
Role and potential mechanisms of miR‑100 in different diseases (Review)
- Authors:
- Jiaqi Liu
- Gejile Hu
- Hua Du
- Yingxu Shi
-
Affiliations: Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010010, P.R. China, Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010010, P.R. China - Published online on: June 5, 2025 https://doi.org/10.3892/or.2025.8924
- Article Number: 91
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M and Ghafouri-Fard S: MicroRNA: A signature for cancer progression. Biomed Pharmacother. 138:1115282021. View Article : Google Scholar : PubMed/NCBI | |
Soifer HS, Rossi JJ and Saetrom P: MicroRNAs in disease and potential therapeutic applications. Mol Ther. 15:2070–2079. 2007. View Article : Google Scholar : PubMed/NCBI | |
Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM and Nigam M: Micro-RNA: The darkhorse of cancer. Cell Signal. 83:1099952021. View Article : Google Scholar : PubMed/NCBI | |
Douvris A, Viñas J and Burns KD: miRNA-486-5p: Signaling targets and role in non-malignant disease. Cell Mol Life Sci. 79:3762022. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Yang Y, Ju J, Zhang G, Zhang P, Ji P, Jin Q, Cao G, Zuo R, Wang H, et al: miR-100-5p promotes epidermal stem cell proliferation through targeting MTMR3 to activate PIP3/AKT and ERK signaling pathways. Stem Cells Int. 2022:14742732022. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Liufu S, Yu Z, Xu X, Ai N, Li X, Liu X, Chen B, Zhang Y, Ma H and Yin Y: miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway. Int J Mol Sci. 24:89062023. View Article : Google Scholar : PubMed/NCBI | |
Eniafe J and Jiang S: MicroRNA-99 family in cancer and immunity. Wiley Interdiscip Rev RNA. 12:e16352021. View Article : Google Scholar : PubMed/NCBI | |
Belles X: MicroRNAs and the evolution of insect metamorphosis. Annu Rev Entomol. 62:111–125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Heimberg AM, Sempere LF, Moy VN, Donoghue PC and Peterson KJ: MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA. 105:2946–2950. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Wang Z, Yu S, Liu D and Sun L: LncmiRHG-MIR100HG: A new budding star in cancer. Front Oncol. 12:9975322022. View Article : Google Scholar : PubMed/NCBI | |
Chen JF, Wu P, Xia R, Yang J, Huo XY, Gu DY, Tang CJ, De W and Yang F: STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 17:62018. View Article : Google Scholar : PubMed/NCBI | |
Peng CW, Yue LX, Zhou YQ, Tang S, Kan C, Xia LM, Yang F and Wang SY: miR-100-3p inhibits cell proliferation and induces apoptosis in human gastric cancer through targeting to BMPR2. Cancer Cell Int. 19:3542019. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Zhang M, Hu Y, He J, Lin Q and Peng N: MiR-100-5p inhibits osteogenic differentiation of human bone mesenchymal stromal cells by targeting TMEM135. Hum Cell. 35:1671–1683. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ai L, Yi W, Chen L, Wang H and Huang Q: Xian-Ling-Gu-Bao protects osteoporosis through promoting osteoblast differentiation by targeting miR-100-5p/KDM6B/RUNX2 axis. In Vitro Cell Dev Biol Anim. 57:3–9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ding W, Ding S, Li J, Peng Z, Hu P, Zhang T and Pan L: Aberrant expression of miR-100 in plasma of patients with osteoporosis and its potential diagnostic value. Clin Lab. 65:1903272019. View Article : Google Scholar | |
Chen R, Liao X, Chen F, Wang B, Huang J, Jian G, Huang Z, Yin G, Liu H and Jin D: Circulating microRNAs, miR-10b-5p, miR-328-3p, miR-100 and let-7, are associated with osteoblast differentiation in osteoporosis. Int J Clin Exp Pathol. 11:1383–1390. 2018.PubMed/NCBI | |
Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, Chen H, Huang S, Fu Z, Li J, et al: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials. 206:87–100. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lai Z and Cao Y: Plasma miR-200c-3p, miR-100-5p, and miR-1826 serve as potential diagnostic biomarkers for knee osteoarthritis: Randomized controlled trials. Medicine (Baltimore). 98:e181102019. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Zhu W, Yang Y, Guo M, Qian H, Jiang W, Chen Y, Lian C, Xu Z, Bai H, et al: Exosomal miR-100-5p inhibits osteogenesis of hBMSCs and angiogenesis of HUVECs by suppressing the BMPR2/Smad1/5/9 signalling pathway. Stem Cell Res Ther. 12:3902021. View Article : Google Scholar : PubMed/NCBI | |
Chamorro Á, Dirnagl U, Urra X and Planas AM: Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 15:869–881. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Chen J, Ren H, Zhou C, Zhang Q, Cheng H and Wang X: Gypenoside pretreatment alleviates the cerebral ischemia injury via inhibiting the microglia-mediated neuroinflammation. Mol Neurobiol. 61:1140–1156. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xin D, Li T, Zhao Y, Guo X, Gai C, Jiang Z, Yu S, Cheng J, Song Y, Cheng Y, et al: MiR-100-5p-rich small extracellular vesicles from activated neuron to aggravate microglial activation and neuronal activity after stroke. J Nanobiotechnology. 22:5342024. View Article : Google Scholar : PubMed/NCBI | |
Cao X, Zhang X, Chen J, Sun Q, Sun Y, Lin N and Liu X: miR-100-5p activation of the autophagy response through inhibiting the mTOR pathway and suppression of cerebral infarction progression in mice. Aging (Albany NY). 15:8315–8324. 2023. View Article : Google Scholar : PubMed/NCBI | |
He S, Wang Q, Chen L, He YJ, Wang X and Qu S: miR-100a-5p-enriched exosomes derived from mesenchymal stem cells enhance the anti-oxidant effect in a Parkinson's disease model via regulation of Nox4/ROS/Nrf2 signaling. J Transl Med. 21:7472023. View Article : Google Scholar : PubMed/NCBI | |
Feng N, Huang X and Jia Y: Small extracellular vesicles from adipose derived stem cells alleviate microglia activation and improve motor deficit of Parkinson's disease via miR-100-5p/DTX3L/STAT1 signaling axis. Exp Neurol. 389:1152502025. View Article : Google Scholar : PubMed/NCBI | |
Li XH, Fu NS and Xing ZM: MiR-100 suppresses inflammatory activation of microglia and neuronal apoptosis following spinal cord injury via TLR4/NF-κB pathway. Eur Rev Med Pharmacol Sci. 23:8713–8720. 2019.PubMed/NCBI | |
Marx C, Novotny J, Salbeck D, Zellner KR, Nicolai L, Pekayvaz K, Kilani B, Stockhausen S, Bürgener N, Kupka D, et al: Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood. 134:1859–1872. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Yu Z, Li Y and Wang X: miR-100-5p in human umbilical cord mesenchymal stem cell-derived exosomes mediates eosinophilic inflammation to alleviate atherosclerosis via the FZD5/Wnt/β-catenin pathway. Acta Biochim Biophys Sin (Shanghai). 53:1166–1176. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ji P, Song X and Lv Z: Knockdown of circ_0004104 alleviates oxidized low-density lipoprotein-induced vascular endothelial cell injury by regulating miR-100/TNFAIP8 axis. J Cardiovasc Pharmacol. 78:269–279. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zeng J, Wang L, Zhao J, Zheng Z, Peng J, Zhang W, Wen T, Nie J, Ding L and Yi D: MiR-100-5p regulates cardiac hypertrophy through activation of autophagy by targeting mTOR. Hum Cell. 34:1388–1397. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhong Z, Tian Y, Luo X, Zou J, Wu L and Tia J: Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect against DOX-induced heart failure through the miR-100-5p/NOX4 pathway. Front Bioeng Biotechnol. 9:7032412021. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Chen Y, Huang Y, Wei L, Ran J, Li Q, Tian Y, Luo Z, Yang L, Liu H, et al: Macrophage-derived mir-100-5p orchestrates synovial proliferation and inflammation in rheumatoid arthritis through mTOR signaling. J Nanobiotechnology. 22:1972024. View Article : Google Scholar : PubMed/NCBI | |
Li N, Gao Z, Zhao L, Du B, Ma B, Nian H and Wei R: MSC-derived small extracellular vesicles attenuate autoimmune dacryoadenitis by promoting M2 macrophage polarization and inducing tregs via miR-100-5p. Front Immunol. 13:8889492022. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Li X, Zhou X, Li Y, Yu H, Peng X, Bai X, Zhang C, Feng Z, Mei Y, et al: Extracellular vesicles secreted from mesenchymal stem cells ameliorate renal ischemia reperfusion injury by delivering miR-100-5p targeting FKBP5/AKT axis. Sci Rep. 14:67202024. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, He L, Yan L, Tan B, Ma L, He G, Dai Z, Sun R and Li C: Hydrogels treat atopic dermatitis by transporting marine-derived miR-100-5p-abundant extracellular vesicles. ACS Biomater Sci Eng. 10:7667–7682. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Li F and Lu J: microRNA-100 shuttled by human umbilical cord MSC-secreted extracellular vesicles induces endometriosis by inhibiting HS3ST2. Cell Signal. 102:1105322023. View Article : Google Scholar : PubMed/NCBI | |
Smolka C, Schlosser D, Hohnloser C, Bemtgen X, Jänich C, Schneider L, Martin J, Pfeifer D, Moser M, Hasselblatt P, et al: MiR-100 overexpression attenuates high fat diet induced weight gain, liver steatosis, hypertriglyceridemia and development of metabolic syndrome in mice. Mol Med. 27:1012021. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Shu J, Shi G, Yan F, Li Y and Ding H: miR-100 suppresses the proliferation, invasion, and migration of hepatocellular carcinoma cells via targeting CXCR7. J Immunol Res. 2021:99207862021. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Song J, Ge J, Song Z, Chen J and Wu C: MicroRNA-100 suppresses human gastric cancer cell proliferation by targeting CXCR7. Oncol Lett. 15:453–458. 2018.PubMed/NCBI | |
Zhou SM, Zhang F, Chen XB, Jun CM, Jing X, Wei DX, Xia Y, Zhou YB, Xiao XQ, Jia RQ, et al: miR-100 suppresses the proliferation and tumor growth of esophageal squamous cancer cells via targeting CXCR7. Oncol Rep. 35:3453–3459. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Xiao R, He Y, He L, Xie C, Chen J and Hong Y: MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1. Oncol Lett. 22:8162021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Ren Y, Liu D, Yu X and Chen K: Role of miR-100-5p and CDC25A in breast carcinoma cells. PeerJ. 9:e122632022. View Article : Google Scholar : PubMed/NCBI | |
He W, Huang Y, Jiang CC, Zhu Y, Wang L, Zhang W, Huang W, Zhou T and Tang S: miR-100 inhibits cell growth and proliferation by targeting HOXA1 in nasopharyngeal carcinoma. Onco Targets Ther. 13:593–602. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Liu X, Wang Y, Yang S, Chen Y and Yuan T: miR-100 inhibits the migration and invasion of nasopharyngeal carcinoma by targeting IGF1R. Oncol Lett. 15:8333–8338. 2018.PubMed/NCBI | |
Zhang H, Yang K, Ren T, Huang Y, Liang X, Yu Y, Wang W, Niu J, Lou J, Tang X and Guo W: miR-100-5p inhibits malignant behavior of chordoma cells by targeting IGF1R. Cancer Manag Res. 12:4129–4137. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han W, Ren X, Yang Y, Li H, Zhao L and Lin Z: microRNA-100 functions as a tumor suppressor in non-small cell lung cancer via regulating epithelial-mesenchymal transition and Wnt/β-catenin by targeting HOXA1. Thorac Cancer. 11:1679–1688. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fu B, Zhou F, Zhang J, Kong X, Ni B, Bu J, Xu S and He C: Sevoflurane attenuates proliferative and migratory activity of lung cancer cells via mediating the microRNA-100-3p/sterol O-Acyltransferase 1 axis. Chin J Physiol. 66:456–465. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Huang Y, Zhuang W, Lin P and Ma X: miR-100 inhibits cell proliferation in mantle cell lymphoma by targeting mTOR. Exp Hematol Oncol. 9:252020. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Wang H and Luo C: MiR-100 regulates cell viability and apoptosis by targeting ATM in pediatric acute myeloid leukemia. Biochem Biophys Res Commun. 522:855–861. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Feng Y, Fu Y, Liu F, Chen Q, Zhang W, Zhao Y, Huang X, Chen Y, Li Q and Zhang Q: miR-100-5p is upregulated in multiple myeloma and involves in the pathogenesis of multiple myeloma through targeting MTMR3. Hematology. 28:21968572023. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Yi F, Chen Y, Li CH, Cheng YS and Yang K: Reduced long noncoding RNA PGM5-AS1 facilitated proliferation and invasion of colorectal cancer through sponging miR-100-5p. Eur Rev Med Pharmacol Sci. 24:7972–7981. 2020.PubMed/NCBI | |
Liu X, Liu C, Zhang A, Wang Q, Ge J, Li Q and Xiao J: Long non-coding RNA SDCBP2-AS1 delays the progression of ovarian cancer via microRNA-100-5p-targeted EPDR1. World J Surg Oncol. 19:1992021. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Zheng H, Liu F, Wu Q and Liu S: The m6A methyltransferase METTL3 affects autophagy and progression of nasopharyngeal carcinoma by regulating the stability of lncRNA ZFAS1. Infect Agent Cancer. 17:12022. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhu H, Li X, Ke Y, Yang S and Cheng Q: Long non-coding RNA HAGLROS facilitates the malignant phenotypes of NSCLC cells via repressing miR-100 and up-regulating SMARCA5. Biomed J. 44 (6 Suppl 2):S305–S315. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shu L, Guo K, Lin ZH and Liu H: Long non-coding RNA HAGLROS promotes the development of diffuse large B-cell lymphoma via suppressing miR-100. J Clin Lab Anal. 36:e241682022. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Guo Z, Fang N and Liu H: hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother. 117:1091512019. View Article : Google Scholar : PubMed/NCBI | |
Zhang XQ, Song Q and Zeng LX: Circulating hsa_circ_0072309, acting via the miR-100/ACKR3 pathway, maybe a potential biomarker for the diagnosis, prognosis, and treatment of brain metastasis from non-small-cell lung cancer. Cancer Med. 12:18005–18019. 2023. View Article : Google Scholar : PubMed/NCBI | |
Seol HS, Akiyama Y, Lee SE, Shimada S and Jang SJ: Loss of miR-100 and miR-125b results in cancer stem cell properties through IGF2 upregulation in hepatocellular carcinoma. Sci Rep. 10:214122020. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Yang G, Wang Q, Wang Y and Zhang X: NME2 is a master suppressor of apoptosis in gastric cancer cells via transcriptional regulation of miR-100 and other survival factors. Mol Cancer Res. 18:287–299. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ottaviani S, Stebbing J, Frampton AE, Zagorac S, Krell J, de Giorgio A, Trabulo SM, Nguyen VTM, Magnani L, Feng H, et al: TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat Commun. 9:18452018. View Article : Google Scholar : PubMed/NCBI | |
Peng Q, Zhang L, Li J, Wang W, Cai J, Ban Y, Zhou Y, Hu M, Mei Y, Zeng Z, et al: FOXA1 suppresses the growth, migration, and invasion of nasopharyngeal carcinoma cells through repressing miR-100-5p and miR-125b-5p. J Cancer. 11:2485–2495. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Chen X, Meng F, Huang T, Wang S, Zheng Z, Zheng G, Li W, Zhang J and Liu Y: α2,6-Sialylation promotes hepatocellular carcinoma cells migration and invasion via enhancement of nSmase2-mediated exosomal miRNA sorting. J Physiol Biochem. 79:19–34. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Yang C, Tian X, Liang Y, Wang S, Wang X, Shou Y, Li H, Xiao Q, Shu J, et al: Downregulation of miR-100-5p in cancer-associated fibroblast-derived exosomes facilitates lymphangiogenesis in esophageal squamous cell carcinoma. Cancer Med. 12:14468–14483. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, He M, Guan S, Ma M, Wu H, Yu Z, Jiang L, Wang Y, Zong X, Jin F and Wei M: MicroRNA-100 suppresses the migration and invasion of breast cancer cells by targeting FZD-8 and inhibiting Wnt/β-catenin signaling pathway. Tumour Biol. 37:5001–5011. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Qin X, Zhao N, Jin H, Zhang S and Yang H: MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett. 20:1336–1344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma P and Han J: Overexpression of miR-100-5p inhibits papillary thyroid cancer progression via targeting FZD8. Open Med (Wars). 17:1172–1182. 2022. View Article : Google Scholar : PubMed/NCBI | |
Adamo A, Dal Collo G, Bazzoni R and Krampera M: Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochim Biophys Acta Rev Cancer. 1871:192–198. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mathieu M, Martin-Jaular L, Lavieu G and Théry C: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shojaei S, Hashemi SM, Ghanbarian H, Salehi M and Mohammadi-Yeganeh S: Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: Tumor progression versus tumor suppression. J Cell Physiol. 234:3394–3409. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Dizaj LP and Sadeghizadeh M: MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway. Int J Pharm. 627:1222142022. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Mei W, Zheng Z, Cao F, Liang K, Jia Y, Wang Y, Liu D, Li J and Li F: Exosomes secreted from human umbilical cord mesenchymal stem cells promote pancreatic ductal adenocarcinoma growth by transferring miR-100-5p. Tissue Cell. 73:1016232021. View Article : Google Scholar : PubMed/NCBI | |
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N and Javan M: MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr). 40:457–470. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou HC, Fang JH, Shang LR, Zhang ZJ, Sang Y, Xu L, Yuan Y, Chen MS, Zheng L, Zhang Y and Zhuang SM: MicroRNAs miR-125b and miR-100 suppress metastasis of hepatocellular carcinoma by disrupting the formation of vessels that encapsulate tumour clusters. J Pathol. 240:450–460. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chelakkot C, Chelakkot VS, Shin Y and Song K: Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 24:26062023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Huang Y, Hu K, Zhang Z, Yang J and Wang Z: HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 11:1762020. View Article : Google Scholar : PubMed/NCBI | |
Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang W, Liu W, Huang L, Wang Y, Li D, Wang G, Zhao Z, Chi X, Xue Y, et al: Long noncoding RNA VESTAR regulates lymphangiogenesis and lymph node metastasis of esophageal squamous cell carcinoma by enhancing VEGFC mRNA stability. Cancer Res. 81:3187–3199. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 99:186–196. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fujino Y, Takeishi S, Nishida K, Okamoto K, Muguruma N, Kimura T, Kitamura S, Miyamoto H, Fujimoto A, Higashijima J, et al: Downregulation of microRNA-100/microRNA-125b is associated with lymph node metastasis in early colorectal cancer with submucosal invasion. Cancer Sci. 108:390–397. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Liu Z, Mai W, Xiao Y, You X and Qin L: FZD8 indicates a poor prognosis and promotes gastric cancer invasion and metastasis via B-catenin signaling pathway. Ann Clin Lab Sci. 50:13–23. 2020.PubMed/NCBI | |
Wang W, Liu Y, Guo J, He H, Mi X, Chen C, Xie J, Wang S, Wu P, Cao F, et al: miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis. 7:972018. View Article : Google Scholar : PubMed/NCBI | |
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 248:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI | |
Pattingre S, Espert L, Biard-Piechaczyk M and Codogno P: Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie. 90:313–323. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Zhang Y, Huang S, Yan M, Li J, Jin T and Bao S: MiR-100-5p, miR-199a-3p and miR-199b-5p induce autophagic death of endometrial carcinoma cell through targeting mTOR. Int J Clin Exp Pathol. 10:9262–9272. 2017.PubMed/NCBI | |
Deng X, Su R, Weng H, Li Z and Chen J: RNA N(6)-methyladenosine modification in cancers: Current status and perspectives. Cell Res. 28:507–517. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Hsu PJ, Chen YS and Yang YG: Dynamic transcriptomic m(6)A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Res. 28:616–624. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL, Lv JW, Huang XD, Liu RQ, Chen F, He XJ, et al: Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res. 79:4612–4626. 2019. View Article : Google Scholar : PubMed/NCBI | |
Katheder NS, Khezri R, O'farrell F, Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen T, Juhász G, et al: Microenvironmental autophagy promotes tumour growth. Nature. 541:417–420. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M and Zaret KS: Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 9:279–289. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Li SL and Wang JJ: miR-100-5p downregulates mTOR to suppress the proliferation, migration, and invasion of prostate cancer cells. Front Oncol. 10:5789482020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhong L, Li P and Zhao P: MicroRNA-100 enhances autophagy and suppresses migration and invasion of renal cell carcinoma cells via disruption of NOX4-dependent mTOR pathway. Clin Transl Sci. 15:567–575. 2022. View Article : Google Scholar : PubMed/NCBI | |
Raji S, Sahranavard M, Mottaghi M and Sahebkar A: MiR-212 value in prognosis and diagnosis of cancer and its association with patient characteristics: A systematic review and meta-analysis. Cancer Cell Int. 22:1632022. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Shi L and Luo Z: Long non-coding RNAs in cancer: Implications for diagnosis, prognosis, and therapy. Front Med (Lausanne). 7:6123932020. View Article : Google Scholar : PubMed/NCBI | |
Cheng G: Circulating miRNAs: Roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev. 81:75–93. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wnuk J, Strzelczyk JK and Gisterek I: Clinical value of circulating miRNA in diagnosis, prognosis, screening and monitoring therapy of pancreatic ductal adenocarcinoma-a review of the literature. Int J Mol Sci. 24:51132023. View Article : Google Scholar : PubMed/NCBI | |
Damodaran M, Dandapani MC, Simondurairaj, SandhyaSundaram, VenkatRamanan S, Ramachandran I and Venkatesan V: Differentially expressed miR-20, miR-21, miR-100, miR-125a and miR-146a as a potential biomarker for prostate cancer. Mol Biol Rep. 48:3349–3356. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Li L, Yang M, Wang X, Zhang H, Wu N, Jia K, Wang J, Li M, Wei L and Liu J: Identification of three circulating MicroRNAs in plasma as clinical biomarkers for breast cancer detection. J Clin Med. 12:3222022. View Article : Google Scholar : PubMed/NCBI | |
Ludwig N, Nourkami-Tutdibi N, Backes C, Lenhof HP, Graf N, Keller A and Meese E: Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr Blood Cancer. 62:1360–1367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Motawi TK, Rizk SM, Ibrahim TM and Ibrahim IA: Circulating microRNAs, miR-92a, miR-100 and miR-143, as non-invasive biomarkers for bladder cancer diagnosis. Cell Biochem Funct. 34:142–148. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yamanaka Z, Sasaki T, Yamanaka A, Kato K and Nishi H: Circulating and tissue miR-100 acts as a potential diagnostic biomarker for cervical cancer. Cancer Biomark. 32:551–558. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hassan NM, Refaat LA, Ismail GN, Abdellateif M, Fadel SA and AbdelAziz RS: Diagnostic, prognostic and predictive values of miR-100 and miR-210 in pediatric acute lymphoblastic leukemia. Hematology. 25:405–413. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liao Z, Zhang Q, Yang L, Li H, Mo W, Song Z, Huang X, Wen S, Cheng X and He M: Increased hsa-miR-100-5p expression improves hepatocellular carcinoma prognosis in the asian population with PLK1 variant rs27770A>G. Cancers (Basel). 16:1292023. View Article : Google Scholar : PubMed/NCBI | |
He QL, Qin SY, Tao L, Ning HJ and Jiang HX: Prognostic value and prospective molecular mechanism of miR-100-5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett. 18:6126–6142. 2019.PubMed/NCBI | |
Song SK, Jung WY, Park SK, Chung CW and Park Y: Significantly different expression levels of microRNAs associated with vascular invasion in hepatocellular carcinoma and their prognostic significance after surgical resection. PLoS One. 14:e02168472019. View Article : Google Scholar : PubMed/NCBI | |
Fuso P, Di Salvatore M, Santonocito C, Guarino D, Autilio C, Mulè A, Arciuolo D, Rinninella A, Mignone F, Ramundo M, et al: Let-7a-5p, miR-100-5p, miR-101-3p, and miR-199a-3p hyperexpression as potential predictive biomarkers in early breast cancer patients. J Pers Med. 11:8162021. View Article : Google Scholar : PubMed/NCBI | |
Zhang HC and Tang KF: Clinical value of integrated-signature miRNAs in esophageal cancer. Cancer Med. 6:1893–1903. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Tao Y and Bian Q: miRNA and mRNA expression profiling reveals potential biomarkers for metastatic cutaneous melanoma. Expert Rev Anticancer Ther. 21:557–567. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jakob M, Mattes LM, Küffer S, Unger K, Hess J, Bertlich M, Haubner F, Ihler F, Canis M, Weiss BG and Kitz J: MicroRNA expression patterns in oral squamous cell carcinoma: Hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck. 41:3499–3515. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Wu L, Lin Q, Shi J, Lin X and Shi L: Evaluation of miR-182/miR-100 ratio for diagnosis and survival prediction in bladder cancer. Arch Iran Med. 19:645–651. 2016.PubMed/NCBI | |
Azizmohammadi S, Azizmohammadi S, Safari A, Kosari N, Kaghazian M, Yahaghi E and Seifoleslami M: The role and expression of miR-100 and miR-203 profile as prognostic markers in epithelial ovarian cancer. Am J Transl Res. 8:2403–2410. 2016.PubMed/NCBI | |
Zhang H, Wang J, Wang Z, Ruan C, Wang L and Guo H: Serum miR-100 is a potential biomarker for detection and outcome prediction of glioblastoma patients. Cancer Biomark. 24:43–49. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Yang L, Hu M, Hu R, Wang Y, Chen B, Jiang X and Cui R: Comprehensive analysis of the prognostic significance of Hsa-miR-100-5p and its related gene signature in stomach adenocarcinoma. Front Cell Dev Biol. 9:7362742021. View Article : Google Scholar : PubMed/NCBI | |
Hu XY, Song Z, Yang ZW, Li JJ, Liu J and Wang HS: Cancer drug resistance related microRNAs: recent advances in detection methods. Analyst. 147:2615–2632. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lai Y, Kacal M, Kanony M, Stukan I, Jatta K, Kis L, Norberg E, Vakifahmetoglu-Norberg H, Lewensohn R, Hydbring P and Ekman S: miR-100-5p confers resistance to ALK tyrosine kinase inhibitors Crizotinib and Lorlatinib in EML4-ALK positive NSCLC. Biochem Biophys Res Commun. 511:260–265. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qin X, Yu S, Zhou L, Shi M, Hu Y, Xu X, Shen B, Liu S, Yan D and Feng J: Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine. 12:3721–3733. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nabavi N, Saidy NRN, Venalainen E, Haegert A, Parolia A, Xue H, Wang Y, Wu R, Dong X, Collins C, et al: miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer. Sci Rep. 7:40792017. View Article : Google Scholar : PubMed/NCBI | |
Samli H, Samli M, Vatansever B, Ardicli S, Aztopal N, Dincel D, Sahin A and Balci F: Paclitaxel resistance and the role of miRNAs in prostate cancer cell lines. World J Urol. 37:1117–1126. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nishi H, Ono M, Ohno S, Yamanaka Z, Sasaki T, Ohyashiki K, Ohyashiki JH and Kuroda M: Hypoxia-induced paclitaxel resistance in cervical cancer modulated by miR-100 targeting of USP15. Gynecol Oncol Rep. 45:1011382023. View Article : Google Scholar : PubMed/NCBI |