‑renewal of cancer stem cells, and participate in immune evasion and cell death through complex mechanisms. As the mechanisms underlying Trp metabolism in diseases are increasingly being elucidated, targeting Trp metabolic pathways has emerged as a promising therapeutic strategy. Further investigation of the molecular mechanisms underlying Trp metabolism and its role in diseases may provide new perspectives and approaches for diagnosing and treating diseases.
View Figures

Figure 1

Figure 2

View References

1 

Barik S: The uniqueness of tryptophan in biology: Properties, metabolism, interactions and localization in proteins. Int J Mol Sci. 21:87762020. View Article : Google Scholar : PubMed/NCBI

2 

Palego L, Betti L, Rossi A and Giannaccini G: Tryptophan biochemistry: Structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids. 2016:89525202016. View Article : Google Scholar : PubMed/NCBI

3 

Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS and Bjørklund G: How important is tryptophan in human health? Crit Rev Food Sci Nutr. 59:72–88. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Schwarcz R, Bruno JP, Muchowski PJ and Wu HQ: Kynurenines in the mammalian brain: When physiology meets pathology. Nat Rev Neurosci. 13:465–477. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Sharma L and Riva A: Intestinal barrier function in health and disease - Any role of SARS-CoV-2? Microorganisms. 8:17442020.https://doi.org/10.3390/microorganisms8111744 View Article : Google Scholar : PubMed/NCBI

6 

Liu XH and Zhai XY: Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie. 182:131–139. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, et al: Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer. 23:2412024. View Article : Google Scholar : PubMed/NCBI

8 

Perez-Castro L, Garcia R, Venkateswaran N, Barnes S and Conacci-Sorrell M: Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J. 290:7–27. 2023. View Article : Google Scholar : PubMed/NCBI

9 

Zhang HL, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF and Wang XJ: Targeting regulation of tryptophan metabolism for colorectal cancer therapy: A systematic review. RSC Adv. 9:3072–3080. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Badawy AA: Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int J Tryptophan Res. 10:11786469176919382017. View Article : Google Scholar : PubMed/NCBI

11 

Stone TW and Darlington LG: Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov. 1:609–620. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Lugo-Huitrón R, Ugalde Muñiz P, Pineda B, Pedraza-Chaverrí J, Ríos C and Pérez-de la Cruz V: Quinolinic acid: An endogenous neurotoxin with multiple targets. Oxid Med Cell Longev. 2013:1040242013. View Article : Google Scholar : PubMed/NCBI

13 

Mandarano M, Orecchini E, Bellezza G, Vannucci J, Ludovini V, Baglivo S, Tofanetti FR, Chiari R, Loreti E, Puma F, et al: Kynurenine/tryptophan ratio as a potential blood-based biomarker in non-small cell lung cancer. Int J Mol Sci. 22:44032021. View Article : Google Scholar : PubMed/NCBI

14 

Kwiatkowska I, Hermanowicz JM, Przybyszewska-Podstawka A and Pawlak D: Not only immune escape-the confusing role of the TRP metabolic pathway in carcinogenesis. Cancers (Basel). 13:26672021. View Article : Google Scholar : PubMed/NCBI

15 

Suzuki Y, Suda T, Furuhashi K, Suzuki M, Fujie M, Hahimoto D, Nakamura Y, Inui N, Nakamura H and Chida K: Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer. 67:361–365. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Crotti S, D'Angelo E, Bedin C, Fassan M, Pucciarelli S, Nitti D, Bertazzo A and Agostini M: Tryptophan metabolism along the kynurenine and serotonin pathways reveals substantial differences in colon and rectal cancer. Metabolomics. 13:1482017. View Article : Google Scholar

17 

Ogyu K, Kubo K, Noda Y, Iwata Y, Tsugawa S, Omura Y, Wada M, Tarumi R, Plitman E, Moriguchi S, et al: Kynurenine pathway in depression: A systematic review and meta-analysis. Neurosci Biobehav Rev. 90:16–25. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Maddison DC and Giorgini F: The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol. 40:134–141. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Schwarcz R and Pellicciari R: Manipulation of brain kynurenines: Glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther. 303:1–10. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Walther DJ and Bader M: A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 66:1673–1680. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Patel PD, Pontrello C and Burke S: Robust and tissue-specific expression of TPH2 versus TPH1 in rat raphe and pineal gland. Biol Psychiatry. 55:428–433. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Kalinichenko LS, Kornhuber J, Sinning S, Haase J and Müller CP: Serotonin signaling through lipid membranes. ACS Chem Neurosci. 15:1298–1320. 2024. View Article : Google Scholar : PubMed/NCBI

23 

Murphy DL and Lesch KP: Targeting the murine serotonin transporter: Insights into human neurobiology. Nat Rev Neurosci. 9:85–96. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Shi X, Zhao G, Li H, Zhao Z, Li W, Wu M and Du YL: Hydroxytryptophan biosynthesis by a family of heme-dependent enzymes in bacteria. Nat Chem Biol. 19:1415–1422. 2023. View Article : Google Scholar : PubMed/NCBI

25 

Jung KH, LoRusso P, Burris H, Gordon M, Bang YJ, Hellmann MD, Cervantes A, Ochoa de Olza M, Marabelle A, Hodi FS, et al: Phase I study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (Atezolizumab) in advanced solid tumors. Clin Cancer Res. 25:3220–3228. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Ebata T, Shimizu T, Fujiwara Y, Tamura K, Kondo S, Iwasa S, Yonemori K, Shimomura A, Kitano S, Koyama T, et al: Phase I study of the indoleamine 2,3-dioxygenase 1 inhibitor navoximod (GDC-0919) as monotherapy and in combination with the PD-L1 inhibitor atezolizumab in Japanese patients with advanced solid tumours. Invest New Drugs. 38:468–477. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Gomes B, Driessens G, Bartlett D, Cai D, Cauwenberghs S, Crosignani S, Dalvie D, Denies S, Dillon CP, Fantin VR, et al: Characterization of the selective indoleamine 2,3-dioxygenase-1 (IDO1) catalytic inhibitor EOS200271/PF-06840003 Supports IDO1 as a critical resistance mechanism to PD-(L)1 blockade therapy. Mol Cancer Ther. 17:2530–2542. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Crosignani S, Bingham P, Bottemanne P, Cannelle H, Cauwenberghs S, Cordonnier M, Dalvie D, Deroose F, Feng JL, Gomes B, et al: Discovery of a novel and selective indoleamine 2,3-dioxygenase (IDO-1) inhibitor 3-(5-Fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and Its characterization as a potential clinical candidate. J Med Chem. 60:9617–9629. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Kim M and Tomek P: Tryptophan: A rheostat of cancer immune escape mediated by immunosuppressive enzymes IDO1 and TDO. Front Immunol. 12:6360812021. View Article : Google Scholar : PubMed/NCBI

30 

Roager HM and Licht TR: Microbial tryptophan catabolites in health and disease. Nat Commun. 9:32942018. View Article : Google Scholar : PubMed/NCBI

31 

Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R and Overbeek SA: Microbial-derived tryptophan catabolites, kidney disease and gut inflammation. Toxins (Basel). 14:6452022. View Article : Google Scholar : PubMed/NCBI

32 

Medvedev A and Buneeva O: Tryptophan metabolites as mediators of microbiota-gut-brain communication: Focus on isatin. Front Behav Neurosci. 16:9222742022. View Article : Google Scholar : PubMed/NCBI

33 

Ghiboub M, Boneh RS, Sovran B, Wine E, Lefèvre A, Emond P, Verburgt CM, Benninga MA, de Jonge WJ and Van Limbergen JE: Sustained diet-induced remission in pediatric Crohn's disease is associated with kynurenine and serotonin pathways. Inflamm Bowel Dis. 29:684–694. 2023. View Article : Google Scholar : PubMed/NCBI

34 

Vanholder R, Nigam SK, Burtey S and Glorieux G: What if not all metabolites from the uremic toxin generating pathways are toxic? A hypothesis. Toxins (Basel). 14:2212022. View Article : Google Scholar : PubMed/NCBI

35 

Spaepen S and Vanderleyden J: Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. 3:a0014382011. View Article : Google Scholar : PubMed/NCBI

36 

Ye Z, Yue L, Shi J, Shao M and Wu T: Role of IDO and TDO in cancers and related diseases and the therapeutic implications. J Cancer. 10:2771–2782. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Jochems C, Fantini M, Fernando RI, Kwilas AR, Donahue RN, Lepone LM, Grenga I, Kim YS, Brechbiel MW, Gulley JL, et al: The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget. 7:37762–37772. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Someya S, Tohyama S, Kameda K, Tanosaki S, Morita Y, Sasaki K, Kang MI, Kishino Y, Okada M, Tani H, et al: Tryptophan metabolism regulates proliferative capacity of human pluripotent stem cells. iScience. 24:1020902021. View Article : Google Scholar : PubMed/NCBI

39 

Zhang Q and Li W: Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy. World J Stem Cells. 14:267–286. 2022. View Article : Google Scholar : PubMed/NCBI

40 

Munro MJ, Wickremesekera SK, Peng L, Tan ST and Itinteang T: Cancer stem cells in colorectal cancer: A review. J Clin Pathol. 71:110–116. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Bishnupuri KS, Alvarado DM, Khouri AN, Shabsovich M, Chen B, Dieckgraefe BK and Ciorba MA: IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 79:1138–1150. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Thaker AI, Rao MS, Bishnupuri KS, Kerr TA, Foster L, Marinshaw JM, Newberry RD, Stenson WF and Ciorba MA: IDO1 metabolites activate β-catenin signaling to promote cancer cell proliferation and colon tumorigenesis in mice. Gastroenterology. 145:416–425.e1-e4. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Chen J, Shao R, Li F, Monteiro M, Liu JP, Xu ZP and Gu W: PI 3K/Akt/mTOR pathway dual inhibitor BEZ 235 suppresses the stemness of colon cancer stem cells. Clin Exp Pharmacol Physiol. 42:1317–1326. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Vermeulen L, De Sousa E, Melo F, Van Der Heijden M, Cameron K, De Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, et al: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 12:468–476. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Zhu P, Lu T, Chen Z, Liu B, Fan D, Li C, Wu J, He L, Zhu X, Du Y, et al: 5-hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis. Neuron. 110:2268–2282. e42022. View Article : Google Scholar : PubMed/NCBI

46 

Zheng X, Pang B, Gu G, Gao T, Zhang R, Pang Q and Liu Q: Melatonin inhibits glioblastoma stem-like cells through suppression of EZH2-NOTCH1 signaling axis. Int J Biol Sci. 13:245–253. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Gürsel DB, Berry N and Boockvar JA: The contribution of Notch signaling to glioblastoma via activation of cancer stem cell self-renewal: the role of the endothelial network. Neurosurgery. 70:N19–N21. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Pham QT, Oue N, Sekino Y, Yamamoto Y, Shigematsu Y, Sakamoto N, Sentani K, Uraoka N and Yasui W: TDO2 overexpression is associated with cancer stem cells and poor prognosis in esophageal squamous cell carcinoma. Oncology. 95:297–308. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Liu J, Qin X, Pan D, Zhang B and Jin F: Amino acid-mediated metabolism: A new power to influence properties of stem cells. Stem Cells Int. 2019:69194632019. View Article : Google Scholar : PubMed/NCBI

50 

Zhang R, Hu P, Zang Q, Yue X, Zhou Z, Xu X, Xu J, Li S, Chen Y, Qiang B, et al: LC-MS-based metabolomics reveals metabolic signatures related to glioma stem-like cell self-renewal and differentiation. RSC Adv. 7:24221–24232. 2017. View Article : Google Scholar

51 

Venkateswaran N and Conacci-Sorrell M: Kynurenine: An oncometabolite in colon cancer. Cell Stress. 4:24–26. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Shi D, Wu X, Jian Y, Wang J, Huang C, Mo S, Li Y, Li F, Zhang C, Zhang D, et al: USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer. Nat Commun. 13:56442022. View Article : Google Scholar : PubMed/NCBI

53 

Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Göbel G, et al: Prognostic value of indoleamine 2, 3-dioxygenase expression in colorectal cancer: Effect on tumor-infiltrating T cells. Clin Cancer Res. 12:1144–1151. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Pan K, Wang H, Chen MS, Zhang HK, Weng DS, Zhou J, Huang W, Li JJ, Song HF and Xia JC: Expression and prognosis role of indoleamine 2, 3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin Oncol. 134:1247–1253. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Zhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li TJ and Zheng L: Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J Immunol. 188:1117–1124. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Tummala KS, Gomes AL, Yilmaz M, Graña O, Bakiri L, Ruppen I, Ximénez-Embún P, Sheshappanavar V, Rodriguez-Justo M, Pisano DG, et al: Inhibition of de novo NAD+ synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell. 26:826–839. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Yu C, Rao D, Zhu H, Liu Q, Huang W, Zhang L, Liang H, Song J and Ding Z: TDO2 was downregulated in hepatocellular carcinoma and inhibited cell proliferation by upregulating the expression of p21 and p27. Biomed Res Int. 2021:47084392021. View Article : Google Scholar : PubMed/NCBI

58 

Wu Z, Yan L, Lin J, Ke K and Yang W: Constitutive TDO2 expression promotes liver cancer progression by an autocrine IL-6 signaling pathway. 2 Cancer Cell Int. 21:5382021. View Article : Google Scholar : PubMed/NCBI

59 

Li L, Wang T, Li S, Chen Z, Wu J, Cao W, Wo Q, Qin X and Xu J: TDO2 promotes the EMT of hepatocellular carcinoma through Kyn-AhR pathway. Front Oncol. 10:5628232021. View Article : Google Scholar : PubMed/NCBI

60 

Jin H, Zhang Y, You H, Tao X, Wang C, Jin G, Wang N, Ruan H, Gu D, Huo X, et al: Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration and invasion of human hepatocellular carcinoma. Sci Rep. 5:104662015. View Article : Google Scholar : PubMed/NCBI

61 

Shi Z, Gan G, Xu X, Zhang J, Yuan Y, Bi B, Gao X, Xu P, Zeng W, Li J, et al: Kynurenine derivative 3-HAA is an agonist ligand for transcription factor YY1. J Hematol Oncol. 14:1532021. View Article : Google Scholar : PubMed/NCBI

62 

Zuo X, Chen Z, Cai J, Gao W, Zhang Y, Han G, Pu L, Wu Z, You W, Qin J, et al: 5-Hydroxytryptamine receptor 1D aggravates hepatocellular carcinoma progression through FoxO6 in AKT-dependent and independent manners. Hepatology. 69:2031–2047. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Zhang T, Tan XL, Xu Y, Wang ZZ, Xiao CH and Liu R: Expression and prognostic value of indoleamine 2, 3-dioxygenase in pancreatic cancer. Chin Med J (Engl). 130:710–716. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Hezaveh K, Shinde RS, Klötgen A, Halaby MJ, Lamorte S, Ciudad MT, Quevedo R, Neufeld L, Liu ZQ, Jin R, et al: Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity. 55:324–40. e82022. View Article : Google Scholar : PubMed/NCBI

65 

Koblish HK, Hansbury MJ, Bowman KJ, Yang G, Neilan CL, Haley PJ, Burn TC, Waeltz P, Sparks RB, Yue EW, et al: Hydroxyamidine inhibitors of indoleamine-2, 3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Mol Cancer Ther. 9:489–498. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Guastella AR, Michelhaugh SK, Klinger NV, Fadel HA, Kiousis S, Ali-Fehmi R, Kupsky WJ, Juhász C and Mittal S: Investigation of the aryl hydrocarbon receptor and the intrinsic tumoral component of the kynurenine pathway of tryptophan metabolism in primary brain tumors. J Neurooncol. 139:239–249. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Panitz V, Končarević S, Sadik A, Friedel D, Bausbacher T, Trump S, Farztdinov V, Schulz S, Sievers P, Schmidt S, et al: Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma. Theranostics. 11:9217–9233. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Zhong C, Peng L, Tao B, Yin S, Lyu L, Ding H, Yang X, Peng T, He H and Zhou P: TDO2 and tryptophan metabolites promote kynurenine/AhR signals to facilitate glioma progression and immunosuppression. Am J Cancer Res. 12:2558–2575. 2022.PubMed/NCBI

69 

Mohapatra SR, Sadik A, Tykocinski LO, Dietze J, Poschet G, Heiland I and Opitz CA: Hypoxia inducible factor 1α inhibits the expression of immunosuppressive tryptophan-2, 3-dioxygenase in glioblastoma. Front Immunol. 10:27622019. View Article : Google Scholar : PubMed/NCBI

70 

Ladomersky E, Zhai L, Lauing KL, Bell A, Xu J, Kocherginsky M, Zhang B, Wu JD, Podojil JR, Platanias LC, et al: Advanced age increases immunosuppression in the brain and decreases immunotherapeutic efficacy in subjects with glioblastoma. Clin Cancer Res. 26:5232–5245. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Sahm F, Oezen I, Opitz CA, Radlwimmer B, Von Deimling A, Ahrendt T, Adams S, Bode HB, Guillemin GJ, Wick W and Platten M: The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res. 73:3225–3234. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Kamson DO, Lee TJ, Varadarajan K, Robinette NL, Muzik O, Chakraborty PK, Snyder M, Barger GR, Mittal S and Juhász C: Clinical significance of tryptophan metabolism in the nontumoral hemisphere in patients with malignant glioma. J Nucl Med. 55:1605–1610. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Juhász C, Chugani DC, Barger GR, Kupsky WJ, Chakraborty PK, Muzik O and Mittal S: Quantitative PET imaging of tryptophan accumulation in gliomas and remote cortex: Correlation with tumor proliferative activity. Clin Nucl Med. 37:838–842. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Sadik A, Somarribas Patterson LF, Öztürk S, Mohapatra SR, Panitz V, Secker PF, Pfänder P, Loth S, Salem H, Prentzell MT, et al: IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell. 182:1252–70. e342020. View Article : Google Scholar : PubMed/NCBI

75 

Batista CE, Juhász C, Muzik O, Kupsky WJ, Barger G, Chugani HT, Mittal S, Sood S, Chakraborty PK and Chugani DC: Imaging correlates of differential expression of indoleamine 2, 3-dioxygenase in human brain tumors. Mol Imaging Biol. 11:460–466. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Talari NK, Panigrahi M, Madigubba S, Challa S and Phanithi PB: Altered tryptophan metabolism in human meningioma. J Neurooncol. 130:69–77. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Bosnyák E, Kamson DO, Guastella AR, Varadarajan K, Robinette NL, Kupsky WJ, Muzik O, Michelhaugh SK, Mittal S and Juhász C: Molecular imaging correlates of tryptophan metabolism via the kynurenine pathway in human meningiomas. Neuro Oncol. 17:1284–1292. 2015.PubMed/NCBI

78 

Ino K, Yamamoto E, Shibata K, Kajiyama H, Yoshida N, Terauchi M, Nawa A, Nagasaka T, Takikawa O and Kikkawa F: Inverse correlation between tumoral indoleamine 2, 3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: Its association with disease progression and survival. Clin Cancer Res. 14:2310–2317. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Yoshida N, Ino K, Ishida Y, Kajiyama H, Yamamoto E, Shibata K, Terauchi M, Nawa A, Akimoto H, Takikawa O, et al: Overexpression of indoleamine 2, 3-dioxygenase in human endometrial carcinoma cells induces rapid tumor growth in a mouse xenograft model. Clin Cancer Res. 14:7251–7259. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, Nawa A, Nomura S, et al: Indoleamine 2, 3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer. 95:1555–1561. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Inaba T, Ino K, Kajiyama H, Yamamoto E, Shibata K, Nawa A, Nagasaka T, Akimoto H, Takikawa O and Kikkawa F: Role of the immunosuppressive enzyme indoleamine 2, 3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol. 115:185–192. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Odunsi K, Qian F, Lugade AA, Yu H, Geller MA, Fling SP, Kaiser JC, Lacroix AM, D'Amico L, Ramchurren N, et al: Metabolic adaptation of ovarian tumors in patients treated with an IDO1 inhibitor constrains antitumor immune responses. Sci Transl Med. 14:eabg84022022. View Article : Google Scholar : PubMed/NCBI

83 

Gostner JM, Obermayr E, Braicu IE, Concin N, Mahner S, Vanderstichele A, Sehouli J, Vergote I, Fuchs D and Zeillinger R: Immunobiochemical pathways of neopterin formation and tryptophan breakdown via indoleamine 2, 3-dioxygenase correlate with circulating tumor cells in ovarian cancer patients-A study of the OVCAD consortium. Gynecol Oncol. 149:371–380. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Singh R, Shaik S, Negi BS, Rajguru JP, Patil PB, Parihar AS and Sharma U: Non-Hodgkin's lymphoma: A review. J Family Med Prim Care. 9:1834–1840. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Shankland KR, Armitage JO and Hancock BW: Non-hodgkin lymphoma. Lancet. 380:848–857. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Feller AC and Diebold J: Histopathology of Nodal and Extranodal Non-Hodgkin's Lymphomas. Springer Science & Business Media; Heidelberg: 2003

87 

Liu XQ, Lu K, Feng LL, Ding M, Gao JM, Ge XL and Wang X: Up-regulated expression of indoleamine 2, 3-dioxygenase 1 in non-Hodgkin lymphoma correlates with increased regulatory T-cell infiltration. Leuk Lymphoma. 55:405–414. 2014. View Article : Google Scholar : PubMed/NCBI

88 

El Kholy NM, Sallam MM, Ahmed MB, Sallam RM, Asfour IA, Hammouda JA, Habib HZ and Abu-Zahra F: Expression of indoleamine 2, 3-dioxygenase in acute myeloid leukemia and the effect of its inhibition on cultured leukemia blast cells. Med Oncol. 28:270–278. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, Salvestrini V, Bonanno G, Rutella S, Durelli I, et al: Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T regulatory cells. Blood. 109:2871–2877. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Zhang ML, Kem M, Mooradian MJ, Eliane JP, Huynh TG, Iafrate AJ, Gainor JF and Mino-Kenudson M: Differential expression of PD-L1 and IDO1 in association with the immune microenvironment in resected lung adenocarcinomas. Mod Pathol. 32:511–523. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Tang D, Yue L, Yao R, Zhou L, Yang Y, Lu L and Gao W: P53 prevent tumor invasion and metastasis by down-regulating IDO in lung cancer. Oncotarget. 8:545482017. View Article : Google Scholar : PubMed/NCBI

92 

Hsu YL, Hung JY, Chiang SY, Jian SF, Wu CY, Lin YS, Tsai YM, Chou SH, Tsai MJ and Kuo PL: Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis. Oncotarget. 7:27584–27598. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Feng H, Cao B, Peng X and Wei Q: Cancer-associated fibroblasts strengthen cell proliferation and EGFR TKIs resistance through aryl hydrocarbon receptor dependent signals in non-small cell lung cancer. BMC Cancer. 22:7642022. View Article : Google Scholar : PubMed/NCBI

94 

Karayama M, Masuda J, Mori K, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Fujisawa T, Enomoto N, Nakamura Y, et al: Comprehensive assessment of multiple tryptophan metabolites as potential biomarkers for immune checkpoint inhibitors in patients with non-small cell lung cancer. Clin Transl Oncol. 23:418–423. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Levina V, Su Y and Gorelik E: Immunological and nonimmunological effects of indoleamine 2, 3-dioxygenase on breast tumor growth and spontaneous metastasis formation. Clin Dev Immunol. 2012:1730292012. View Article : Google Scholar : PubMed/NCBI

96 

D'Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, Spoelstra NS, Nemkov TG, D'Alessandro A, Hansen KC and Richer JK: A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 75:4651–4664. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC and Puccetti P: T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9:1069–1077. 2002. View Article : Google Scholar : PubMed/NCBI

98 

Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC and Puccetti P: T cell apoptosis by kynurenines. Adv Exp Med Biol. 527:183–190. 2003. View Article : Google Scholar : PubMed/NCBI

99 

Platten M, Wick W and Van den Eynde BJ: Tryptophan catabolism in cancer: Beyond IDO and tryptophan depletion. Cancer Res. 72:5435–5440. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Cui M, Liu D, Xiong W, Wang Y and Mi J: ERRFI1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov. 7:2742021. View Article : Google Scholar : PubMed/NCBI

101 

Moroni F: Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol. 375:87–100. 1999. View Article : Google Scholar : PubMed/NCBI

102 

Li F, Zhao Z, Zhang Z, Zhang Y and Guan W: Tryptophan metabolism induced by TDO2 promotes prostatic cancer chemotherapy resistance in a AhR/c-Myc dependent manner. BMC Cancer. 21:11122021. View Article : Google Scholar : PubMed/NCBI

103 

Gao N, Yang Y, Liu S, Fang C, Dou X, Zhang L and Shan A: Gut-derived metabolites from dietary tryptophan supplementation quench intestinal inflammation through the AMPK-SIRT1-autophagy pathway. J Agric Food Chem. 70:16080–16095. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Zhuo J, Chu L, Liu D, Cai S and Dong H: Tryptophan metabolite indole-3-acetic acid ameliorates pulmonary fibrosis by regulating lung microbiota and inducing autophagy via inhibition of the PI3K/AKT/MTOR pathway. Am J Respir Crit Care Med. A24592024.

105 

Osawa Y, Kanamori H, Seki E, Hoshi M, Ohtaki H, Yasuda Y, Ito H, Suetsugu A, Nagaki M, Moriwaki H, et al: L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J Biol Chem. 286:34800–34808. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Rathmell JC: Metabolism and autophagy in the immune system: Immunometabolism comes of age. Immunol Rev. 249:52012. View Article : Google Scholar : PubMed/NCBI

107 

Liu X, Zhou W, Zhang X, Ding Y, Du Q and Hu R: 1-L-MT, an IDO inhibitor, prevented colitis-associated cancer by inducing CDC20 inhibition-mediated mitotic death of colon cancer cells. Int J Cancer. 143:1516–1529. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Prendergast GC, Malachowski WJ, Mondal A, Scherle P and Muller AJ: Indoleamine 2, 3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol. 336:175–203. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, et al: An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 478:197–203. 2011. View Article : Google Scholar : PubMed/NCBI

110 

Liu D, Liang CH, Huang B, Zhuang X, Cui W, Yang L, Yang Y, Zhang Y, Fu X, Zhang X, et al: Tryptophan metabolism acts as a new anti-ferroptotic pathway to mediate tumor growth. Adv Sci (Weinh). 10:22040062023. View Article : Google Scholar : PubMed/NCBI

111 

Zhang W, Mao S, Shi D, Zhang J, Zhang Z, Guo Y, Wu Y, Wang R, Wang L, Huang Y and Yao X: MicroRNA-153 decreases tryptophan catabolism and inhibits angiogenesis in bladder cancer by targeting indoleamine 2, 3-dioxygenase 1. Front Oncol. 9:6192019. View Article : Google Scholar : PubMed/NCBI

112 

Cecchi M, Anceschi C, Silvano A, Coniglio ML, Chinnici A, Magnelli L, Lapucci A, Laurenzana A and Parenti A: Unveiling the role of tryptophan 2, 3-dioxygenase in the angiogenic process. Pharmaceuticals (Basel). 17:5582024. View Article : Google Scholar : PubMed/NCBI

113 

Nocito A, Dahm F, Jochum W, Jang JH, Georgiev P, Bader M, Graf R and Clavien PA: Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res. 68:5152–5158. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Cerezo AB, Hornedo-Ortega R, Álvarez-Fernández MA, Troncoso AM and García-Parrilla MC: Inhibition of VEGF-induced VEGFR-2 activation and HUVEC migration by melatonin and other bioactive indolic compounds. Nutrients. 9:2492017. View Article : Google Scholar : PubMed/NCBI

115 

Peters MA, Walenkamp AM, Kema IP, Meijer C, de Vries EG and Oosting SF: Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat. 17:96–104. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Nayak-Kapoor A, Hao Z, Sadek R, Dobbins R, Marshall L, Vahanian NN, Jay Ramsey W, Kennedy E, Mautino MR, Link CJ, et al: Phase Ia study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) in patients with recurrent advanced solid tumors. J Immunother Cancer. 6:612018. View Article : Google Scholar : PubMed/NCBI

117 

Chen F, Zhao D, Huang Y, Wen X and Feng S: Synergetic impact of combined navoximod with cisplatin mitigates chemo-immune resistance via blockading IDO1(+) CAFs-secreted Kyn/AhR/IL-6 and pol ζ-prevented CIN in human oral squamous cell carcinoma. Life Sci. 335:1222392023. View Article : Google Scholar : PubMed/NCBI

118 

Wang XX, Sun SY, Dong QQ, Wu XX, Tang W and Xing YQ: Recent advances in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Medchemcomm. 10:1740–1754. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Oh JE, Shim KY, Lee JI, Choi SI, Baik SK and Eom YW: 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-γ by increasing the expression of IFN-γRβ, IRF-1 and FAS. Int J Mol Med. 40:576–582. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Lewis HC, Chinnadurai R, Bosinger SE and Galipeau J: The IDO inhibitor 1-methyl tryptophan activates the aryl hydrocarbon receptor response in mesenchymal stromal cells. Oncotarget. 8:91914–91927. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Opitz CA, Litzenburger UM, Opitz U, Sahm F, Ochs K, Lutz C and Wick Wand Platten M: The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One. 6:e198232011. View Article : Google Scholar : PubMed/NCBI

122 

Takada K, Kohashi K, Shimokawa M, Haro A, Osoegawa A, Tagawa T, Seto T, Oda Y and Maehara Y: Co-expression of IDO1 and PD-L1 in lung squamous cell carcinoma: Potential targets of novel combination therapy. Lung Cancer. 128:26–32. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Ladomersky E, Zhai L, Lenzen A, Lauing KL, Qian J, Scholtens DM, Gritsina G, Sun X, Liu Y, Yu F, et al: IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin Cancer Res. 24:2559–2573. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Kotecki N, Vuagnat P, O'Neil BH, Jalal S, Rottey S, Prenen H, Benhadji KA, Xia M, Szpurka AM, Saha A, et al: A Phase I study of an IDO-1 inhibitor (LY3381916) as monotherapy and in combination with an Anti-PD-L1 Antibody (LY3300054) in patients with advanced cancer. J Immunother. 44:264–275. 2021. View Article : Google Scholar : PubMed/NCBI

125 

Balog A, Lin TA, Maley D, Gullo-Brown J, Kandoussi EH, Zeng J and Hunt JT: Preclinical characterization of linrodostat mesylate, a novel, potent, and selective oral indoleamine 2,3-dioxygenase 1 inhibitor. Mol Cancer Ther. 20:467–476. 2021. View Article : Google Scholar : PubMed/NCBI

126 

Lin J, Sun-Waterhouse D and Cui C: The therapeutic potential of diet on immune-related diseases: Based on the regulation on tryptophan metabolism. Crit Rev Food Sci Nutr. 62:8793–8811. 2022. View Article : Google Scholar : PubMed/NCBI

127 

Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H and Zhu YZ: Update of indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother. 150:1129572022. View Article : Google Scholar : PubMed/NCBI

128 

Li X, Zhang B, Hu Y and Zhao Y: New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front Pharmacol. 12:7695012021. View Article : Google Scholar : PubMed/NCBI

129 

Liu Y, Pei Z, Pan T, Wang H, Chen W and Lu W: Indole metabolites and colorectal cancer: Gut microbial tryptophan metabolism, host gut microbiome biomarkers, and potential intervention mechanisms. Microbiol Res. 272:1273922023. View Article : Google Scholar : PubMed/NCBI

130 

Krause FF, Mangold KI, Ruppert AL, Leister H, Hellhund-Zingel A, Lopez Krol A, Pesek J, Watzer B, Winterberg S, Raifer H, et al: Clostridium sporogenes-derived metabolites protect mice against colonic inflammation. Gut Microbes. 16:24126692024. View Article : Google Scholar : PubMed/NCBI

131 

Liu Y, Chen H, Van Treuren W, Hou BH, Higginbottom SK and Dodd D: Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites. Nat Microbiol. 7:695–706. 2022. View Article : Google Scholar : PubMed/NCBI

132 

Wang A, Guan C, Wang T, Mu G and Tuo Y: Lactiplantibacillus plantarum-derived indole-3-lactic acid ameliorates intestinal barrier integrity through the AhR/Nrf2/NF-κB Axis. J Agric Food Chem. April 10–2024.(Epub ahead of print).

133 

Wang A, Guan C, Wang T, Mu G and Tuo Y: Indole-3-lactic acid, a tryptophan metabolite of lactiplantibacillus plantarum DPUL-S164, improved intestinal barrier damage by activating AhR and Nrf2 signaling pathways. J Agric Food Chem. 71:18792–18801. 2023. View Article : Google Scholar : PubMed/NCBI

134 

Leclerc D, Staats Pires AC, Guillemin GJ and Gilot D: Detrimental activation of AhR pathway in cancer: An overview of therapeutic strategies. Curr Opin Immunol. 70:15–26. 2021. View Article : Google Scholar : PubMed/NCBI

135 

Paris A, Tardif N, Galibert MD and Corre S: AhR and cancer: From gene profiling to targeted therapy. Int J Mol Sci. 22:7522022. View Article : Google Scholar

136 

Wang Z, Monti S and Sherr DH: The diverse and important contributions of the AHR to cancer and cancer immunity. Current Opin Toxicol. 2:93–102. 2017. View Article : Google Scholar

137 

Sun M, Ma N, He T, Johnston LJ and Ma X: Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit Rev Food Sci Nutr. 60:1760–1768. 2020. View Article : Google Scholar : PubMed/NCBI

138 

Griffith BD and Frankel TL: The aryl hydrocarbon receptor: impact on the tumor immune microenvironment and modulation as a potential therapy. Cancers (Basel). 16:4722024. View Article : Google Scholar : PubMed/NCBI

139 

Leja-Szpak A, Góralska M, Link-Lenczowski P, Czech U, Nawrot-Porąbka K, Bonior J and Jaworek J: The opposite effect of L-kynurenine and Ahr inhibitor Ch223191 on apoptotic protein expression in pancreatic carcinoma cells (Panc-1). Anticancer Agents Med Chem. 19:2079–2090. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Choi EY, Lee H, Dingle RW, Kim KB and Swanson HI: Development of novel CH223191-based antagonists of the aryl hydrocarbon receptor. Mol Pharmacol. 81:3–11. 2012. View Article : Google Scholar : PubMed/NCBI

141 

Zhang Y, Ma YC, Song J, Jin Y and Bao YN: StemRegenin-1 reverses drug resistance of MCF-7/ADR Cells via AhR/ABC transports and AhR/UGTs pathways. Current Proteomics. 21:113–128. 2024. View Article : Google Scholar

142 

Kober C, Roewe J, Schmees N, Roese L, Roehn U, Bader B, Stoeckigt D, Prinz F, Gorjánácz M, Roider HG, et al: Targeting the aryl hydrocarbon receptor (AhR) with BAY 2416964: A selective small molecule inhibitor for cancer immunotherapy. J Immunother Cancer. 11:e0074952023. View Article : Google Scholar : PubMed/NCBI

143 

Parks AJ, Pollastri MP, Hahn ME, Stanford EA, Novikov O, Franks DG, Haigh SE, Narasimhan S, Ashton TD, Hopper TG, et al: In silico identification of an aryl hydrocarbon receptor antagonist with biological activity in vitro and in vivo. Mol Pharmacol. 86:593–608. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Garg A, Sharma A, Krishnamoorthy P, Garg J, Virmani D, Sharma T, Stefanini G, Kostis JB, Mukherjee D and Sikorskaya E: Role of niacin in current clinical practice: A systematic review. Am J Med. 130:173–187. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhao J, Bai X, Du J, Chen Y, Guo X, Zhang J, Gan J, Wu P, Chen S, Zhang X, Zhang X, et al: Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review). Oncol Rep 54: 86, 2025.
APA
Zhao, J., Bai, X., Du, J., Chen, Y., Guo, X., Zhang, J. ... Gao, L. (2025). Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review). Oncology Reports, 54, 86. https://doi.org/10.3892/or.2025.8919
MLA
Zhao, J., Bai, X., Du, J., Chen, Y., Guo, X., Zhang, J., Gan, J., Wu, P., Chen, S., Zhang, X., Yang, J., Jin, J., Gao, L."Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review)". Oncology Reports 54.1 (2025): 86.
Chicago
Zhao, J., Bai, X., Du, J., Chen, Y., Guo, X., Zhang, J., Gan, J., Wu, P., Chen, S., Zhang, X., Yang, J., Jin, J., Gao, L."Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review)". Oncology Reports 54, no. 1 (2025): 86. https://doi.org/10.3892/or.2025.8919
Copy and paste a formatted citation
x
Spandidos Publications style
Zhao J, Bai X, Du J, Chen Y, Guo X, Zhang J, Gan J, Wu P, Chen S, Zhang X, Zhang X, et al: Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review). Oncol Rep 54: 86, 2025.
APA
Zhao, J., Bai, X., Du, J., Chen, Y., Guo, X., Zhang, J. ... Gao, L. (2025). Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review). Oncology Reports, 54, 86. https://doi.org/10.3892/or.2025.8919
MLA
Zhao, J., Bai, X., Du, J., Chen, Y., Guo, X., Zhang, J., Gan, J., Wu, P., Chen, S., Zhang, X., Yang, J., Jin, J., Gao, L."Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review)". Oncology Reports 54.1 (2025): 86.
Chicago
Zhao, J., Bai, X., Du, J., Chen, Y., Guo, X., Zhang, J., Gan, J., Wu, P., Chen, S., Zhang, X., Yang, J., Jin, J., Gao, L."Tryptophan metabolism: From physiological functions to key roles and therapeutic targets in cancer (Review)". Oncology Reports 54, no. 1 (2025): 86. https://doi.org/10.3892/or.2025.8919
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team