Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2025 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2025 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Liver metastasis of colorectal cancer: Mechanism and clinical therapy (Review)

  • Authors:
    • Changjiang Yang
    • Long Zhao
    • Caihong Wang
    • Yingjiang Ye
    • Zhanlong Shen
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 130
    |
    Published online on: August 1, 2025
       https://doi.org/10.3892/or.2025.8963
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Liver metastasis is a common complication in colorectal cancer (CRC), with its presence and progression significantly shortening patient survival. Therefore, a deeper understanding of the underlying mechanisms driving liver metastasis in CRC is essential to identify more effective and actionable therapeutic targets and improve prognosis. Liver metastasis in CRC is a multifaceted and dynamic process. Tumor cells with invasive properties communicate with the surrounding microenvironment through mechanisms such as immune checkpoint molecules and cytokines, thereby establishing a supportive niche for their colonization and proliferation. Moreover, suppressive immune cells may enhance the invasiveness of tumor cells. The interplay between tumor cells and the microenvironment is an interdependent process. Targeting these interactions offers promising potential for novel therapeutic strategies. The present review outlined mechanisms of colorectal cancer liver metastasis, emphasizing the immune microenvironment's role, current treatment approaches, and future development prospects.
View Figures

Figure 1

Liver metastasis of colorectal cancer
Acquisition of invasive phenotype of malignant cells is the driving
force of colorectal liver metastasis. Tumor cells interact with
immune cells in the microenvironment to reverse antitumor activity.
The immune cells can be re-educated to promote progression and
metastasis.

Figure 2

Acquisition of invasive phenotype is
regulated by numerous genes and signaling pathways of malignant
cells in colorectal cancer. HGF, hepatocyte growth factor; RTK,
receptor tyrosine kinase; TF, transcription factor; EMT,
epithelial-mesenchymal transition; SMA, smooth muscle actin; FN,
fibronectin; TIMP, tissue inhibitor of metalloproteinases; uPAR,
urokinase-type plasminogen activator receptor; ZO-1, zonula
occludens-1; MET, mesenchymal-epithelial transition.

Figure 3

Interactions between tumor cells and
microenvironmental immune cells contribute to the enhancement of
tumor cell invasiveness. NK, natural killer; Th, helper T cell; DC,
dendritic cell; Treg, regulatory T cell; MDSC, myeloid-derived
suppressor cells.
View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI

2 

Horn SR, Stoltzfus KC, Lehrer EJ, Dawson LA, Tchelebi L, Gusani NJ, Sharma NK, Chen H, Trifiletti DM and Zaorsky NG: Epidemiology of liver metastases. Cancer Epidemiol. 67:1017602020. View Article : Google Scholar : PubMed/NCBI

3 

Rees M, Tekkis PP, Welsh FK, O'Rourke T and John TG: Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: A multifactorial model of 929 patients. Ann Surg. 247:125–135. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Medici B, Benatti S, Dominici M and Gelsomino F: New frontiers of biomarkers in metastatic colorectal cancer: Potential and critical issues. Int J Mol Sci. 26:52682025. View Article : Google Scholar : PubMed/NCBI

6 

Tsubakihara Y and Moustakas A: Epithelial-mesenchymal transition and metastasis under the control of transforming growth factor β. Int J Mol Sci. 19:36722018. View Article : Google Scholar : PubMed/NCBI

7 

van Zijl F, Krupitza G and Mikulits W: Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat Res. 728:23–34. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Qi J and Zhu YQ: Targeting the most upstream site of Wnt signaling pathway provides a strategic advantage for therapy in colorectal cancer. Curr Drug Targets. 9:548–557. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S and Polakis P: Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 272:1023–1026. 1996. View Article : Google Scholar : PubMed/NCBI

10 

Zhang Z, Gao Y, Qian Y, Wei B, Jiang K, Sun Z, Zhang F, Yang M, Baldi S, Yu X, et al: The Lyn/RUVBL1 complex promotes colorectal cancer liver metastasis by regulating arachidonic acid metabolism through chromatin remodeling. Adv Sci (Weinh). 12:e24065622025. View Article : Google Scholar : PubMed/NCBI

11 

Zubeldia IG, Bleau AM, Redrado M, Serrano D, Agliano A, Gil-Puig C, Vidal-Vanaclocha F, Lecanda J and Calvo A: Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFβ1-targeting peptides P17 and P144. Exp Cell Res. 319:12–22. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Zhang Y, Yang Y, Qi X, Cui P, Kang Y, Liu H, Wei Z and Wang H: SLC14A1 and TGF-β signaling: A feedback loop driving EMT and colorectal cancer metachronous liver metastasis. J Exp Clin Cancer Res. 43:2082024. View Article : Google Scholar : PubMed/NCBI

13 

Shin AE, Sugiura K, Kariuki SW, Cohen DA, Flashner SP, Klein-Szanto AJ, Nishiwaki N, De D, Vasan N, Gabre JT, et al: LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models. J Clin Invest. 135:e1860352025. View Article : Google Scholar : PubMed/NCBI

14 

Sun X, Zhang J, Dong B, Xiong Q, Wang X, Gu Y, Wang Z, Liu H, Zhang J, He X, et al: Targeting SLITRK4 restrains proliferation and liver metastasis in colorectal cancer via regulating PI3K/AKT/NFκB pathway and tumor-associated macrophage. Adv Sci (Weinh). 12:e24003672025. View Article : Google Scholar : PubMed/NCBI

15 

Dong Z, She X, Ma J, Chen Q, Gao Y, Chen R, Qin H, Shen B and Gao H: The E3 Ligase NEDD4L prevents colorectal cancer liver metastasis via degradation of PRMT5 to inhibit the AKT/mTOR signaling pathway. Adv Sci (Weinh). 2025:e25047042025. View Article : Google Scholar : PubMed/NCBI

16 

Urosevic J, Blasco MT, Llorente A, Bellmunt A, Berenguer-Llergo A, Guiu M, Cañellas A, Fernandez E, Burkov I, Clapés M, et al: ERK1/2 signaling induces upregulation of ANGPT2 and CXCR4 to mediate liver metastasis in colon cancer. Cancer Res. 80:4668–4680. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Chu PC, Lin PC, Wu HY, Lin KT, Wu C, Bekaii-Saab T, Lin YJ, Lee CT, Lee JC and Chen CS: Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway. Oncogene. 37:3440–3455. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Yao JF, Li XJ, Yan LK, He S, Zheng JB, Wang XR, Zhou PH, Zhang L, Wei GB and Sun XJ: Role of HGF/c-Met in the treatment of colorectal cancer with liver metastasis. J Biochem Mol Toxicol. 33:e223162019. View Article : Google Scholar : PubMed/NCBI

19 

Xu W, Xu J, Liu J, Wang N, Zhou L and Guo J: Liver metastasis in cancer: Molecular mechanisms and management. MedComm (2020). 6:e701192025. View Article : Google Scholar : PubMed/NCBI

20 

Dunbar KJ, Efe G, Cunningham K, Esquea E, Navaridas R and Rustgi AK: Regulation of metastatic organotropism. Trends Cancer. 11:216–231. 2025. View Article : Google Scholar : PubMed/NCBI

21 

Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX and Liang JN: Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: From molecular mechanisms to therapeutic strategies. Mol Cancer. 23:2542024. View Article : Google Scholar : PubMed/NCBI

22 

Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XH and Zheng J: Invasion and metastasis in cancer: Molecular insights and therapeutic targets. Signal Transduct Target Ther. 10:572025. View Article : Google Scholar : PubMed/NCBI

23 

Glaire MA, Domingo E, Sveen A, Bruun J, Nesbakken A, Nicholson G, Novelli M, Lawson K, Oukrif D, Kildal W, et al: Tumour-infiltrating CD8+ lymphocytes and colorectal cancer recurrence by tumour and nodal stage. Br J Cancer. 121:474–482. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Trailin A, Ali E, Ye W, Pavlov S, Červenková L, Vyčítal O, Ambrozkiewicz F, Hošek P, Daum O, Liška V and Hemminki K: Prognostic assessment of T-cells in primary colorectal cancer and paired synchronous or metachronous liver metastasis. Int J Cancer. 156:1282–1292. 2025. View Article : Google Scholar : PubMed/NCBI

25 

Yang A, Zhou M, Gao Y and Zhang Y: Mechanisms of CD8+ T cell exhaustion and its clinical significance in prognosis of anti-tumor therapies: A review. Int Immunopharmacol. 159:1148432025. View Article : Google Scholar : PubMed/NCBI

26 

Shan T, Chen S, Wu T, Yang Y, Li S and Chen X: PD-L1 expression in colon cancer and its relationship with clinical prognosis. Int J Clin Exp Pathol. 12:1764–1769. 2019.PubMed/NCBI

27 

Zhao T, Li Y, Zhang J and Zhang B: PD-L1 expression increased by IFN-γ via JAK2-STAT1 signaling and predicts a poor survival in colorectal cancer. Oncol Lett. 20:1127–1134. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Wei XL, Luo X, Sheng H, Wang Y, Chen DL, Li JN, Wang FH and Xu RH: PD-L1 expression in liver metastasis: Its clinical significance and discordance with primary tumor in colorectal cancer. J Transl Med. 18:4752020. View Article : Google Scholar : PubMed/NCBI

29 

Rong D, Sun G, Zheng Z, Liu L, Chen X, Wu F, Gu Y, Dai Y, Zhong W, Hao X, et al: MGP promotes CD8+ T cell exhaustion by activating the NF-κB pathway leading to liver metastasis of colorectal cancer. Int J Biol Sci. 18:2345–2361. 2022. View Article : Google Scholar : PubMed/NCBI

30 

Sun G, Zhao S, Fan Z, Wang Y, Liu H, Cao H, Sun G, Huang T, Cai H, Pan H, et al: CHSY1 promotes CD8+ T cell exhaustion through activation of succinate metabolism pathway leading to colorectal cancer liver metastasis based on CRISPR/Cas9 screening. J Exp Clin Cancer Res. 42:2482023. View Article : Google Scholar : PubMed/NCBI

31 

Kuwahara T, Hazama S, Suzuki N, Yoshida S, Tomochika S, Nakagami Y, Matsui H, Shindo Y, Kanekiyo S, Tokumitsu Y, et al: Intratumoural-infiltrating CD4+ and FOXP3 + T cells as strong positive predictive markers for the prognosis of resectable colorectal cancer. Br J Cancer. 121:659–665. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Katz SC, Pillarisetty V, Bamboat ZM, Shia J, Hedvat C, Gonen M, Jarnagin W, Fong Y, Blumgart L, D'Angelica M and DeMatteo RP: T cell infiltrate predicts long-term survival following resection of colorectal cancer liver metastases. Ann Surg Oncol. 16:2524–2530. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Katz SC, Pillarisetty VG, Bleier JI, Kingham TP, Chaudhry UI, Shah AB and DeMatteo RP: Conventional liver CD4 T cells are functionally distinct and suppressed by environmental factors. Hepatology. 42:293–300. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F and Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Liu X, Wang X, Yang Q, Luo L, Liu Z, Ren X, Lei K, Li S, Xie Z, Zheng G, et al: Th17 cells Secrete TWEAK to trigger epithelial-mesenchymal transition and promote colorectal cancer liver metastasis. Cancer Res. 84:1352–1371. 2024. View Article : Google Scholar : PubMed/NCBI

36 

De Simone V, Pallone F, Monteleone G and Stolfi C: Role of T(H)17 cytokines in the control of colorectal cancer. Oncoimmunology. 2:e266172013. View Article : Google Scholar : PubMed/NCBI

37 

Kroemer M, Turco C, Spehner L, Viot J, Idirène I, Bouard A, Renaude E, Deschamps M, Godet Y, Adotévi O, et al: Investigation of the prognostic value of CD4 T cell subsets expanded from tumor-infiltrating lymphocytes of colorectal cancer liver metastases. J Immunother Cancer. 8:e0014782020. View Article : Google Scholar : PubMed/NCBI

38 

Olguín JE, Medina-Andrade I, Rodríguez T, Rodríguez-Sosa M and Terrazas LI: Relevance of regulatory T cells during colorectal cancer development. Cancers (Basel). 12:18882020. View Article : Google Scholar : PubMed/NCBI

39 

Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, et al: IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol. 80:634–644. 2024. View Article : Google Scholar : PubMed/NCBI

40 

Huang X, Chen Z, Zhang N, Zhu C, Lin X, Yu J, Chen Z, Lan P and Wan Y: Increase in CD4+FOXP3+ regulatory T cell number and upregulation of the HGF/c-Met signaling pathway during the liver metastasis of colorectal cancer. Oncol Lett. 20:2113–2118. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Katz SC, Bamboat ZM, Maker AV, Shia J, Pillarisetty VG, Yopp AC, Hedvat CV, Gonen M, Jarnagin WR, Fong Y, et al: Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann Surg Oncol. 20:946–955. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Brudvik KW, Henjum K, Aandahl EM, Bjørnbeth BA and Taskén K: Regulatory T-cell-mediated inhibition of antitumor immune responses is associated with clinical outcome in patients with liver metastasis from colorectal cancer. Cancer Immunol Immunother. 61:1045–1053. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C and Iacopetta B: Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 27:186–192. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E, et al: Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med. 22:679–684. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Pedroza-Gonzalez A, Verhoef C, Ijzermans JN, Peppelenbosch MP, Kwekkeboom J, Verheij J, Janssen HL and Sprengers D: Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatology. 57:183–194. 2013. View Article : Google Scholar : PubMed/NCBI

46 

He Y, Han Y, Fan AH, Li D, Wang B, Ji K, Wang X, Zhao X and Lu Y: Multi-perspective comparison of the immune microenvironment of primary colorectal cancer and liver metastases. J Transl Med. 20:4542022. View Article : Google Scholar : PubMed/NCBI

47 

Wang D, Wang X, Si M, Yang J, Sun S, Wu H, Cui S, Qu X and Yu X: Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 474:36–52. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Lee YS, Song SJ, Hong HK, Oh BY, Lee WY and Cho YB: The FBW7-MCL-1 axis is key in M1 and M2 macrophage-related colon cancer cell progression: Validating the immunotherapeutic value of targeting PI3Kγ. Exp Mol Med. 52:815–831. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Afik R, Zigmond E, Vugman M, Klepfish M, Shimshoni E, Pasmanik-Chor M, Shenoy A, Bassat E, Halpern Z, Geiger T, et al: Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med. 213:2315–2331. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Cai J, Xia L, Li J, Ni S, Song H and Wu X: Tumor-associated macrophages derived TGF-β-induced epithelial to mesenchymal transition in colorectal cancer cells through Smad2,3-4/Snail signaling pathway. Cancer Res Treat. 51:252–266. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R and Xiong B: Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 18:642019. View Article : Google Scholar : PubMed/NCBI

52 

Suarez-Lopez L, Sriram G, Kong YW, Morandell S, Merrick KA, Hernandez Y, Haigis KM and Yaffe MB: MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis. Proc Natl Acad Sci USA. 115:E4236–E4244. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Zhong X, Chen B and Yang Z: The role of Tumor-associated macrophages in colorectal carcinoma progression. Cell Physiol Biochem. 45:356–365. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Zhao Y, Zhang W, Huo M, Wang P, Liu X, Wang Y, Li Y, Zhou Z, Xu N and Zhu H: XBP1 regulates the protumoral function of tumor-associated macrophages in human colorectal cancer. Signal Transduct Target Ther. 6:3572021. View Article : Google Scholar : PubMed/NCBI

55 

Zhang XL, Hu LP, Yang Q, Qin WT, Wang X, Xu CJ, Tian GA, Yang XM, Yao LL, Zhu L, et al: CTHRC1 promotes liver metastasis by reshaping infiltrated macrophages through physical interactions with TGF-β receptors in colorectal cancer. Oncogene. 40:3959–3973. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Huang C, Ou R, Chen X, Zhang Y, Li J, Liang Y, Zhu X, Liu L, Li M, Lin D, et al: Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC. J Exp Clin Cancer Res. 40:3042021. View Article : Google Scholar : PubMed/NCBI

57 

Wang X, Wang J, Zhao J, Wang H, Chen J and Wu J: HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics. 12:963–975. 2022. View Article : Google Scholar : PubMed/NCBI

58 

Tu W, Gong J, Zhou Z, Tian D and Wang Z: TCF4 enhances hepatic metastasis of colorectal cancer by regulating tumor-associated macrophage via CCL2/CCR2 signaling. Cell Death Dis. 12:8822021. View Article : Google Scholar : PubMed/NCBI

59 

Grossman JG, Nywening TM, Belt BA, Panni RZ, Krasnick BA, DeNardo DG, Hawkins WG, Goedegebuure SP, Linehan DC and Fields RC: Recruitment of CCR2+ tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncoimmunology. 7:e14707292018. View Article : Google Scholar : PubMed/NCBI

60 

Xu C, Fan L, Lin Y, Shen W, Qi Y, Zhang Y, Chen Z, Wang L, Long Y, Hou T, et al: Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes. 13:19803472021. View Article : Google Scholar : PubMed/NCBI

61 

Ohashi K, Wang Z, Yang YM, Billet S, Tu W, Pimienta M, Cassel SL, Pandol SJ, Lu SC, Sutterwala FS, et al: NOD-like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD. Hepatology. 70:1582–1599. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Zhou J, Song Q, Li H, Han Y, Pu Y, Li L, Rong W, Liu X, Wang Z, Sun J, et al: Targeting circ-0034880-enriched tumor extracellular vesicles to impede SPP1highCD206+ pro-tumor macrophages mediated pre-metastatic niche formation in colorectal cancer liver metastasis. Mol Cancer. 23:1682024. View Article : Google Scholar : PubMed/NCBI

63 

Shao Y, Chen T, Zheng X, Yang S, Xu K, Chen X, Xu F, Wang L, Shen Y, Wang T, et al: Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis. 39:1368–1379. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Takano Y, Masuda T, Iinuma H, Yamaguchi R, Sato K, Tobo T, Hirata H, Kuroda Y, Nambara S, Hayashi N, et al: Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget. 8:78598–78613. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:1562020. View Article : Google Scholar : PubMed/NCBI

66 

Sun H, Meng Q, Shi C, Yang H, Li X, Wu S, Familiari G, Relucenti M, Aschner M, Wang X and Chen R: Hypoxia-inducible exosomes facilitate liver-tropic premetastatic niche in colorectal cancer. Hepatology. 74:2633–2651. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Li S, Fu X, Ning D, Liu Q, Zhao J, Cheng Q, Chen X and Jiang L: Colon cancer exosome-associated HSP90B1 initiates pre-metastatic niche formation in the liver by polarizing M1 macrophage into M2 phenotype. Biol Direct. 20:522025. View Article : Google Scholar : PubMed/NCBI

68 

Liang Y, Li J, Yuan Y, Ju H, Liao H, Li M, Liu Y, Yao Y, Yang L, Li T and Lei X: Exosomal miR-106a-5p from highly metastatic colorectal cancer cells drives liver metastasis by inducing macrophage M2 polarization in the tumor microenvironment. J Exp Clin Cancer Res. 43:2812024. View Article : Google Scholar : PubMed/NCBI

69 

Wei X, Ye J, Pei Y, Wang C, Yang H, Tian J, Si G, Ma Y, Wang K and Liu G: Extracellular vesicles from colorectal cancer cells promote metastasis via the NOD1 signalling pathway. J Extracell Vesicles. 11:e122642022. View Article : Google Scholar : PubMed/NCBI

70 

Liu Y, Zhang Q, Xing B, Luo N, Gao R, Yu K, Hu X, Bu Z, Peng J, Ren X and Zhang Z: Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell. 40:424–437.e5. 2022. View Article : Google Scholar : PubMed/NCBI

71 

Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Cheng Y, Huang S, Liu Y, Jiang S, et al: Spatiotemporal immune landscape of colorectal cancer liver metastasis at Single-cell level. Cancer Discov. 12:134–153. 2022. View Article : Google Scholar : PubMed/NCBI

72 

Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW, et al: Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest. 124:5466–5480. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Germann M, Zangger N, Sauvain MO, Sempoux C, Bowler AD, Wirapati P, Kandalaft LE, Delorenzi M, Tejpar S, Coukos G and Radtke F: Neutrophils suppress tumor-infiltrating T cells in colon cancer via matrix metalloproteinase-mediated activation of TGFβ. EMBO Mol Med. 12:e106812020. View Article : Google Scholar : PubMed/NCBI

75 

Itatani Y, Yamamoto T, Zhong C, Molinolo AA, Ruppel J, Hegde P, Taketo MM and Ferrara N: Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proc Natl Acad Sci USA. 117:21598–21608. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Gordon-Weeks AN, Lim SY, Yuzhalin AE, Jones K, Markelc B, Kim KJ, Buzzelli JN, Fokas E, Cao Y, Smart S and Muschel R: Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice. Hepatology. 65:1920–1935. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Yang L, Liu L, Zhang R, Hong J, Wang Y, Wang J, Zuo J, Zhang J, Chen J and Hao H: IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J Cancer. 11:4384–4396. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Tan H, Jiang Y, Shen L, Nuerhashi G, Wen C, Gu L, Wang Y, Qi H, Cao F, Huang T, et al: Cryoablation-induced neutrophil Ca2+ elevation and NET formation exacerbate immune escape in colorectal cancer liver metastasis. J Exp Clin Cancer Res. 43:3192024. View Article : Google Scholar : PubMed/NCBI

79 

Jiang Y, Long G, Huang X, Wang W, Cheng B and Pan W: Single-cell transcriptomic analysis reveals dynamic changes in the liver microenvironment during colorectal cancer metastatic progression. J Transl Med. 23:3362025. View Article : Google Scholar : PubMed/NCBI

80 

Seubert B, Grünwald B, Kobuch J, Cui H, Schelter F, Schaten S, Siveke JT, Lim NH, Nagase H, Simonavicius N, et al: Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology. 61:238–248. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Wang H, Zhang B, Li R, Chen J, Xu G, Zhu Y, Li J, Liang Q, Hua Q, Wang L, et al: KIAA1199 drives immune suppression to promote colorectal cancer liver metastasis by modulating neutrophil infiltration. Hepatology. 76:967–981. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Wu J, Song J, Ge Y, Hou S, Chang Y, Chen X, Nie Z, Guo L and Yin J: PRIM1 enhances colorectal cancer liver metastasis via promoting neutrophil recruitment and formation of neutrophil extracellular trap. Cell Signal. 132:1118222025. View Article : Google Scholar : PubMed/NCBI

83 

Zhang QQ, Hu XW, Liu YL, Ye ZJ, Gui YH, Zhou DL, Qi CL, He XD, Wang H and Wang LJ: CD11b deficiency suppresses intestinal tumor growth by reducing myeloid cell recruitment. Sci Rep. 5:159482015. View Article : Google Scholar : PubMed/NCBI

84 

Cao X, Lan Q, Xu H, Liu W, Cheng H, Hu X, He J, Yang Q, Lai W and Chu Z: Granulocyte-like myeloid-derived suppressor cells: The culprits of neutrophil extracellular traps formation in the pre-metastatic niche. Int Immunopharmacol. 143:1135002024. View Article : Google Scholar : PubMed/NCBI

85 

Lim SY, Gordon-Weeks AN, Zhao L, Tapmeier TT, Im JH, Cao Y, Beech J, Allen D, Smart S and Muschel RJ: Recruitment of myeloid cells to the tumor microenvironment supports liver metastasis. Oncoimmunology. 2:e231872013. View Article : Google Scholar : PubMed/NCBI

86 

Zhao L, Lim SY, Gordon-Weeks AN, Tapmeier TT, Im JH, Cao Y, Beech J, Allen D, Smart S and Muschel RJ: Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology. 57:829–839. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, Odze R, Glickman JN and Garrett WS: CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep. 12:244–257. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Inamoto S, Itatani Y, Yamamoto T, Minamiguchi S, Hirai H, Iwamoto M, Hasegawa S, Taketo MM, Sakai Y and Kawada K: Loss of SMAD4 promotes colorectal cancer progression by accumulation of myeloid-derived suppressor cells through the CCL15-CCR1 chemokine axis. Clin Cancer Res. 22:492–501. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Wang D, Sun H, Wei J, Cen B and DuBois RN: CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 77:3655–3665. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Dang Y, Yu J, Zhao S, Cao X and Wang Q: HOXA7 promotes the metastasis of KRAS mutant colorectal cancer by regulating myeloid-derived suppressor cells. Cancer Cell Int. 22:882022. View Article : Google Scholar : PubMed/NCBI

91 

Ren X, Xiao J, Zhang W, Wang F, Yan Y, Wu X, Zeng Z, He Y, Yang W, Liao W, et al: Inhibition of CCL7 derived from Mo-MDSCs prevents metastatic progression from latency in colorectal cancer. Cell Death Dis. 12:4842021. View Article : Google Scholar : PubMed/NCBI

92 

Lin Q, Ren L, Jian M, Xu P, Li J, Zheng P, Feng Q, Yang L, Ji M, Wei Y and Xu J: The mechanism of the premetastatic niche facilitating colorectal cancer liver metastasis generated from myeloid-derived suppressor cells induced by the S1PR1-STAT3 signaling pathway. Cell Death Dis. 10:6932019. View Article : Google Scholar : PubMed/NCBI

93 

Zhang Y, Davis C, Shah S, Hughes D, Ryan JC, Altomare D and Peña MM: IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog. 56:272–287. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Gu Y, Mi Y, Cao Y, Yu K, Zhang Z, Lian P, Li D, Qin J and Zhao S: The lncRNA MIR181A1HG in extracellular vesicles derived from highly metastatic colorectal cancer cells promotes liver metastasis by remodeling the extracellular matrix and recruiting myeloid-derived suppressor cells. Cell Biosci. 15:232025. View Article : Google Scholar : PubMed/NCBI

95 

Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ, Ramanathapuram LV, Arteaga CL and Akporiaye ET: Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res. 63:1860–1864. 2003.PubMed/NCBI

96 

Orsini G, Legitimo A, Failli A, Ferrari P, Nicolini A, Spisni R, Miccoli P and Consolini R: Defective generation and maturation of dendritic cells from monocytes in colorectal cancer patients during the course of disease. Int J Mol Sci. 14:22022–22041. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Nagorsen D, Voigt S, Berg E, Stein H, Thiel E and Loddenkemper C: Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: Relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med. 5:622007. View Article : Google Scholar : PubMed/NCBI

98 

Hsu YL, Chen YJ, Chang WA, Jian SF, Fan HL, Wang JY and Kuo PL: Interaction between tumor-associated dendritic cells and colon cancer cells contributes to tumor progression via CXCL1. Int J Mol Sci. 19:24272018. View Article : Google Scholar : PubMed/NCBI

99 

Huang TX, Tan XY, Huang HS, Li YT, Liu BL, Liu KS, Chen X, Chen Z, Guan XY, Zou C and Fu L: Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut. 71:333–344. 2022. View Article : Google Scholar : PubMed/NCBI

100 

Sun Y, Hu H, Liu Z, Xu J, Gao Y, Zhan X, Zhou S, Zhong W, Wu D, Wang P, et al: Macrophage STING signaling promotes NK cell to suppress colorectal cancer liver metastasis via 4-1BBL/4-1BB co-stimulation. J Immunother Cancer. 11:e0064812023. View Article : Google Scholar : PubMed/NCBI

101 

Donadon M, Hudspeth K, Cimino M, Di Tommaso L, Preti M, Tentorio P, Roncalli M, Mavilio D and Torzilli G: Increased infiltration of natural killer and T cells in colorectal liver metastases improves patient overall survival. J Gastrointest Surg. 21:1226–1236. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Dupaul-Chicoine J, Arabzadeh A, Dagenais M, Douglas T, Champagne C, Morizot A, Rodrigue-Gervais IG, Breton V, Colpitts SL, Beauchemin N and Saleh M: The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity. 43:751–763. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H and Okumura K: Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med. 7:94–100. 2001. View Article : Google Scholar : PubMed/NCBI

104 

Russo E, D'Aquino C, Di Censo C, Laffranchi M, Tomaipitinca L, Licursi V, Garofalo S, Promeuschel J, Peruzzi G, Sozio F, et al: Cxcr3 promotes protection from colorectal cancer liver metastasis by driving NK cell infiltration and plasticity. J Clin Invest. 135:e1840362025. View Article : Google Scholar : PubMed/NCBI

105 

Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, Hoti E, Lynch L, Geoghegan J and O'Farrelly C: Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res. 7:335–346. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Fang H, Dai W, Gu R, Zhang Y, Li J, Luo W, Tong S, Han L, Wang Y, Jiang C, et al: myCAF-derived exosomal PWAR6 accelerates CRC liver metastasis via altering glutamine availability and NK cell function in the tumor microenvironment. J Hematol Oncol. 17:1262024. View Article : Google Scholar : PubMed/NCBI

107 

Matsumura H, Kondo T, Ogawa K, Tamura T, Fukunaga K, Murata S and Ohkohchi N: Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage. Int J Oncol. 45:2303–2310. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Wortzel I, Seo Y, Akano I, Shaashua L, Tobias GC, Hebert J, Kim KA, Kim D, Dror S, Liu Y, et al: Unique structural configuration of EV-DNA primes Kupffer cell-mediated antitumor immunity to prevent metastatic progression. Nat Cancer. 5:1815–1833. 2024. View Article : Google Scholar : PubMed/NCBI

109 

Lu WP, Liu YD, Zhang ZF, Liu J, Ye JW, Wang SY, Lin XY, Lai YR, Li J, Liu SY, et al: m6A-modified MIR670HG suppresses tumor liver metastasis through enhancing Kupffer cell phagocytosis. Cell Mol Life Sci. 82:1852025. View Article : Google Scholar : PubMed/NCBI

110 

Li J, Liu XG, Ge RL, Yin YP, Liu YD, Lu WP, Huang M, He XY, Wang J, Cai G, et al: The ligation between ERMAP, galectin-9 and dectin-2 promotes Kupffer cell phagocytosis and antitumor immunity. Nat Immunol. 24:1813–1824. 2023. View Article : Google Scholar : PubMed/NCBI

111 

Bresesti C, Carito E, Notaro M, Giacca G, Breggion S, Kerzel T, Mercado CM, Beretta S, Monti M, Merelli I, et al: Reprogramming liver metastasis-associated macrophages toward an anti-tumoral phenotype through enforced miR-342 expression. Cell Rep. 44:1155922025. View Article : Google Scholar : PubMed/NCBI

112 

Nater M, Brügger M, Cecconi V, Pereira P, Forni G, Köksal H, Dimakou D, Herbst M, Calvanese AL, Lucchiari G, et al: Hepatic iNKT cells facilitate colorectal cancer metastasis by inducing a fibrotic niche in the liver. iScience. 28:1123642025. View Article : Google Scholar : PubMed/NCBI

113 

Gassmann P, Hemping-Bovenkerk A, Mees ST and Haier J: Metastatic tumor cell arrest in the liver-lumen occlusion and specific adhesion are not exclusive. Int J Colorectal Dis. 24:851–858. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Haier J, Korb T, Hotz B, Spiegel HU and Senninger N: An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg. 7:507–515. 2003. View Article : Google Scholar : PubMed/NCBI

115 

Khatib AM, Fallavollita L, Wancewicz EV, Monia BP and Brodt P: Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res. 62:5393–5398. 2002.PubMed/NCBI

116 

Khatib AM, Auguste P, Fallavollita L, Wang N, Samani A, Kontogiannea M, Meterissian S and Brodt P: Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol. 167:749–759. 2005. View Article : Google Scholar : PubMed/NCBI

117 

Huang WH, Zhou MW, Zhu YF, Xiang JB, Li ZY, Wang ZH, Zhou YM, Yang Y, Chen ZY and Gu XD: The role of hepatic stellate cells in promoting liver metastasis of colorectal carcinoma. Onco Targets Ther. 12:7573–7580. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Zeng X, Zhou J, Xiong Z, Sun H, Yang W, Mok MTS, Wang J, Li J, Liu M, Tang W, et al: Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis. Cell Mol Immunol. 18:1005–1015. 2021. View Article : Google Scholar : PubMed/NCBI

119 

Yang Y, Chen Y, Liu Z, Chang Z, Sun Z and Zhao L: Concomitant NAFLD facilitates liver metastases and PD-1-refractory by recruiting MDSCs via CXCL5/CXCR2 in Colorectal Cancer. Cell Mol Gastroenterol Hepatol. 18:1013512024. View Article : Google Scholar : PubMed/NCBI

120 

Wang Z, Kim SY, Tu W, Kim J, Xu A, Yang YM, Matsuda M, Reolizo L, Tsuchiya T, Billet S, et al: Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 35:1209–1226.e13. 2023. View Article : Google Scholar : PubMed/NCBI

121 

Ruff SM, Brown ZJ and Pawlik TM: A review of targeted therapy and immune checkpoint inhibitors for metastatic colorectal cancer. Surg Oncol. 51:1019932023. View Article : Google Scholar : PubMed/NCBI

122 

Hernandez Dominguez O, Yilmaz S and Steele SR: Stage IV colorectal cancer management and treatment. J Clin Med. 12:20722023. View Article : Google Scholar : PubMed/NCBI

123 

Cheng XF, Zhao F, Chen D and Liu FL: Current landscape of preoperative neoadjuvant therapies for initial resectable colorectal cancer liver metastasis. World J Gastroenterol. 30:663–672. 2024. View Article : Google Scholar : PubMed/NCBI

124 

Tatsuta K, Sakata M, Kojima T, Booka E, Kurachi K and Takeuchi H: Updated insights into the impact of adjuvant chemotherapy on recurrence and survival after curative resection of liver or lung metastases in colorectal cancer: A rapid review and meta-analysis. World J Surg Oncol. 23:562025. View Article : Google Scholar : PubMed/NCBI

125 

Yarom N and Jonker DJ: The role of the epidermal growth factor receptor in the mechanism and treatment of colorectal cancer. Discov Med. 11:95–105. 2011.PubMed/NCBI

126 

Jonker DJ, O'Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ, Au HJ, Berry SR, Krahn M, Price T, et al: Cetuximab for the treatment of colorectal cancer. N Engl J Med. 357:2040–2048. 2007. View Article : Google Scholar : PubMed/NCBI

127 

Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pintér T, Lim R, Bodoky G, et al: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 360:1408–1417. 2009. View Article : Google Scholar : PubMed/NCBI

128 

Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, et al: Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 27:663–671. 2009. View Article : Google Scholar : PubMed/NCBI

129 

Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, et al: Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 486:532–536. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, et al: Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: The PRIME study. J Clin Oncol. 28:4697–4705. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, et al: Final results from PRIME: Randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol. 25:1346–1355. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Choi HY and Chang JE: Targeted therapy for cancers: From ongoing clinical trials to FDA-Approved drugs. Int J Mol Sci. 24:136182023. View Article : Google Scholar : PubMed/NCBI

133 

Cao D, Zheng Y, Xu H, Ge W and Xu X: Bevacizumab improves survival in metastatic colorectal cancer patients with primary tumor resection: A meta-analysis. Sci Rep. 9:203262019. View Article : Google Scholar : PubMed/NCBI

134 

Tang W, Ren L, Liu T, Ye Q, Wei Y, He G, Lin Q, Wang X, Wang M, Liang F, et al: Bevacizumab Plus mFOLFOX6 versus mFOLFOX6 Alone as First-line treatment for RAS mutant unresectable colorectal Liver-limited metastases: The BECOME randomized controlled trial. J Clin Oncol. 38:3175–3184. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Debeuckelaere C, Murgioni S, Lonardi S, Girardi N, Alberti G, Fano C, Gallimberti S, Magro C, Ahcene-Djaballah S, Daniel F, et al: Ramucirumab: The long and winding road toward being an option for mCRC treatment. Expert Opin Biol Ther. 19:399–409. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Tabernero J, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, Ciuleanu TE, Portnoy DC, Van Cutsem E, Grothey A, et al: Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 16:499–508. 2015. View Article : Google Scholar : PubMed/NCBI

137 

Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouché O, Mineur L, Barone C, et al: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 381:303–312. 2013. View Article : Google Scholar : PubMed/NCBI

138 

Goel G: Evolution of regorafenib from bench to bedside in colorectal cancer: Is it an attractive option or merely a ‘me too’ drug? Cancer Manag Res. 10:425–437. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Zhang Y, Zou JY, Wang Z and Wang Y: Fruquintinib: A novel antivascular endothelial growth factor receptor tyrosine kinase inhibitor for the treatment of metastatic colorectal cancer. Cancer Manag Res. 11:7787–7803. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Li J, Qin S, Xu RH, Shen L, Xu J, Bai Y, Yang L, Deng Y, Chen ZD, Zhong H, et al: Effect of fruquintinib vs placebo on overall survival in patients with previously treated metastatic colorectal cancer: The FRESCO randomized clinical trial. JAMA. 319:2486–2496. 2018. View Article : Google Scholar : PubMed/NCBI

141 

Dasari A, Lonardi S, Garcia-Carbonero R, Elez E, Yoshino T, Sobrero A, Yao J, García-Alfonso P, Kocsis J, Cubillo Gracian A, et al: Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): An international, multicentre, randomised, double-blind, phase 3 study. Lancet. 402:41–53. 2023. View Article : Google Scholar : PubMed/NCBI

142 

Fusco MJ, Casak SJ, Mushti SL, Cheng J, Christmas BJ, Thompson MD, Fu W, Wang H, Yoon M, Yang Y, et al: FDA approval summary: Fruquintinib for the treatment of refractory metastatic colorectal cancer. Clin Cancer Res. 30:3100–3104. 2024. View Article : Google Scholar : PubMed/NCBI

143 

Mc Neil V and Lee SW: Advancing cancer treatment: A review of immune checkpoint inhibitors and combination STrategies. Cancers (Basel). 17:14082025. View Article : Google Scholar : PubMed/NCBI

144 

Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al: Nivolumab in patients with metastatic DNA mismatch Repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 18:1182–1191. 2017. View Article : Google Scholar : PubMed/NCBI

145 

André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al: Pembrolizumab in Microsatellite-Instability-High advanced colorectal cancer. N Engl J Med. 383:2207–2218. 2020. View Article : Google Scholar : PubMed/NCBI

146 

Weng J, Li S, Zhu Z, Liu Q, Zhang R, Yang Y and Li X: Exploring immunotherapy in colorectal cancer. J Hematol Oncol. 15:952022. View Article : Google Scholar : PubMed/NCBI

147 

Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 Blockade in tumors with Mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI

148 

Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, Rizvi SM, Qin A, Waninger JJ, Lang X, et al: Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 27:152–164. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Saberzadeh-Ardestani B, Jones JC, McWilliams RR, Tougeron D, Halfdanarson TR, Guimbaud R, Hubbard JM, Flecchia C, Shi Q, Alouani E, et al: Metastatic site and clinical outcome of patients with deficient mismatch repair metastatic colorectal cancer treated with an immune checkpoint inhibitor in the first-line setting. Eur J Cancer. 196:1134332024. View Article : Google Scholar : PubMed/NCBI

150 

Wang C, Sandhu J, Ouyang C, Ye J, Lee PP and Fakih M: Clinical response to immunotherapy targeting programmed cell death Receptor 1/Programmed cell death Ligand 1 in patients with treatment-resistant microsatellite stable colorectal cancer with and without liver metastases. JAMA Netw Open. 4:e21184162021. View Article : Google Scholar : PubMed/NCBI

151 

Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al: Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch Repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Fukuoka S, Hara H, Takahashi N, Kojima T, Kawazoe A, Asayama M, Yoshii T, Kotani D, Tamura H, Mikamoto Y, et al: Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: An open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol. 38:2053–2061. 2020. View Article : Google Scholar : PubMed/NCBI

153 

Yang C, Zhao L, Lin Y, Wang S, Ye Y and Shen Z: Improving the efficiency of immune checkpoint inhibitors for metastatic pMMR/MSS colorectal cancer: Options and strategies. Crit Rev Oncol Hematol. 200:1042042024. View Article : Google Scholar : PubMed/NCBI

154 

Gutiu AG, Zhao L, Marrah AJ, Maher AJ, Voss BB, Mayberry TG, Cowan BC, Wakefield MR and Fang Y: Promising immunotherapeutic treatments for colon cancer. Med Oncol. 42:1752025. View Article : Google Scholar : PubMed/NCBI

155 

Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK and Pathak S: Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis. 40:12024. View Article : Google Scholar : PubMed/NCBI

156 

Fatemi N, Mirbahari SN, Tierling S, Sanjabi F, Shahrivari S, AmeliMojarad M, Amelimojarad M, Mirzaei Rezaei M, Nobaveh P, Totonchi M and Nazemalhosseini Mojarad E: Emerging frontiers in colorectal cancer therapy: From targeted molecules to immunomodulatory breakthroughs and cell-based approaches. Dig Dis Sci. 70:919–942. 2025. View Article : Google Scholar : PubMed/NCBI

157 

Liu N, Xiao X, Zhang Z, Mao C, Wan M and Shen J: Advances in cancer vaccine research. ACS Biomater Sci Eng. 9:5999–6023. 2023. View Article : Google Scholar : PubMed/NCBI

158 

Liu C, Liu N, Zhang T and Tu Y: Adoptive immune cell therapy for colorectal cancer. Front Immunol. 16:15579062025. View Article : Google Scholar : PubMed/NCBI

159 

Pérez-Domínguez F, Quezada-Monrás C, Cárcamo L, Muñoz JP and Carrillo-Beltrán D: Oncolytic viruses as a novel therapeutic approach for colorectal cancer: Mechanisms, current advances, and future directions. Cancers (Basel). 17:18542025. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang C, Zhao L, Wang C, Ye Y and Shen Z: Liver metastasis of colorectal cancer: Mechanism and clinical therapy (Review). Oncol Rep 54: 130, 2025.
APA
Yang, C., Zhao, L., Wang, C., Ye, Y., & Shen, Z. (2025). Liver metastasis of colorectal cancer: Mechanism and clinical therapy (Review). Oncology Reports, 54, 130. https://doi.org/10.3892/or.2025.8963
MLA
Yang, C., Zhao, L., Wang, C., Ye, Y., Shen, Z."Liver metastasis of colorectal cancer: Mechanism and clinical therapy (Review)". Oncology Reports 54.4 (2025): 130.
Chicago
Yang, C., Zhao, L., Wang, C., Ye, Y., Shen, Z."Liver metastasis of colorectal cancer: Mechanism and clinical therapy (Review)". Oncology Reports 54, no. 4 (2025): 130. https://doi.org/10.3892/or.2025.8963
Copy and paste a formatted citation
x
Spandidos Publications style
Yang C, Zhao L, Wang C, Ye Y and Shen Z: Liver metastasis of colorectal cancer: Mechanism and clinical therapy (Review). Oncol Rep 54: 130, 2025.
APA
Yang, C., Zhao, L., Wang, C., Ye, Y., & Shen, Z. (2025). Liver metastasis of colorectal cancer: Mechanism and clinical therapy (Review). Oncology Reports, 54, 130. https://doi.org/10.3892/or.2025.8963
MLA
Yang, C., Zhao, L., Wang, C., Ye, Y., Shen, Z."Liver metastasis of colorectal cancer: Mechanism and clinical therapy (Review)". Oncology Reports 54.4 (2025): 130.
Chicago
Yang, C., Zhao, L., Wang, C., Ye, Y., Shen, Z."Liver metastasis of colorectal cancer: Mechanism and clinical therapy (Review)". Oncology Reports 54, no. 4 (2025): 130. https://doi.org/10.3892/or.2025.8963
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team