Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2025 Volume 54 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 54 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role and potential mechanisms of miR‑100 in different diseases (Review)

  • Authors:
    • Jiaqi Liu
    • Gejile Hu
    • Hua Du
    • Yingxu Shi
  • View Affiliations / Copyright

    Affiliations: Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010010, P.R. China, Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010010, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 91
    |
    Published online on: June 5, 2025
       https://doi.org/10.3892/or.2025.8924
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In recent years, the role of microRNAs (miRNAs) in disease has attracted considerable interest, underscoring their potential utility as diagnostic biomarkers. miR‑100, belonging to the miR‑99 family, is integral to the pathophysiological processes underlying numerous diseases. miR‑100 has been found to influence the pathogenesis of a variety of noncancerous diseases. As for cancer, this factor plays a significant role in various tumors throughout diverse systems, influencing essential processes including cell proliferation, invasion, migration and apoptosis of cancerous cells. This review examines the existing literature on miR‑100 in the context of non‑cancerous diseases and cancer, investigates its mechanisms of action across different diseases and considers its potential role as a diagnostic biomarker as well as its involvement in cancer drug resistance.
View Figures

Figure 1

Figure 2

View References

1 

Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M and Ghafouri-Fard S: MicroRNA: A signature for cancer progression. Biomed Pharmacother. 138:1115282021. View Article : Google Scholar : PubMed/NCBI

2 

Soifer HS, Rossi JJ and Saetrom P: MicroRNAs in disease and potential therapeutic applications. Mol Ther. 15:2070–2079. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM and Nigam M: Micro-RNA: The darkhorse of cancer. Cell Signal. 83:1099952021. View Article : Google Scholar : PubMed/NCBI

4 

Douvris A, Viñas J and Burns KD: miRNA-486-5p: Signaling targets and role in non-malignant disease. Cell Mol Life Sci. 79:3762022. View Article : Google Scholar : PubMed/NCBI

5 

Liu Z, Yang Y, Ju J, Zhang G, Zhang P, Ji P, Jin Q, Cao G, Zuo R, Wang H, et al: miR-100-5p promotes epidermal stem cell proliferation through targeting MTMR3 to activate PIP3/AKT and ERK signaling pathways. Stem Cells Int. 2022:14742732022. View Article : Google Scholar : PubMed/NCBI

6 

Wang K, Liufu S, Yu Z, Xu X, Ai N, Li X, Liu X, Chen B, Zhang Y, Ma H and Yin Y: miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway. Int J Mol Sci. 24:89062023. View Article : Google Scholar : PubMed/NCBI

7 

Eniafe J and Jiang S: MicroRNA-99 family in cancer and immunity. Wiley Interdiscip Rev RNA. 12:e16352021. View Article : Google Scholar : PubMed/NCBI

8 

Belles X: MicroRNAs and the evolution of insect metamorphosis. Annu Rev Entomol. 62:111–125. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Heimberg AM, Sempere LF, Moy VN, Donoghue PC and Peterson KJ: MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA. 105:2946–2950. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Wu Y, Wang Z, Yu S, Liu D and Sun L: LncmiRHG-MIR100HG: A new budding star in cancer. Front Oncol. 12:9975322022. View Article : Google Scholar : PubMed/NCBI

11 

Chen JF, Wu P, Xia R, Yang J, Huo XY, Gu DY, Tang CJ, De W and Yang F: STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 17:62018. View Article : Google Scholar : PubMed/NCBI

12 

Peng CW, Yue LX, Zhou YQ, Tang S, Kan C, Xia LM, Yang F and Wang SY: miR-100-3p inhibits cell proliferation and induces apoptosis in human gastric cancer through targeting to BMPR2. Cancer Cell Int. 19:3542019. View Article : Google Scholar : PubMed/NCBI

13 

Wang R, Zhang M, Hu Y, He J, Lin Q and Peng N: MiR-100-5p inhibits osteogenic differentiation of human bone mesenchymal stromal cells by targeting TMEM135. Hum Cell. 35:1671–1683. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Ai L, Yi W, Chen L, Wang H and Huang Q: Xian-Ling-Gu-Bao protects osteoporosis through promoting osteoblast differentiation by targeting miR-100-5p/KDM6B/RUNX2 axis. In Vitro Cell Dev Biol Anim. 57:3–9. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Ding W, Ding S, Li J, Peng Z, Hu P, Zhang T and Pan L: Aberrant expression of miR-100 in plasma of patients with osteoporosis and its potential diagnostic value. Clin Lab. 65:1903272019. View Article : Google Scholar

16 

Chen R, Liao X, Chen F, Wang B, Huang J, Jian G, Huang Z, Yin G, Liu H and Jin D: Circulating microRNAs, miR-10b-5p, miR-328-3p, miR-100 and let-7, are associated with osteoblast differentiation in osteoporosis. Int J Clin Exp Pathol. 11:1383–1390. 2018.PubMed/NCBI

17 

Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, Chen H, Huang S, Fu Z, Li J, et al: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials. 206:87–100. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Lai Z and Cao Y: Plasma miR-200c-3p, miR-100-5p, and miR-1826 serve as potential diagnostic biomarkers for knee osteoarthritis: Randomized controlled trials. Medicine (Baltimore). 98:e181102019. View Article : Google Scholar : PubMed/NCBI

19 

Yang W, Zhu W, Yang Y, Guo M, Qian H, Jiang W, Chen Y, Lian C, Xu Z, Bai H, et al: Exosomal miR-100-5p inhibits osteogenesis of hBMSCs and angiogenesis of HUVECs by suppressing the BMPR2/Smad1/5/9 signalling pathway. Stem Cell Res Ther. 12:3902021. View Article : Google Scholar : PubMed/NCBI

20 

Chamorro Á, Dirnagl U, Urra X and Planas AM: Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 15:869–881. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Xia X, Chen J, Ren H, Zhou C, Zhang Q, Cheng H and Wang X: Gypenoside pretreatment alleviates the cerebral ischemia injury via inhibiting the microglia-mediated neuroinflammation. Mol Neurobiol. 61:1140–1156. 2024. View Article : Google Scholar : PubMed/NCBI

22 

Xin D, Li T, Zhao Y, Guo X, Gai C, Jiang Z, Yu S, Cheng J, Song Y, Cheng Y, et al: MiR-100-5p-rich small extracellular vesicles from activated neuron to aggravate microglial activation and neuronal activity after stroke. J Nanobiotechnology. 22:5342024. View Article : Google Scholar : PubMed/NCBI

23 

Cao X, Zhang X, Chen J, Sun Q, Sun Y, Lin N and Liu X: miR-100-5p activation of the autophagy response through inhibiting the mTOR pathway and suppression of cerebral infarction progression in mice. Aging (Albany NY). 15:8315–8324. 2023. View Article : Google Scholar : PubMed/NCBI

24 

He S, Wang Q, Chen L, He YJ, Wang X and Qu S: miR-100a-5p-enriched exosomes derived from mesenchymal stem cells enhance the anti-oxidant effect in a Parkinson's disease model via regulation of Nox4/ROS/Nrf2 signaling. J Transl Med. 21:7472023. View Article : Google Scholar : PubMed/NCBI

25 

Feng N, Huang X and Jia Y: Small extracellular vesicles from adipose derived stem cells alleviate microglia activation and improve motor deficit of Parkinson's disease via miR-100-5p/DTX3L/STAT1 signaling axis. Exp Neurol. 389:1152502025. View Article : Google Scholar : PubMed/NCBI

26 

Li XH, Fu NS and Xing ZM: MiR-100 suppresses inflammatory activation of microglia and neuronal apoptosis following spinal cord injury via TLR4/NF-κB pathway. Eur Rev Med Pharmacol Sci. 23:8713–8720. 2019.PubMed/NCBI

27 

Marx C, Novotny J, Salbeck D, Zellner KR, Nicolai L, Pekayvaz K, Kilani B, Stockhausen S, Bürgener N, Kupka D, et al: Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood. 134:1859–1872. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Gao H, Yu Z, Li Y and Wang X: miR-100-5p in human umbilical cord mesenchymal stem cell-derived exosomes mediates eosinophilic inflammation to alleviate atherosclerosis via the FZD5/Wnt/β-catenin pathway. Acta Biochim Biophys Sin (Shanghai). 53:1166–1176. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Ji P, Song X and Lv Z: Knockdown of circ_0004104 alleviates oxidized low-density lipoprotein-induced vascular endothelial cell injury by regulating miR-100/TNFAIP8 axis. J Cardiovasc Pharmacol. 78:269–279. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Zeng J, Wang L, Zhao J, Zheng Z, Peng J, Zhang W, Wen T, Nie J, Ding L and Yi D: MiR-100-5p regulates cardiac hypertrophy through activation of autophagy by targeting mTOR. Hum Cell. 34:1388–1397. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Zhong Z, Tian Y, Luo X, Zou J, Wu L and Tia J: Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect against DOX-induced heart failure through the miR-100-5p/NOX4 pathway. Front Bioeng Biotechnol. 9:7032412021. View Article : Google Scholar : PubMed/NCBI

32 

Liu H, Chen Y, Huang Y, Wei L, Ran J, Li Q, Tian Y, Luo Z, Yang L, Liu H, et al: Macrophage-derived mir-100-5p orchestrates synovial proliferation and inflammation in rheumatoid arthritis through mTOR signaling. J Nanobiotechnology. 22:1972024. View Article : Google Scholar : PubMed/NCBI

33 

Li N, Gao Z, Zhao L, Du B, Ma B, Nian H and Wei R: MSC-derived small extracellular vesicles attenuate autoimmune dacryoadenitis by promoting M2 macrophage polarization and inducing tregs via miR-100-5p. Front Immunol. 13:8889492022. View Article : Google Scholar : PubMed/NCBI

34 

Chen G, Li X, Zhou X, Li Y, Yu H, Peng X, Bai X, Zhang C, Feng Z, Mei Y, et al: Extracellular vesicles secreted from mesenchymal stem cells ameliorate renal ischemia reperfusion injury by delivering miR-100-5p targeting FKBP5/AKT axis. Sci Rep. 14:67202024. View Article : Google Scholar : PubMed/NCBI

35 

Wu Z, He L, Yan L, Tan B, Ma L, He G, Dai Z, Sun R and Li C: Hydrogels treat atopic dermatitis by transporting marine-derived miR-100-5p-abundant extracellular vesicles. ACS Biomater Sci Eng. 10:7667–7682. 2024. View Article : Google Scholar : PubMed/NCBI

36 

Zhang F, Li F and Lu J: microRNA-100 shuttled by human umbilical cord MSC-secreted extracellular vesicles induces endometriosis by inhibiting HS3ST2. Cell Signal. 102:1105322023. View Article : Google Scholar : PubMed/NCBI

37 

Smolka C, Schlosser D, Hohnloser C, Bemtgen X, Jänich C, Schneider L, Martin J, Pfeifer D, Moser M, Hasselblatt P, et al: MiR-100 overexpression attenuates high fat diet induced weight gain, liver steatosis, hypertriglyceridemia and development of metabolic syndrome in mice. Mol Med. 27:1012021. View Article : Google Scholar : PubMed/NCBI

38 

Ge Y, Shu J, Shi G, Yan F, Li Y and Ding H: miR-100 suppresses the proliferation, invasion, and migration of hepatocellular carcinoma cells via targeting CXCR7. J Immunol Res. 2021:99207862021. View Article : Google Scholar : PubMed/NCBI

39 

Cao Y, Song J, Ge J, Song Z, Chen J and Wu C: MicroRNA-100 suppresses human gastric cancer cell proliferation by targeting CXCR7. Oncol Lett. 15:453–458. 2018.PubMed/NCBI

40 

Zhou SM, Zhang F, Chen XB, Jun CM, Jing X, Wei DX, Xia Y, Zhou YB, Xiao XQ, Jia RQ, et al: miR-100 suppresses the proliferation and tumor growth of esophageal squamous cancer cells via targeting CXCR7. Oncol Rep. 35:3453–3459. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Xie H, Xiao R, He Y, He L, Xie C, Chen J and Hong Y: MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1. Oncol Lett. 22:8162021. View Article : Google Scholar : PubMed/NCBI

42 

Li X, Ren Y, Liu D, Yu X and Chen K: Role of miR-100-5p and CDC25A in breast carcinoma cells. PeerJ. 9:e122632022. View Article : Google Scholar : PubMed/NCBI

43 

He W, Huang Y, Jiang CC, Zhu Y, Wang L, Zhang W, Huang W, Zhou T and Tang S: miR-100 inhibits cell growth and proliferation by targeting HOXA1 in nasopharyngeal carcinoma. Onco Targets Ther. 13:593–602. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Sun X, Liu X, Wang Y, Yang S, Chen Y and Yuan T: miR-100 inhibits the migration and invasion of nasopharyngeal carcinoma by targeting IGF1R. Oncol Lett. 15:8333–8338. 2018.PubMed/NCBI

45 

Zhang H, Yang K, Ren T, Huang Y, Liang X, Yu Y, Wang W, Niu J, Lou J, Tang X and Guo W: miR-100-5p inhibits malignant behavior of chordoma cells by targeting IGF1R. Cancer Manag Res. 12:4129–4137. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Han W, Ren X, Yang Y, Li H, Zhao L and Lin Z: microRNA-100 functions as a tumor suppressor in non-small cell lung cancer via regulating epithelial-mesenchymal transition and Wnt/β-catenin by targeting HOXA1. Thorac Cancer. 11:1679–1688. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Fu B, Zhou F, Zhang J, Kong X, Ni B, Bu J, Xu S and He C: Sevoflurane attenuates proliferative and migratory activity of lung cancer cells via mediating the microRNA-100-3p/sterol O-Acyltransferase 1 axis. Chin J Physiol. 66:456–465. 2023. View Article : Google Scholar : PubMed/NCBI

48 

Lin L, Huang Y, Zhuang W, Lin P and Ma X: miR-100 inhibits cell proliferation in mantle cell lymphoma by targeting mTOR. Exp Hematol Oncol. 9:252020. View Article : Google Scholar : PubMed/NCBI

49 

Sun Y, Wang H and Luo C: MiR-100 regulates cell viability and apoptosis by targeting ATM in pediatric acute myeloid leukemia. Biochem Biophys Res Commun. 522:855–861. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Wei X, Feng Y, Fu Y, Liu F, Chen Q, Zhang W, Zhao Y, Huang X, Chen Y, Li Q and Zhang Q: miR-100-5p is upregulated in multiple myeloma and involves in the pathogenesis of multiple myeloma through targeting MTMR3. Hematology. 28:21968572023. View Article : Google Scholar : PubMed/NCBI

51 

Zhou B, Yi F, Chen Y, Li CH, Cheng YS and Yang K: Reduced long noncoding RNA PGM5-AS1 facilitated proliferation and invasion of colorectal cancer through sponging miR-100-5p. Eur Rev Med Pharmacol Sci. 24:7972–7981. 2020.PubMed/NCBI

52 

Liu X, Liu C, Zhang A, Wang Q, Ge J, Li Q and Xiao J: Long non-coding RNA SDCBP2-AS1 delays the progression of ovarian cancer via microRNA-100-5p-targeted EPDR1. World J Surg Oncol. 19:1992021. View Article : Google Scholar : PubMed/NCBI

53 

Peng J, Zheng H, Liu F, Wu Q and Liu S: The m6A methyltransferase METTL3 affects autophagy and progression of nasopharyngeal carcinoma by regulating the stability of lncRNA ZFAS1. Infect Agent Cancer. 17:12022. View Article : Google Scholar : PubMed/NCBI

54 

Li L, Zhu H, Li X, Ke Y, Yang S and Cheng Q: Long non-coding RNA HAGLROS facilitates the malignant phenotypes of NSCLC cells via repressing miR-100 and up-regulating SMARCA5. Biomed J. 44 (6 Suppl 2):S305–S315. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Shu L, Guo K, Lin ZH and Liu H: Long non-coding RNA HAGLROS promotes the development of diffuse large B-cell lymphoma via suppressing miR-100. J Clin Lab Anal. 36:e241682022. View Article : Google Scholar : PubMed/NCBI

56 

Shi Y, Guo Z, Fang N and Liu H: hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother. 117:1091512019. View Article : Google Scholar : PubMed/NCBI

57 

Zhang XQ, Song Q and Zeng LX: Circulating hsa_circ_0072309, acting via the miR-100/ACKR3 pathway, maybe a potential biomarker for the diagnosis, prognosis, and treatment of brain metastasis from non-small-cell lung cancer. Cancer Med. 12:18005–18019. 2023. View Article : Google Scholar : PubMed/NCBI

58 

Seol HS, Akiyama Y, Lee SE, Shimada S and Jang SJ: Loss of miR-100 and miR-125b results in cancer stem cell properties through IGF2 upregulation in hepatocellular carcinoma. Sci Rep. 10:214122020. View Article : Google Scholar : PubMed/NCBI

59 

Gong Y, Yang G, Wang Q, Wang Y and Zhang X: NME2 is a master suppressor of apoptosis in gastric cancer cells via transcriptional regulation of miR-100 and other survival factors. Mol Cancer Res. 18:287–299. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Ottaviani S, Stebbing J, Frampton AE, Zagorac S, Krell J, de Giorgio A, Trabulo SM, Nguyen VTM, Magnani L, Feng H, et al: TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat Commun. 9:18452018. View Article : Google Scholar : PubMed/NCBI

61 

Peng Q, Zhang L, Li J, Wang W, Cai J, Ban Y, Zhou Y, Hu M, Mei Y, Zeng Z, et al: FOXA1 suppresses the growth, migration, and invasion of nasopharyngeal carcinoma cells through repressing miR-100-5p and miR-125b-5p. J Cancer. 11:2485–2495. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Wang L, Chen X, Meng F, Huang T, Wang S, Zheng Z, Zheng G, Li W, Zhang J and Liu Y: α2,6-Sialylation promotes hepatocellular carcinoma cells migration and invasion via enhancement of nSmase2-mediated exosomal miRNA sorting. J Physiol Biochem. 79:19–34. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Chen C, Yang C, Tian X, Liang Y, Wang S, Wang X, Shou Y, Li H, Xiao Q, Shu J, et al: Downregulation of miR-100-5p in cancer-associated fibroblast-derived exosomes facilitates lymphangiogenesis in esophageal squamous cell carcinoma. Cancer Med. 12:14468–14483. 2023. View Article : Google Scholar : PubMed/NCBI

64 

Jiang Q, He M, Guan S, Ma M, Wu H, Yu Z, Jiang L, Wang Y, Zong X, Jin F and Wei M: MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway. Tumour Biol. 37:5001–5011. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Huang C, Qin X, Zhao N, Jin H, Zhang S and Yang H: MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett. 20:1336–1344. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Ma P and Han J: Overexpression of miR-100-5p inhibits papillary thyroid cancer progression via targeting FZD8. Open Med (Wars). 17:1172–1182. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Adamo A, Dal Collo G, Bazzoni R and Krampera M: Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochim Biophys Acta Rev Cancer. 1871:192–198. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Mathieu M, Martin-Jaular L, Lavieu G and Théry C: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Shojaei S, Hashemi SM, Ghanbarian H, Salehi M and Mohammadi-Yeganeh S: Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: Tumor progression versus tumor suppression. J Cell Physiol. 234:3394–3409. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Jahangiri B, Khalaj-Kondori M, Asadollahi E, Dizaj LP and Sadeghizadeh M: MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway. Int J Pharm. 627:1222142022. View Article : Google Scholar : PubMed/NCBI

71 

Ding Y, Mei W, Zheng Z, Cao F, Liang K, Jia Y, Wang Y, Liu D, Li J and Li F: Exosomes secreted from human umbilical cord mesenchymal stem cells promote pancreatic ductal adenocarcinoma growth by transferring miR-100-5p. Tissue Cell. 73:1016232021. View Article : Google Scholar : PubMed/NCBI

72 

Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N and Javan M: MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr). 40:457–470. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Zhou HC, Fang JH, Shang LR, Zhang ZJ, Sang Y, Xu L, Yuan Y, Chen MS, Zheng L, Zhang Y and Zhuang SM: MicroRNAs miR-125b and miR-100 suppress metastasis of hepatocellular carcinoma by disrupting the formation of vessels that encapsulate tumour clusters. J Pathol. 240:450–460. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Chelakkot C, Chelakkot VS, Shin Y and Song K: Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 24:26062023. View Article : Google Scholar : PubMed/NCBI

75 

Zhou Y, Huang Y, Hu K, Zhang Z, Yang J and Wang Z: HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 11:1762020. View Article : Google Scholar : PubMed/NCBI

76 

Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Wang Y, Zhang W, Liu W, Huang L, Wang Y, Li D, Wang G, Zhao Z, Chi X, Xue Y, et al: Long noncoding RNA VESTAR regulates lymphangiogenesis and lymph node metastasis of esophageal squamous cell carcinoma by enhancing VEGFC mRNA stability. Cancer Res. 81:3187–3199. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 99:186–196. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Fujino Y, Takeishi S, Nishida K, Okamoto K, Muguruma N, Kimura T, Kitamura S, Miyamoto H, Fujimoto A, Higashijima J, et al: Downregulation of microRNA-100/microRNA-125b is associated with lymph node metastasis in early colorectal cancer with submucosal invasion. Cancer Sci. 108:390–397. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI

81 

Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI

82 

Chen W, Liu Z, Mai W, Xiao Y, You X and Qin L: FZD8 indicates a poor prognosis and promotes gastric cancer invasion and metastasis via B-catenin signaling pathway. Ann Clin Lab Sci. 50:13–23. 2020.PubMed/NCBI

83 

Wang W, Liu Y, Guo J, He H, Mi X, Chen C, Xie J, Wang S, Wu P, Cao F, et al: miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis. 7:972018. View Article : Google Scholar : PubMed/NCBI

84 

Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 248:560–575. 2023. View Article : Google Scholar : PubMed/NCBI

85 

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI

86 

Pattingre S, Espert L, Biard-Piechaczyk M and Codogno P: Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 90:313–323. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Cai J, Zhang Y, Huang S, Yan M, Li J, Jin T and Bao S: MiR-100-5p, miR-199a-3p and miR-199b-5p induce autophagic death of endometrial carcinoma cell through targeting mTOR. Int J Clin Exp Pathol. 10:9262–9272. 2017.PubMed/NCBI

88 

Deng X, Su R, Weng H, Li Z and Chen J: RNA N(6)-methyladenosine modification in cancers: Current status and perspectives. Cell Res. 28:507–517. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Yang Y, Hsu PJ, Chen YS and Yang YG: Dynamic transcriptomic m(6)A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Res. 28:616–624. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL, Lv JW, Huang XD, Liu RQ, Chen F, He XJ, et al: Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res. 79:4612–4626. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Katheder NS, Khezri R, O'farrell F, Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen T, Juhász G, et al: Microenvironmental autophagy promotes tumour growth. Nature. 541:417–420. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M and Zaret KS: Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 9:279–289. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Ye Y, Li SL and Wang JJ: miR-100-5p downregulates mTOR to suppress the proliferation, migration, and invasion of prostate cancer cells. Front Oncol. 10:5789482020. View Article : Google Scholar : PubMed/NCBI

95 

Liu X, Zhong L, Li P and Zhao P: MicroRNA-100 enhances autophagy and suppresses migration and invasion of renal cell carcinoma cells via disruption of NOX4-dependent mTOR pathway. Clin Transl Sci. 15:567–575. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Raji S, Sahranavard M, Mottaghi M and Sahebkar A: MiR-212 value in prognosis and diagnosis of cancer and its association with patient characteristics: A systematic review and meta-analysis. Cancer Cell Int. 22:1632022. View Article : Google Scholar : PubMed/NCBI

97 

Qian Y, Shi L and Luo Z: Long non-coding RNAs in cancer: Implications for diagnosis, prognosis, and therapy. Front Med (Lausanne). 7:6123932020. View Article : Google Scholar : PubMed/NCBI

98 

Cheng G: Circulating miRNAs: Roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev. 81:75–93. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Wnuk J, Strzelczyk JK and Gisterek I: Clinical value of circulating miRNA in diagnosis, prognosis, screening and monitoring therapy of pancreatic ductal adenocarcinoma-a review of the literature. Int J Mol Sci. 24:51132023. View Article : Google Scholar : PubMed/NCBI

100 

Damodaran M, Dandapani MC, Simondurairaj, SandhyaSundaram, VenkatRamanan S, Ramachandran I and Venkatesan V: Differentially expressed miR-20, miR-21, miR-100, miR-125a and miR-146a as a potential biomarker for prostate cancer. Mol Biol Rep. 48:3349–3356. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Wang S, Li L, Yang M, Wang X, Zhang H, Wu N, Jia K, Wang J, Li M, Wei L and Liu J: Identification of three circulating MicroRNAs in plasma as clinical biomarkers for breast cancer detection. J Clin Med. 12:3222022. View Article : Google Scholar : PubMed/NCBI

102 

Ludwig N, Nourkami-Tutdibi N, Backes C, Lenhof HP, Graf N, Keller A and Meese E: Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr Blood Cancer. 62:1360–1367. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Motawi TK, Rizk SM, Ibrahim TM and Ibrahim IA: Circulating microRNAs, miR-92a, miR-100 and miR-143, as non-invasive biomarkers for bladder cancer diagnosis. Cell Biochem Funct. 34:142–148. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Yamanaka Z, Sasaki T, Yamanaka A, Kato K and Nishi H: Circulating and tissue miR-100 acts as a potential diagnostic biomarker for cervical cancer. Cancer Biomark. 32:551–558. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Hassan NM, Refaat LA, Ismail GN, Abdellateif M, Fadel SA and AbdelAziz RS: Diagnostic, prognostic and predictive values of miR-100 and miR-210 in pediatric acute lymphoblastic leukemia. Hematology. 25:405–413. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Liao Z, Zhang Q, Yang L, Li H, Mo W, Song Z, Huang X, Wen S, Cheng X and He M: Increased hsa-miR-100-5p expression improves hepatocellular carcinoma prognosis in the asian population with PLK1 variant rs27770A>G. Cancers (Basel). 16:1292023. View Article : Google Scholar : PubMed/NCBI

107 

He QL, Qin SY, Tao L, Ning HJ and Jiang HX: Prognostic value and prospective molecular mechanism of miR-100-5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett. 18:6126–6142. 2019.PubMed/NCBI

108 

Song SK, Jung WY, Park SK, Chung CW and Park Y: Significantly different expression levels of microRNAs associated with vascular invasion in hepatocellular carcinoma and their prognostic significance after surgical resection. PLoS One. 14:e02168472019. View Article : Google Scholar : PubMed/NCBI

109 

Fuso P, Di Salvatore M, Santonocito C, Guarino D, Autilio C, Mulè A, Arciuolo D, Rinninella A, Mignone F, Ramundo M, et al: Let-7a-5p, miR-100-5p, miR-101-3p, and miR-199a-3p hyperexpression as potential predictive biomarkers in early breast cancer patients. J Pers Med. 11:8162021. View Article : Google Scholar : PubMed/NCBI

110 

Zhang HC and Tang KF: Clinical value of integrated-signature miRNAs in esophageal cancer. Cancer Med. 6:1893–1903. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Wang J, Tao Y and Bian Q: miRNA and mRNA expression profiling reveals potential biomarkers for metastatic cutaneous melanoma. Expert Rev Anticancer Ther. 21:557–567. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Jakob M, Mattes LM, Küffer S, Unger K, Hess J, Bertlich M, Haubner F, Ihler F, Canis M, Weiss BG and Kitz J: MicroRNA expression patterns in oral squamous cell carcinoma: Hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck. 41:3499–3515. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Chen Z, Wu L, Lin Q, Shi J, Lin X and Shi L: Evaluation of miR-182/miR-100 ratio for diagnosis and survival prediction in bladder cancer. Arch Iran Med. 19:645–651. 2016.PubMed/NCBI

114 

Azizmohammadi S, Azizmohammadi S, Safari A, Kosari N, Kaghazian M, Yahaghi E and Seifoleslami M: The role and expression of miR-100 and miR-203 profile as prognostic markers in epithelial ovarian cancer. Am J Transl Res. 8:2403–2410. 2016.PubMed/NCBI

115 

Zhang H, Wang J, Wang Z, Ruan C, Wang L and Guo H: Serum miR-100 is a potential biomarker for detection and outcome prediction of glioblastoma patients. Cancer Biomark. 24:43–49. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Wang G, Yang L, Hu M, Hu R, Wang Y, Chen B, Jiang X and Cui R: Comprehensive analysis of the prognostic significance of Hsa-miR-100-5p and its related gene signature in stomach adenocarcinoma. Front Cell Dev Biol. 9:7362742021. View Article : Google Scholar : PubMed/NCBI

117 

Hu XY, Song Z, Yang ZW, Li JJ, Liu J and Wang HS: Cancer drug resistance related microRNAs: recent advances in detection methods. Analyst. 147:2615–2632. 2022. View Article : Google Scholar : PubMed/NCBI

118 

Lai Y, Kacal M, Kanony M, Stukan I, Jatta K, Kis L, Norberg E, Vakifahmetoglu-Norberg H, Lewensohn R, Hydbring P and Ekman S: miR-100-5p confers resistance to ALK tyrosine kinase inhibitors Crizotinib and Lorlatinib in EML4-ALK positive NSCLC. Biochem Biophys Res Commun. 511:260–265. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X, Shen B, Liu S, Yan D and Feng J: Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine. 12:3721–3733. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Nabavi N, Saidy NRN, Venalainen E, Haegert A, Parolia A, Xue H, Wang Y, Wu R, Dong X, Collins C, et al: miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer. Sci Rep. 7:40792017. View Article : Google Scholar : PubMed/NCBI

121 

Samli H, Samli M, Vatansever B, Ardicli S, Aztopal N, Dincel D, Sahin A and Balci F: Paclitaxel resistance and the role of miRNAs in prostate cancer cell lines. World J Urol. 37:1117–1126. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Nishi H, Ono M, Ohno S, Yamanaka Z, Sasaki T, Ohyashiki K, Ohyashiki JH and Kuroda M: Hypoxia-induced paclitaxel resistance in cervical cancer modulated by miR-100 targeting of USP15. Gynecol Oncol Rep. 45:1011382023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu J, Hu G, Du H and Shi Y: Role and potential mechanisms of miR‑100 in different diseases (Review). Oncol Rep 54: 91, 2025.
APA
Liu, J., Hu, G., Du, H., & Shi, Y. (2025). Role and potential mechanisms of miR‑100 in different diseases (Review). Oncology Reports, 54, 91. https://doi.org/10.3892/or.2025.8924
MLA
Liu, J., Hu, G., Du, H., Shi, Y."Role and potential mechanisms of miR‑100 in different diseases (Review)". Oncology Reports 54.2 (2025): 91.
Chicago
Liu, J., Hu, G., Du, H., Shi, Y."Role and potential mechanisms of miR‑100 in different diseases (Review)". Oncology Reports 54, no. 2 (2025): 91. https://doi.org/10.3892/or.2025.8924
Copy and paste a formatted citation
x
Spandidos Publications style
Liu J, Hu G, Du H and Shi Y: Role and potential mechanisms of miR‑100 in different diseases (Review). Oncol Rep 54: 91, 2025.
APA
Liu, J., Hu, G., Du, H., & Shi, Y. (2025). Role and potential mechanisms of miR‑100 in different diseases (Review). Oncology Reports, 54, 91. https://doi.org/10.3892/or.2025.8924
MLA
Liu, J., Hu, G., Du, H., Shi, Y."Role and potential mechanisms of miR‑100 in different diseases (Review)". Oncology Reports 54.2 (2025): 91.
Chicago
Liu, J., Hu, G., Du, H., Shi, Y."Role and potential mechanisms of miR‑100 in different diseases (Review)". Oncology Reports 54, no. 2 (2025): 91. https://doi.org/10.3892/or.2025.8924
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team