You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI | |
|
Horn SR, Stoltzfus KC, Lehrer EJ, Dawson LA, Tchelebi L, Gusani NJ, Sharma NK, Chen H, Trifiletti DM and Zaorsky NG: Epidemiology of liver metastases. Cancer Epidemiol. 67:1017602020. View Article : Google Scholar : PubMed/NCBI | |
|
Rees M, Tekkis PP, Welsh FK, O'Rourke T and John TG: Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: A multifactorial model of 929 patients. Ann Surg. 247:125–135. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Medici B, Benatti S, Dominici M and Gelsomino F: New frontiers of biomarkers in metastatic colorectal cancer: Potential and critical issues. Int J Mol Sci. 26:52682025. View Article : Google Scholar : PubMed/NCBI | |
|
Tsubakihara Y and Moustakas A: Epithelial-mesenchymal transition and metastasis under the control of transforming growth factor β. Int J Mol Sci. 19:36722018. View Article : Google Scholar : PubMed/NCBI | |
|
van Zijl F, Krupitza G and Mikulits W: Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat Res. 728:23–34. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Qi J and Zhu YQ: Targeting the most upstream site of Wnt signaling pathway provides a strategic advantage for therapy in colorectal cancer. Curr Drug Targets. 9:548–557. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S and Polakis P: Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 272:1023–1026. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Gao Y, Qian Y, Wei B, Jiang K, Sun Z, Zhang F, Yang M, Baldi S, Yu X, et al: The Lyn/RUVBL1 complex promotes colorectal cancer liver metastasis by regulating arachidonic acid metabolism through chromatin remodeling. Adv Sci (Weinh). 12:e24065622025. View Article : Google Scholar : PubMed/NCBI | |
|
Zubeldia IG, Bleau AM, Redrado M, Serrano D, Agliano A, Gil-Puig C, Vidal-Vanaclocha F, Lecanda J and Calvo A: Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144. Exp Cell Res. 319:12–22. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yang Y, Qi X, Cui P, Kang Y, Liu H, Wei Z and Wang H: SLC14A1 and TGF-β signaling: A feedback loop driving EMT and colorectal cancer metachronous liver metastasis. J Exp Clin Cancer Res. 43:2082024. View Article : Google Scholar : PubMed/NCBI | |
|
Shin AE, Sugiura K, Kariuki SW, Cohen DA, Flashner SP, Klein-Szanto AJ, Nishiwaki N, De D, Vasan N, Gabre JT, et al: LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models. J Clin Invest. 135:e1860352025. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Zhang J, Dong B, Xiong Q, Wang X, Gu Y, Wang Z, Liu H, Zhang J, He X, et al: Targeting SLITRK4 restrains proliferation and liver metastasis in colorectal cancer via regulating PI3K/AKT/NFκB pathway and tumor-associated macrophage. Adv Sci (Weinh). 12:e24003672025. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Z, She X, Ma J, Chen Q, Gao Y, Chen R, Qin H, Shen B and Gao H: The E3 Ligase NEDD4L prevents colorectal cancer liver metastasis via degradation of PRMT5 to inhibit the AKT/mTOR signaling pathway. Adv Sci (Weinh). 2025:e25047042025. View Article : Google Scholar : PubMed/NCBI | |
|
Urosevic J, Blasco MT, Llorente A, Bellmunt A, Berenguer-Llergo A, Guiu M, Cañellas A, Fernandez E, Burkov I, Clapés M, et al: ERK1/2 signaling induces upregulation of ANGPT2 and CXCR4 to mediate liver metastasis in colon cancer. Cancer Res. 80:4668–4680. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chu PC, Lin PC, Wu HY, Lin KT, Wu C, Bekaii-Saab T, Lin YJ, Lee CT, Lee JC and Chen CS: Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway. Oncogene. 37:3440–3455. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yao JF, Li XJ, Yan LK, He S, Zheng JB, Wang XR, Zhou PH, Zhang L, Wei GB and Sun XJ: Role of HGF/c-Met in the treatment of colorectal cancer with liver metastasis. J Biochem Mol Toxicol. 33:e223162019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Xu J, Liu J, Wang N, Zhou L and Guo J: Liver metastasis in cancer: Molecular mechanisms and management. MedComm (2020). 6:e701192025. View Article : Google Scholar : PubMed/NCBI | |
|
Dunbar KJ, Efe G, Cunningham K, Esquea E, Navaridas R and Rustgi AK: Regulation of metastatic organotropism. Trends Cancer. 11:216–231. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX and Liang JN: Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: From molecular mechanisms to therapeutic strategies. Mol Cancer. 23:2542024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XH and Zheng J: Invasion and metastasis in cancer: Molecular insights and therapeutic targets. Signal Transduct Target Ther. 10:572025. View Article : Google Scholar : PubMed/NCBI | |
|
Glaire MA, Domingo E, Sveen A, Bruun J, Nesbakken A, Nicholson G, Novelli M, Lawson K, Oukrif D, Kildal W, et al: Tumour-infiltrating CD8+ lymphocytes and colorectal cancer recurrence by tumour and nodal stage. Br J Cancer. 121:474–482. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Trailin A, Ali E, Ye W, Pavlov S, Červenková L, Vyčítal O, Ambrozkiewicz F, Hošek P, Daum O, Liška V and Hemminki K: Prognostic assessment of T-cells in primary colorectal cancer and paired synchronous or metachronous liver metastasis. Int J Cancer. 156:1282–1292. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang A, Zhou M, Gao Y and Zhang Y: Mechanisms of CD8+ T cell exhaustion and its clinical significance in prognosis of anti-tumor therapies: A review. Int Immunopharmacol. 159:1148432025. View Article : Google Scholar : PubMed/NCBI | |
|
Shan T, Chen S, Wu T, Yang Y, Li S and Chen X: PD-L1 expression in colon cancer and its relationship with clinical prognosis. Int J Clin Exp Pathol. 12:1764–1769. 2019.PubMed/NCBI | |
|
Zhao T, Li Y, Zhang J and Zhang B: PD-L1 expression increased by IFN-γ via JAK2-STAT1 signaling and predicts a poor survival in colorectal cancer. Oncol Lett. 20:1127–1134. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wei XL, Luo X, Sheng H, Wang Y, Chen DL, Li JN, Wang FH and Xu RH: PD-L1 expression in liver metastasis: Its clinical significance and discordance with primary tumor in colorectal cancer. J Transl Med. 18:4752020. View Article : Google Scholar : PubMed/NCBI | |
|
Rong D, Sun G, Zheng Z, Liu L, Chen X, Wu F, Gu Y, Dai Y, Zhong W, Hao X, et al: MGP promotes CD8+ T cell exhaustion by activating the NF-κB pathway leading to liver metastasis of colorectal cancer. Int J Biol Sci. 18:2345–2361. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun G, Zhao S, Fan Z, Wang Y, Liu H, Cao H, Sun G, Huang T, Cai H, Pan H, et al: CHSY1 promotes CD8+ T cell exhaustion through activation of succinate metabolism pathway leading to colorectal cancer liver metastasis based on CRISPR/Cas9 screening. J Exp Clin Cancer Res. 42:2482023. View Article : Google Scholar : PubMed/NCBI | |
|
Kuwahara T, Hazama S, Suzuki N, Yoshida S, Tomochika S, Nakagami Y, Matsui H, Shindo Y, Kanekiyo S, Tokumitsu Y, et al: Intratumoural-infiltrating CD4+ and FOXP3 + T cells as strong positive predictive markers for the prognosis of resectable colorectal cancer. Br J Cancer. 121:659–665. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Katz SC, Pillarisetty V, Bamboat ZM, Shia J, Hedvat C, Gonen M, Jarnagin W, Fong Y, Blumgart L, D'Angelica M and DeMatteo RP: T cell infiltrate predicts long-term survival following resection of colorectal cancer liver metastases. Ann Surg Oncol. 16:2524–2530. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Katz SC, Pillarisetty VG, Bleier JI, Kingham TP, Chaudhry UI, Shah AB and DeMatteo RP: Conventional liver CD4 T cells are functionally distinct and suppressed by environmental factors. Hepatology. 42:293–300. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F and Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Wang X, Yang Q, Luo L, Liu Z, Ren X, Lei K, Li S, Xie Z, Zheng G, et al: Th17 cells Secrete TWEAK to trigger epithelial-mesenchymal transition and promote colorectal cancer liver metastasis. Cancer Res. 84:1352–1371. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
De Simone V, Pallone F, Monteleone G and Stolfi C: Role of T(H)17 cytokines in the control of colorectal cancer. Oncoimmunology. 2:e266172013. View Article : Google Scholar : PubMed/NCBI | |
|
Kroemer M, Turco C, Spehner L, Viot J, Idirène I, Bouard A, Renaude E, Deschamps M, Godet Y, Adotévi O, et al: Investigation of the prognostic value of CD4 T cell subsets expanded from tumor-infiltrating lymphocytes of colorectal cancer liver metastases. J Immunother Cancer. 8:e0014782020. View Article : Google Scholar : PubMed/NCBI | |
|
Olguín JE, Medina-Andrade I, Rodríguez T, Rodríguez-Sosa M and Terrazas LI: Relevance of regulatory T cells during colorectal cancer development. Cancers (Basel). 12:18882020. View Article : Google Scholar : PubMed/NCBI | |
|
Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, et al: IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol. 80:634–644. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang X, Chen Z, Zhang N, Zhu C, Lin X, Yu J, Chen Z, Lan P and Wan Y: Increase in CD4+FOXP3+ regulatory T cell number and upregulation of the HGF/c-Met signaling pathway during the liver metastasis of colorectal cancer. Oncol Lett. 20:2113–2118. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Katz SC, Bamboat ZM, Maker AV, Shia J, Pillarisetty VG, Yopp AC, Hedvat CV, Gonen M, Jarnagin WR, Fong Y, et al: Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann Surg Oncol. 20:946–955. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Brudvik KW, Henjum K, Aandahl EM, Bjørnbeth BA and Taskén K: Regulatory T-cell-mediated inhibition of antitumor immune responses is associated with clinical outcome in patients with liver metastasis from colorectal cancer. Cancer Immunol Immunother. 61:1045–1053. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C and Iacopetta B: Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 27:186–192. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E, et al: Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med. 22:679–684. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Pedroza-Gonzalez A, Verhoef C, Ijzermans JN, Peppelenbosch MP, Kwekkeboom J, Verheij J, Janssen HL and Sprengers D: Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatology. 57:183–194. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Han Y, Fan AH, Li D, Wang B, Ji K, Wang X, Zhao X and Lu Y: Multi-perspective comparison of the immune microenvironment of primary colorectal cancer and liver metastases. J Transl Med. 20:4542022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Wang X, Si M, Yang J, Sun S, Wu H, Cui S, Qu X and Yu X: Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 474:36–52. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YS, Song SJ, Hong HK, Oh BY, Lee WY and Cho YB: The FBW7-MCL-1 axis is key in M1 and M2 macrophage-related colon cancer cell progression: Validating the immunotherapeutic value of targeting PI3Kγ. Exp Mol Med. 52:815–831. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Afik R, Zigmond E, Vugman M, Klepfish M, Shimshoni E, Pasmanik-Chor M, Shenoy A, Bassat E, Halpern Z, Geiger T, et al: Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med. 213:2315–2331. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cai J, Xia L, Li J, Ni S, Song H and Wu X: Tumor-associated macrophages derived TGF-β-induced epithelial to mesenchymal transition in colorectal cancer cells through Smad2,3-4/Snail signaling pathway. Cancer Res Treat. 51:252–266. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R and Xiong B: Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 18:642019. View Article : Google Scholar : PubMed/NCBI | |
|
Suarez-Lopez L, Sriram G, Kong YW, Morandell S, Merrick KA, Hernandez Y, Haigis KM and Yaffe MB: MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis. Proc Natl Acad Sci USA. 115:E4236–E4244. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong X, Chen B and Yang Z: The role of Tumor-associated macrophages in colorectal carcinoma progression. Cell Physiol Biochem. 45:356–365. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Zhang W, Huo M, Wang P, Liu X, Wang Y, Li Y, Zhou Z, Xu N and Zhu H: XBP1 regulates the protumoral function of tumor-associated macrophages in human colorectal cancer. Signal Transduct Target Ther. 6:3572021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XL, Hu LP, Yang Q, Qin WT, Wang X, Xu CJ, Tian GA, Yang XM, Yao LL, Zhu L, et al: CTHRC1 promotes liver metastasis by reshaping infiltrated macrophages through physical interactions with TGF-β receptors in colorectal cancer. Oncogene. 40:3959–3973. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Ou R, Chen X, Zhang Y, Li J, Liang Y, Zhu X, Liu L, Li M, Lin D, et al: Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC. J Exp Clin Cancer Res. 40:3042021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Wang J, Zhao J, Wang H, Chen J and Wu J: HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics. 12:963–975. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tu W, Gong J, Zhou Z, Tian D and Wang Z: TCF4 enhances hepatic metastasis of colorectal cancer by regulating tumor-associated macrophage via CCL2/CCR2 signaling. Cell Death Dis. 12:8822021. View Article : Google Scholar : PubMed/NCBI | |
|
Grossman JG, Nywening TM, Belt BA, Panni RZ, Krasnick BA, DeNardo DG, Hawkins WG, Goedegebuure SP, Linehan DC and Fields RC: Recruitment of CCR2+ tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncoimmunology. 7:e14707292018. View Article : Google Scholar : PubMed/NCBI | |
|
Xu C, Fan L, Lin Y, Shen W, Qi Y, Zhang Y, Chen Z, Wang L, Long Y, Hou T, et al: Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes. 13:19803472021. View Article : Google Scholar : PubMed/NCBI | |
|
Ohashi K, Wang Z, Yang YM, Billet S, Tu W, Pimienta M, Cassel SL, Pandol SJ, Lu SC, Sutterwala FS, et al: NOD-like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD. Hepatology. 70:1582–1599. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Song Q, Li H, Han Y, Pu Y, Li L, Rong W, Liu X, Wang Z, Sun J, et al: Targeting circ-0034880-enriched tumor extracellular vesicles to impede SPP1highCD206+ pro-tumor macrophages mediated pre-metastatic niche formation in colorectal cancer liver metastasis. Mol Cancer. 23:1682024. View Article : Google Scholar : PubMed/NCBI | |
|
Shao Y, Chen T, Zheng X, Yang S, Xu K, Chen X, Xu F, Wang L, Shen Y, Wang T, et al: Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis. 39:1368–1379. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Takano Y, Masuda T, Iinuma H, Yamaguchi R, Sato K, Tobo T, Hirata H, Kuroda Y, Nambara S, Hayashi N, et al: Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget. 8:78598–78613. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:1562020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun H, Meng Q, Shi C, Yang H, Li X, Wu S, Familiari G, Relucenti M, Aschner M, Wang X and Chen R: Hypoxia-inducible exosomes facilitate liver-tropic premetastatic niche in colorectal cancer. Hepatology. 74:2633–2651. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Fu X, Ning D, Liu Q, Zhao J, Cheng Q, Chen X and Jiang L: Colon cancer exosome-associated HSP90B1 initiates pre-metastatic niche formation in the liver by polarizing M1 macrophage into M2 phenotype. Biol Direct. 20:522025. View Article : Google Scholar : PubMed/NCBI | |
|
Liang Y, Li J, Yuan Y, Ju H, Liao H, Li M, Liu Y, Yao Y, Yang L, Li T and Lei X: Exosomal miR-106a-5p from highly metastatic colorectal cancer cells drives liver metastasis by inducing macrophage M2 polarization in the tumor microenvironment. J Exp Clin Cancer Res. 43:2812024. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Ye J, Pei Y, Wang C, Yang H, Tian J, Si G, Ma Y, Wang K and Liu G: Extracellular vesicles from colorectal cancer cells promote metastasis via the NOD1 signalling pathway. J Extracell Vesicles. 11:e122642022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Zhang Q, Xing B, Luo N, Gao R, Yu K, Hu X, Bu Z, Peng J, Ren X and Zhang Z: Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell. 40:424–437.e5. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Cheng Y, Huang S, Liu Y, Jiang S, et al: Spatiotemporal immune landscape of colorectal cancer liver metastasis at Single-cell level. Cancer Discov. 12:134–153. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW, et al: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest. 124:5466–5480. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Germann M, Zangger N, Sauvain MO, Sempoux C, Bowler AD, Wirapati P, Kandalaft LE, Delorenzi M, Tejpar S, Coukos G and Radtke F: Neutrophils suppress tumor-infiltrating T cells in colon cancer via matrix metalloproteinase-mediated activation of TGFβ. EMBO Mol Med. 12:e106812020. View Article : Google Scholar : PubMed/NCBI | |
|
Itatani Y, Yamamoto T, Zhong C, Molinolo AA, Ruppel J, Hegde P, Taketo MM and Ferrara N: Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proc Natl Acad Sci USA. 117:21598–21608. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon-Weeks AN, Lim SY, Yuzhalin AE, Jones K, Markelc B, Kim KJ, Buzzelli JN, Fokas E, Cao Y, Smart S and Muschel R: Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice. Hepatology. 65:1920–1935. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Liu L, Zhang R, Hong J, Wang Y, Wang J, Zuo J, Zhang J, Chen J and Hao H: IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J Cancer. 11:4384–4396. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tan H, Jiang Y, Shen L, Nuerhashi G, Wen C, Gu L, Wang Y, Qi H, Cao F, Huang T, et al: Cryoablation-induced neutrophil Ca2+ elevation and NET formation exacerbate immune escape in colorectal cancer liver metastasis. J Exp Clin Cancer Res. 43:3192024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Long G, Huang X, Wang W, Cheng B and Pan W: Single-cell transcriptomic analysis reveals dynamic changes in the liver microenvironment during colorectal cancer metastatic progression. J Transl Med. 23:3362025. View Article : Google Scholar : PubMed/NCBI | |
|
Seubert B, Grünwald B, Kobuch J, Cui H, Schelter F, Schaten S, Siveke JT, Lim NH, Nagase H, Simonavicius N, et al: Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology. 61:238–248. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Zhang B, Li R, Chen J, Xu G, Zhu Y, Li J, Liang Q, Hua Q, Wang L, et al: KIAA1199 drives immune suppression to promote colorectal cancer liver metastasis by modulating neutrophil infiltration. Hepatology. 76:967–981. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Song J, Ge Y, Hou S, Chang Y, Chen X, Nie Z, Guo L and Yin J: PRIM1 enhances colorectal cancer liver metastasis via promoting neutrophil recruitment and formation of neutrophil extracellular trap. Cell Signal. 132:1118222025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang QQ, Hu XW, Liu YL, Ye ZJ, Gui YH, Zhou DL, Qi CL, He XD, Wang H and Wang LJ: CD11b deficiency suppresses intestinal tumor growth by reducing myeloid cell recruitment. Sci Rep. 5:159482015. View Article : Google Scholar : PubMed/NCBI | |
|
Cao X, Lan Q, Xu H, Liu W, Cheng H, Hu X, He J, Yang Q, Lai W and Chu Z: Granulocyte-like myeloid-derived suppressor cells: The culprits of neutrophil extracellular traps formation in the pre-metastatic niche. Int Immunopharmacol. 143:1135002024. View Article : Google Scholar : PubMed/NCBI | |
|
Lim SY, Gordon-Weeks AN, Zhao L, Tapmeier TT, Im JH, Cao Y, Beech J, Allen D, Smart S and Muschel RJ: Recruitment of myeloid cells to the tumor microenvironment supports liver metastasis. Oncoimmunology. 2:e231872013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Lim SY, Gordon-Weeks AN, Tapmeier TT, Im JH, Cao Y, Beech J, Allen D, Smart S and Muschel RJ: Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology. 57:829–839. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, Odze R, Glickman JN and Garrett WS: CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep. 12:244–257. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Inamoto S, Itatani Y, Yamamoto T, Minamiguchi S, Hirai H, Iwamoto M, Hasegawa S, Taketo MM, Sakai Y and Kawada K: Loss of SMAD4 promotes colorectal cancer progression by accumulation of myeloid-derived suppressor cells through the CCL15-CCR1 chemokine axis. Clin Cancer Res. 22:492–501. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Sun H, Wei J, Cen B and DuBois RN: CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 77:3655–3665. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dang Y, Yu J, Zhao S, Cao X and Wang Q: HOXA7 promotes the metastasis of KRAS mutant colorectal cancer by regulating myeloid-derived suppressor cells. Cancer Cell Int. 22:882022. View Article : Google Scholar : PubMed/NCBI | |
|
Ren X, Xiao J, Zhang W, Wang F, Yan Y, Wu X, Zeng Z, He Y, Yang W, Liao W, et al: Inhibition of CCL7 derived from Mo-MDSCs prevents metastatic progression from latency in colorectal cancer. Cell Death Dis. 12:4842021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Q, Ren L, Jian M, Xu P, Li J, Zheng P, Feng Q, Yang L, Ji M, Wei Y and Xu J: The mechanism of the premetastatic niche facilitating colorectal cancer liver metastasis generated from myeloid-derived suppressor cells induced by the S1PR1-STAT3 signaling pathway. Cell Death Dis. 10:6932019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Davis C, Shah S, Hughes D, Ryan JC, Altomare D and Peña MM: IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog. 56:272–287. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gu Y, Mi Y, Cao Y, Yu K, Zhang Z, Lian P, Li D, Qin J and Zhao S: The lncRNA MIR181A1HG in extracellular vesicles derived from highly metastatic colorectal cancer cells promotes liver metastasis by remodeling the extracellular matrix and recruiting myeloid-derived suppressor cells. Cell Biosci. 15:232025. View Article : Google Scholar : PubMed/NCBI | |
|
Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ, Ramanathapuram LV, Arteaga CL and Akporiaye ET: Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res. 63:1860–1864. 2003.PubMed/NCBI | |
|
Orsini G, Legitimo A, Failli A, Ferrari P, Nicolini A, Spisni R, Miccoli P and Consolini R: Defective generation and maturation of dendritic cells from monocytes in colorectal cancer patients during the course of disease. Int J Mol Sci. 14:22022–22041. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nagorsen D, Voigt S, Berg E, Stein H, Thiel E and Loddenkemper C: Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: Relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med. 5:622007. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu YL, Chen YJ, Chang WA, Jian SF, Fan HL, Wang JY and Kuo PL: Interaction between tumor-associated dendritic cells and colon cancer cells contributes to tumor progression via CXCL1. Int J Mol Sci. 19:24272018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang TX, Tan XY, Huang HS, Li YT, Liu BL, Liu KS, Chen X, Chen Z, Guan XY, Zou C and Fu L: Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut. 71:333–344. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Hu H, Liu Z, Xu J, Gao Y, Zhan X, Zhou S, Zhong W, Wu D, Wang P, et al: Macrophage STING signaling promotes NK cell to suppress colorectal cancer liver metastasis via 4-1BBL/4-1BB co-stimulation. J Immunother Cancer. 11:e0064812023. View Article : Google Scholar : PubMed/NCBI | |
|
Donadon M, Hudspeth K, Cimino M, Di Tommaso L, Preti M, Tentorio P, Roncalli M, Mavilio D and Torzilli G: Increased infiltration of natural killer and T cells in colorectal liver metastases improves patient overall survival. J Gastrointest Surg. 21:1226–1236. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dupaul-Chicoine J, Arabzadeh A, Dagenais M, Douglas T, Champagne C, Morizot A, Rodrigue-Gervais IG, Breton V, Colpitts SL, Beauchemin N and Saleh M: The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity. 43:751–763. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H and Okumura K: Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med. 7:94–100. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Russo E, D'Aquino C, Di Censo C, Laffranchi M, Tomaipitinca L, Licursi V, Garofalo S, Promeuschel J, Peruzzi G, Sozio F, et al: Cxcr3 promotes protection from colorectal cancer liver metastasis by driving NK cell infiltration and plasticity. J Clin Invest. 135:e1840362025. View Article : Google Scholar : PubMed/NCBI | |
|
Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, Hoti E, Lynch L, Geoghegan J and O'Farrelly C: Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res. 7:335–346. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang H, Dai W, Gu R, Zhang Y, Li J, Luo W, Tong S, Han L, Wang Y, Jiang C, et al: myCAF-derived exosomal PWAR6 accelerates CRC liver metastasis via altering glutamine availability and NK cell function in the tumor microenvironment. J Hematol Oncol. 17:1262024. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumura H, Kondo T, Ogawa K, Tamura T, Fukunaga K, Murata S and Ohkohchi N: Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage. Int J Oncol. 45:2303–2310. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wortzel I, Seo Y, Akano I, Shaashua L, Tobias GC, Hebert J, Kim KA, Kim D, Dror S, Liu Y, et al: Unique structural configuration of EV-DNA primes Kupffer cell-mediated antitumor immunity to prevent metastatic progression. Nat Cancer. 5:1815–1833. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu WP, Liu YD, Zhang ZF, Liu J, Ye JW, Wang SY, Lin XY, Lai YR, Li J, Liu SY, et al: m6A-modified MIR670HG suppresses tumor liver metastasis through enhancing Kupffer cell phagocytosis. Cell Mol Life Sci. 82:1852025. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Liu XG, Ge RL, Yin YP, Liu YD, Lu WP, Huang M, He XY, Wang J, Cai G, et al: The ligation between ERMAP, galectin-9 and dectin-2 promotes Kupffer cell phagocytosis and antitumor immunity. Nat Immunol. 24:1813–1824. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bresesti C, Carito E, Notaro M, Giacca G, Breggion S, Kerzel T, Mercado CM, Beretta S, Monti M, Merelli I, et al: Reprogramming liver metastasis-associated macrophages toward an anti-tumoral phenotype through enforced miR-342 expression. Cell Rep. 44:1155922025. View Article : Google Scholar : PubMed/NCBI | |
|
Nater M, Brügger M, Cecconi V, Pereira P, Forni G, Köksal H, Dimakou D, Herbst M, Calvanese AL, Lucchiari G, et al: Hepatic iNKT cells facilitate colorectal cancer metastasis by inducing a fibrotic niche in the liver. iScience. 28:1123642025. View Article : Google Scholar : PubMed/NCBI | |
|
Gassmann P, Hemping-Bovenkerk A, Mees ST and Haier J: Metastatic tumor cell arrest in the liver-lumen occlusion and specific adhesion are not exclusive. Int J Colorectal Dis. 24:851–858. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Haier J, Korb T, Hotz B, Spiegel HU and Senninger N: An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg. 7:507–515. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Khatib AM, Fallavollita L, Wancewicz EV, Monia BP and Brodt P: Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res. 62:5393–5398. 2002.PubMed/NCBI | |
|
Khatib AM, Auguste P, Fallavollita L, Wang N, Samani A, Kontogiannea M, Meterissian S and Brodt P: Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol. 167:749–759. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Huang WH, Zhou MW, Zhu YF, Xiang JB, Li ZY, Wang ZH, Zhou YM, Yang Y, Chen ZY and Gu XD: The role of hepatic stellate cells in promoting liver metastasis of colorectal carcinoma. Onco Targets Ther. 12:7573–7580. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng X, Zhou J, Xiong Z, Sun H, Yang W, Mok MTS, Wang J, Li J, Liu M, Tang W, et al: Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis. Cell Mol Immunol. 18:1005–1015. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Chen Y, Liu Z, Chang Z, Sun Z and Zhao L: Concomitant NAFLD facilitates liver metastases and PD-1-refractory by recruiting MDSCs via CXCL5/CXCR2 in Colorectal Cancer. Cell Mol Gastroenterol Hepatol. 18:1013512024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Kim SY, Tu W, Kim J, Xu A, Yang YM, Matsuda M, Reolizo L, Tsuchiya T, Billet S, et al: Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 35:1209–1226.e13. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ruff SM, Brown ZJ and Pawlik TM: A review of targeted therapy and immune checkpoint inhibitors for metastatic colorectal cancer. Surg Oncol. 51:1019932023. View Article : Google Scholar : PubMed/NCBI | |
|
Hernandez Dominguez O, Yilmaz S and Steele SR: Stage IV colorectal cancer management and treatment. J Clin Med. 12:20722023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng XF, Zhao F, Chen D and Liu FL: Current landscape of preoperative neoadjuvant therapies for initial resectable colorectal cancer liver metastasis. World J Gastroenterol. 30:663–672. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tatsuta K, Sakata M, Kojima T, Booka E, Kurachi K and Takeuchi H: Updated insights into the impact of adjuvant chemotherapy on recurrence and survival after curative resection of liver or lung metastases in colorectal cancer: A rapid review and meta-analysis. World J Surg Oncol. 23:562025. View Article : Google Scholar : PubMed/NCBI | |
|
Yarom N and Jonker DJ: The role of the epidermal growth factor receptor in the mechanism and treatment of colorectal cancer. Discov Med. 11:95–105. 2011.PubMed/NCBI | |
|
Jonker DJ, O'Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ, Au HJ, Berry SR, Krahn M, Price T, et al: Cetuximab for the treatment of colorectal cancer. N Engl J Med. 357:2040–2048. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pintér T, Lim R, Bodoky G, et al: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 360:1408–1417. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, et al: Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 27:663–671. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, et al: Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 486:532–536. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, et al: Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: The PRIME study. J Clin Oncol. 28:4697–4705. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, et al: Final results from PRIME: Randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol. 25:1346–1355. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Choi HY and Chang JE: Targeted therapy for cancers: From ongoing clinical trials to FDA-Approved drugs. Int J Mol Sci. 24:136182023. View Article : Google Scholar : PubMed/NCBI | |
|
Cao D, Zheng Y, Xu H, Ge W and Xu X: Bevacizumab improves survival in metastatic colorectal cancer patients with primary tumor resection: A meta-analysis. Sci Rep. 9:203262019. View Article : Google Scholar : PubMed/NCBI | |
|
Tang W, Ren L, Liu T, Ye Q, Wei Y, He G, Lin Q, Wang X, Wang M, Liang F, et al: Bevacizumab Plus mFOLFOX6 versus mFOLFOX6 Alone as First-line treatment for RAS mutant unresectable colorectal Liver-limited metastases: The BECOME randomized controlled trial. J Clin Oncol. 38:3175–3184. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Debeuckelaere C, Murgioni S, Lonardi S, Girardi N, Alberti G, Fano C, Gallimberti S, Magro C, Ahcene-Djaballah S, Daniel F, et al: Ramucirumab: The long and winding road toward being an option for mCRC treatment. Expert Opin Biol Ther. 19:399–409. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tabernero J, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, Ciuleanu TE, Portnoy DC, Van Cutsem E, Grothey A, et al: Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 16:499–508. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouché O, Mineur L, Barone C, et al: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 381:303–312. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Goel G: Evolution of regorafenib from bench to bedside in colorectal cancer: Is it an attractive option or merely a ‘me too’ drug? Cancer Manag Res. 10:425–437. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zou JY, Wang Z and Wang Y: Fruquintinib: A novel antivascular endothelial growth factor receptor tyrosine kinase inhibitor for the treatment of metastatic colorectal cancer. Cancer Manag Res. 11:7787–7803. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Qin S, Xu RH, Shen L, Xu J, Bai Y, Yang L, Deng Y, Chen ZD, Zhong H, et al: Effect of fruquintinib vs placebo on overall survival in patients with previously treated metastatic colorectal cancer: The FRESCO randomized clinical trial. JAMA. 319:2486–2496. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dasari A, Lonardi S, Garcia-Carbonero R, Elez E, Yoshino T, Sobrero A, Yao J, García-Alfonso P, Kocsis J, Cubillo Gracian A, et al: Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): An international, multicentre, randomised, double-blind, phase 3 study. Lancet. 402:41–53. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fusco MJ, Casak SJ, Mushti SL, Cheng J, Christmas BJ, Thompson MD, Fu W, Wang H, Yoon M, Yang Y, et al: FDA approval summary: Fruquintinib for the treatment of refractory metastatic colorectal cancer. Clin Cancer Res. 30:3100–3104. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mc Neil V and Lee SW: Advancing cancer treatment: A review of immune checkpoint inhibitors and combination STrategies. Cancers (Basel). 17:14082025. View Article : Google Scholar : PubMed/NCBI | |
|
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al: Nivolumab in patients with metastatic DNA mismatch Repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 18:1182–1191. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al: Pembrolizumab in Microsatellite-Instability-High advanced colorectal cancer. N Engl J Med. 383:2207–2218. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Weng J, Li S, Zhu Z, Liu Q, Zhang R, Yang Y and Li X: Exploring immunotherapy in colorectal cancer. J Hematol Oncol. 15:952022. View Article : Google Scholar : PubMed/NCBI | |
|
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 Blockade in tumors with Mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, Rizvi SM, Qin A, Waninger JJ, Lang X, et al: Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 27:152–164. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Saberzadeh-Ardestani B, Jones JC, McWilliams RR, Tougeron D, Halfdanarson TR, Guimbaud R, Hubbard JM, Flecchia C, Shi Q, Alouani E, et al: Metastatic site and clinical outcome of patients with deficient mismatch repair metastatic colorectal cancer treated with an immune checkpoint inhibitor in the first-line setting. Eur J Cancer. 196:1134332024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Sandhu J, Ouyang C, Ye J, Lee PP and Fakih M: Clinical response to immunotherapy targeting programmed cell death Receptor 1/Programmed cell death Ligand 1 in patients with treatment-resistant microsatellite stable colorectal cancer with and without liver metastases. JAMA Netw Open. 4:e21184162021. View Article : Google Scholar : PubMed/NCBI | |
|
Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al: Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch Repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fukuoka S, Hara H, Takahashi N, Kojima T, Kawazoe A, Asayama M, Yoshii T, Kotani D, Tamura H, Mikamoto Y, et al: Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: An open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol. 38:2053–2061. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Zhao L, Lin Y, Wang S, Ye Y and Shen Z: Improving the efficiency of immune checkpoint inhibitors for metastatic pMMR/MSS colorectal cancer: Options and strategies. Crit Rev Oncol Hematol. 200:1042042024. View Article : Google Scholar : PubMed/NCBI | |
|
Gutiu AG, Zhao L, Marrah AJ, Maher AJ, Voss BB, Mayberry TG, Cowan BC, Wakefield MR and Fang Y: Promising immunotherapeutic treatments for colon cancer. Med Oncol. 42:1752025. View Article : Google Scholar : PubMed/NCBI | |
|
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK and Pathak S: Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis. 40:12024. View Article : Google Scholar : PubMed/NCBI | |
|
Fatemi N, Mirbahari SN, Tierling S, Sanjabi F, Shahrivari S, AmeliMojarad M, Amelimojarad M, Mirzaei Rezaei M, Nobaveh P, Totonchi M and Nazemalhosseini Mojarad E: Emerging frontiers in colorectal cancer therapy: From targeted molecules to immunomodulatory breakthroughs and cell-based approaches. Dig Dis Sci. 70:919–942. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu N, Xiao X, Zhang Z, Mao C, Wan M and Shen J: Advances in cancer vaccine research. ACS Biomater Sci Eng. 9:5999–6023. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Liu N, Zhang T and Tu Y: Adoptive immune cell therapy for colorectal cancer. Front Immunol. 16:15579062025. View Article : Google Scholar : PubMed/NCBI | |
|
Pérez-Domínguez F, Quezada-Monrás C, Cárcamo L, Muñoz JP and Carrillo-Beltrán D: Oncolytic viruses as a novel therapeutic approach for colorectal cancer: Mechanisms, current advances, and future directions. Cancers (Basel). 17:18542025. View Article : Google Scholar : PubMed/NCBI |