Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2025 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2025 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review)

  • Authors:
    • Xuewei Li
    • Min Zhou
    • Jing Yu
    • Shaohui Yu
    • Zheng Ruan
  • View Affiliations / Copyright

    Affiliations: Department of Gynecology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China, Department of Endocrinology, The Affiliated Hospital of Changchun University to Chinese Medicine, Changchun, Jilin 130021, P.R. China, Department of Gynecology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China, Department of Traditional Chinese Medicine, 964th Hospital, Changchun, Jilin 130062, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 131
    |
    Published online on: August 1, 2025
       https://doi.org/10.3892/or.2025.8964
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cervical cancer (CC) poses a substantial global health challenge and it ranks as the fourth most prevalent malignancy among women worldwide. Management strategies include surgical intervention, radiotherapy, chemotherapy and emerging systemic treatments. Although advancements in immunotherapy and targeted therapies have been achieved, the aggressive metastatic nature of the disease, coupled with immune evasion and drug resistance, continues to limit overall survival rates. Therefore, there remains an urgent need to identify novel treatment modalities and more effective therapeutic agents. As fundamental regulators of epigenetic modifications, histone alterations serve a critical role in controlling gene expression, DNA repair mechanisms and cellular differentiation. These modifications include acetylation, methylation, phosphorylation, ubiquitination, ADP‑ribosylation and glycosylation, as well as the more recently identified lactylation and palmitoylation. By restructuring chromatin and facilitating interactions among histones, DNA and regulatory proteins, these modifications exert a substantial influence on cellular functions. Aberrant histone modifications contribute to tumorigenesis, tumor heterogeneity and resistance to conventional anticancer therapies, making them a key focus of oncological research. In recent years, therapeutic strategies targeting histone modifications have gained increasing attention in the treatment of CC. Among these epigenetic alterations, histone acetylation and deacetylation have been extensively studied, with numerous histone deacetylase inhibitors showing promise in preclinical studies. The present review explores the patterns of histone modifications in CC, emphasizing their molecular roles in tumor progression, metastasis and therapeutic resistance. Additionally, histone modification‑driven therapeutic targets are examined, laying the groundwork for future precision medicine approaches in CC treatment.
View Figures

Figure 1

Molecular pathways of HPV-driven
cervical carcinogenesis. This image illustrates the molecular
pathways through which HPV contributes to cervical cancer
development. Upon integration into the host genome, HPV disrupts
gene regulation, induces chromosomal instability and facilitates
immune evasion. These events promote the formation of squamous
intraepithelial lesions, which may progress to invasive cervical
carcinoma. The viral oncoproteins E6 and E7 accelerate this
transformation by inactivating the p53 and Rb tumor suppressor
pathways, thereby facilitating malignant progression. E, early;
HPV, human papillomavirus; Rb, retinoblastoma.

Figure 2

Mechanisms of histone acetylation in
cervical cancer. Histone acetylation and deacetylation are
regulated by HATs and HDACs, respectively, and represent highly
dynamic processes. HATs, such as Tip60 and p300, promote chromatin
relaxation and transcriptional activation, whereas HDACs, including
HDAC1, HDAC10 and SIRT1, promote chromatin condensation by removing
acetyl groups. These opposing activities critically modulate gene
expression and influence cervical cancer progression through
multiple signaling pathways. Inhibition and facilitation refer to
the effects on cervical cancer. E, early; HAT, histone
acetyltransferase; HDAC, histone deacetylase; HPV, human
papillomavirus; LCR, long control region; miR, microRNA; SIRT,
sirtuin 1; TXNIP, thioredoxin-interacting protein.

Figure 3

Mechanisms of histone lactylation in
cervical cancer. Cervical cancer cells enhance glycolysis to
regulate their own histone modifications, thereby promoting
oncogene transcription. Concurrently, lactate secreted by tumor
cells induces histone lactylation in macrophages, skewing their
polarization toward the tumor-promoting M2 phenotype. Additionally,
HPV contributes to tumor progression via the PPP, modulating the
lactylation of G6PD. Lactylation of the DCBLD1 protein stabilizes
G6PD by preventing its degradation, further supporting tumor
growth. DCBLD1, discoidin domain-containing receptor 1; DPF2, D2
zinc finger protein 2; G6PD, glucose-6-phosphate dehydrogenase;
HPV, human papillomavirus; PPP, pentose phosphate pathway.
View References

1 

Vu M, Yu J, Awolude OA and Chuang L: Cervical cancer worldwide. Curr Probl Cancer. 42:457–465. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Cao W, Qin K, Li F and Chen W: Socioeconomic inequalities in cancer incidence and mortality: An analysis of GLOBOCAN 2022. Chin Med J (Engl). 137:1407–1413. 2024. View Article : Google Scholar : PubMed/NCBI

3 

Sharma S, Deep A and Sharma AK: Current treatment for cervical cancer: An update. Anticancer Agents Med Chem. 20:1768–1779. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Caird H, Simkin J, Smith L, Van Niekerk D and Ogilvie G: The path to eliminating cervical cancer in canada: Past, present and future directions. Curr Oncol. 29:1117–1122. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Ferrall L, Lin KY, Roden RBS, Hung CF and Wu TC: Cervical cancer immunotherapy: Facts and hopes. Clin Cancer Res. 27:4953–4973. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Yu L, Lanqing G, Huang Z, Xin X, Minglin L, Fa-Hui L, Zou H and Min J: T cell immunotherapy for cervical cancer: Challenges and opportunities. Front Immunol. 14:11052652023. View Article : Google Scholar : PubMed/NCBI

7 

Hake SB, Xiao A and Allis CD: Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer. 90:761–769. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Vinci MC, Polvani G and Pesce M: Epigenetic programming and risk: The birthplace of cardiovascular disease? Stem Cell Rev Rep. 9:241–253. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Wu D, Shi Y, Zhang H and Miao C: Epigenetic mechanisms of Immune remodeling in sepsis: Targeting histone modification. Cell Death Dis. 14:1122023. View Article : Google Scholar : PubMed/NCBI

10 

Fan X, Sun S, Yang H, Ma H, Zhao C, Niu W, Fan J, Fang Z and Chen X: SETD2 palmitoylation mediated by ZDHHC16 in epidermal growth factor receptor-mutated glioblastoma promotes ionizing radiation-induced DNA damage. Int J Radiat Oncol Biol Phys. 113:648–660. 2022. View Article : Google Scholar : PubMed/NCBI

11 

Gao X, Kuo CW, Main A, Brown E, Rios FJ, Camargo LL, Mary S, Wypijewski K, Gök C, Touyz RM and Fuller W: Palmitoylation regulates cellular distribution of and transmembrane Ca flux through TrpM7. Cell Calcium. 106:1026392022. View Article : Google Scholar : PubMed/NCBI

12 

Li X, Yu T, Li X, He X, Zhang B and Yang Y: Role of novel protein acylation modifications in immunity and its related diseases. Immunology. 173:53–75. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Xu Y, Shi Z and Bao L: An expanding repertoire of protein acylations. Mol Cell Proteomics. 21:1001932022. View Article : Google Scholar : PubMed/NCBI

14 

Zaib S, Rana N and Khan I: Histone modifications and their role in epigenetics of cancer. Curr Med Chem. 29:2399–2411. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Park J, Lee K, Kim K and Yi SJ: The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduct Target Ther. 7:2172022. View Article : Google Scholar : PubMed/NCBI

16 

Maksimovic I and David Y: Non-enzymatic covalent modifications as a new chapter in the histone code. Trends Biochem Sci. 46:718–730. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Srivastava R and Ahn SH: Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv. 33:856–872. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Jin ML and Jeong KW: Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med. 55:1333–1347. 2023. View Article : Google Scholar : PubMed/NCBI

19 

Yang J, Ren B, Ren J, Yang G, Fang Y, Wang X, Zhou F, You L and Zhao Y: Epigenetic reprogramming-induced guanidinoacetic acid synthesis promotes pancreatic cancer metastasis and transcription-activating histone modifications. J Exp Clin Cancer Res. 42:1552023. View Article : Google Scholar : PubMed/NCBI

20 

Dueñas-González A, Lizano M, Candelaria M, Cetina L, Arce C and Cervera E: Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer. 4:382005. View Article : Google Scholar : PubMed/NCBI

21 

Xu M, Cao C, Wu P, Huang X and Ma D: Advances in cervical cancer: Current insights and future directions. Cancer Commun (Lond). 45:77–109. 2025. View Article : Google Scholar : PubMed/NCBI

22 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI

23 

Gavinski K and DiNardo D: Cervical cancer screening. Med Clin North Am. 107:259–269. 2023. View Article : Google Scholar : PubMed/NCBI

24 

Rahangdale L, Mungo C, O'Connor S, Chibwesha CJ and Brewer NT: Human papillomavirus vaccination and cervical cancer risk. BMJ. 379:e0701152022. View Article : Google Scholar : PubMed/NCBI

25 

Sahasrabuddhe VV: Cervical cancer: Precursors and prevention. Hematol Oncol Clin North Am. 38:771–781. 2024. View Article : Google Scholar : PubMed/NCBI

26 

Viveros-Carreño D, Fernandes A and Pareja R: Updates on cervical cancer prevention. Int J Gynecol Cancer. 33:394–402. 2023. View Article : Google Scholar : PubMed/NCBI

27 

Ang DJM and Chan JJ: Evolving standards and future directions for systemic therapies in cervical cancer. J Gynecol Oncol. 35:e652024. View Article : Google Scholar : PubMed/NCBI

28 

Mayadev JS, Ke G, Mahantshetty U, Pereira MD, Tarnawski R and Toita T: Global challenges of radiotherapy for the treatment of locally advanced cervical cancer. Int J Gynecol Cancer. 32:436–445. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Revathidevi S, Murugan AK, Nakaoka H, Inoue I and Munirajan AK: APOBEC: A molecular driver in cervical cancer pathogenesis. Cancer Lett. 496:104–116. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Willemsen A and Bravo IG: Origin and evolution of papillomavirus (onco)genes and genomes. Philos Trans R Soc Lond B Biol Sci. 374:201803032019. View Article : Google Scholar : PubMed/NCBI

31 

Burd EM: Human papillomavirus and cervical cancer. Clin Microbiol Rev. 16:1–17. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Olusola P, Banerjee HN, Philley JV and Dasgupta S: Human papilloma virus-associated cervical cancer and health disparities. Cells. 8:6222019. View Article : Google Scholar : PubMed/NCBI

33 

Doorbar J, Egawa N, Griffin H, Kranjec C and Murakami I: Human papillomavirus molecular biology and disease association. Rev Med Virol. 25 (Suppl 1):S2–S23. 2015. View Article : Google Scholar

34 

Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS and Borzacchiello G: Papillomavirus E5: The smallest oncoprotein with many functions. Mol Cancer. 10:1402011. View Article : Google Scholar : PubMed/NCBI

35 

Idres YM, McMillan NAJ and Idris A: Hyperactivating p53 in human papillomavirus-driven cancers: A potential therapeutic intervention. Mol Diagn Ther. 26:301–308. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL and Hoppe-Seyler F: The HPV E6/E7 oncogenes: Key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 26:158–168. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Bhattacharjee R, Das SS, Biswal SS, Nath A, Das D, Basu A, Malik S, Kumar L, Kar S, Singh SK, et al: Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Crit Rev Oncol Hematol. 174:1036752022. View Article : Google Scholar : PubMed/NCBI

38 

Gao F, Yin J, Wang Y, Li H and Wang D: miR-182 promotes cervical cancer progression via activating the Wnt/β-catenin axis. Am J Cancer Res. 13:3591–3598. 2023.PubMed/NCBI

39 

Maliekal TT, Bajaj J, Giri V, Subramanyam D and Krishna S: The role of Notch signaling in human cervical cancer: Implications for solid tumors. Oncogene. 27:5110–5114. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Amboree TL, Paguio J and Sonawane K: HPV vaccine: the key to eliminating cervical cancer inequities. BMJ. 385:q9962024. View Article : Google Scholar : PubMed/NCBI

41 

Abu-Rustum NR, Yashar CM, Arend R, Barber E, Bradley K, Brooks R, Campos SM, Chino J, Chon HS, Crispens MA, et al: NCCN Guidelines® insights: Cervical cancer, version 1.2024. J Natl Compr Canc Netw. 21:1224–1233. 2023. View Article : Google Scholar : PubMed/NCBI

42 

Kasius JC, van der Velden J, Denswil NP, Tromp JM and Mom CH: Neo-adjuvant chemotherapy in fertility-sparing cervical cancer treatment. Best Pract Res Clin Obstet Gynaecol. 75:82–100. 2021. View Article : Google Scholar : PubMed/NCBI

43 

Li H, Wu X and Cheng X: Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol. 27:e432016. View Article : Google Scholar : PubMed/NCBI

44 

Turinetto M, Valsecchi AA, Tuninetti V, Scotto G, Borella F and Valabrega G: Immunotherapy for cervical cancer: Are we ready for prime time? Int J Mol Sci. 23:35592022. View Article : Google Scholar : PubMed/NCBI

45 

Grau JF, Farinas-Madrid L, Garcia-Duran C, Garcia-Illescas D and Oaknin A: Advances in immunotherapy in cervical cancer. Int J Gynecol Cancer. 33:403–413. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Huang H, Nie CP, Liu XF, Song B, Yue JH, Xu JX, He J, Li K, Feng YL, Wan T, et al: Phase I study of adjuvant immunotherapy with autologous tumor-infiltrating lymphocytes in locally advanced cervical cancer. J Clin Invest. 132:e1577262022. View Article : Google Scholar : PubMed/NCBI

47 

Li J, Cao Y, Liu Y, Yu L, Zhang Z, Wang X, Bai H, Zhang Y, Liu S, Gao M, et al: Multiomics profiling reveals the benefits of gamma-delta (γδ) T lymphocytes for improving the tumor microenvironment, immunotherapy efficacy and prognosis in cervical cancer. J Immunother Cancer. 12:e0083552024. View Article : Google Scholar : PubMed/NCBI

48 

Ma Z, Zou X, Yan Z, Chen C, Chen Y and Fu A: Preliminary analysis of cervical cancer immunotherapy. Am J Clin Oncol. 45:486–490. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Ogasawara A and Hasegawa K: Recent advances in immunotherapy for cervical cancer. Int J Clin Oncol. 30:434–448. 2025. View Article : Google Scholar : PubMed/NCBI

50 

Ramanathan P, Dhandapani H, Jayakumar H, Seetharaman A and Thangarajan R: Immunotherapy for cervical cancer: Can it do another lung cancer? Curr Probl Cancer. 42:148–160. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Garzón-Porras AM, Chory E and Gryder BE: Dynamic opposition of histone modifications. ACS Chem Biol. 18:1027–1036. 2023. View Article : Google Scholar : PubMed/NCBI

52 

Santana DA, Smith MAC and Chen ES: Histone modifications in Alzheimer's disease. Genes (Basel). 14:3472023. View Article : Google Scholar : PubMed/NCBI

53 

Yao W, Hu X and Wang X: Crossing epigenetic frontiers: The intersection of novel histone modifications and diseases. Signal Transduct Target Ther. 9:2322024. View Article : Google Scholar : PubMed/NCBI

54 

Zhao A, Xu W, Han R, Wei J, Yu Q, Wang M, Li H, Li M and Chi G: Role of histone modifications in neurogenesis and neurodegenerative disease development. Ageing Res Rev. 98:1023242024. View Article : Google Scholar : PubMed/NCBI

55 

Li Y: Modern epigenetics methods in biological research. Methods. 187:104–113. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Sahu RK, Dhakshnamoorthy J, Jain S, Folco HD, Wheeler D and Grewal SIS: Nucleosome remodeler exclusion by histone deacetylation enforces heterochromatic silencing and epigenetic inheritance. Mol Cell. 84:3175–3191.e8. 2024. View Article : Google Scholar : PubMed/NCBI

57 

Perez MF and Sarkies P: Histone methyltransferase activity affects metabolism in human cells independently of transcriptional regulation. PLoS Biol. 21:e30023542023. View Article : Google Scholar : PubMed/NCBI

58 

Casciello F, Windloch K, Gannon F and Lee JS: Functional role of G9a histone methyltransferase in cancer. Front Immunol. 6:4872015. View Article : Google Scholar : PubMed/NCBI

59 

Li S: Implication of posttranslational histone modifications in nucleotide excision repair. Int J Mol Sci. 13:12461–12486. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Gao J, Liu R, Huang K, Li Z, Sheng X, Chakraborty K, Han C, Zhang D, Becker L and Zhao Y: Dynamic investigation of hypoxia-induced L-lactylation. Proc Natl Acad Sci USA. 122:e24048991222025. View Article : Google Scholar : PubMed/NCBI

61 

Dong W, Lu J, Li Y, Zeng J, Du X, Yu A, Zhao X, Chi F, Xi Z and Cao S: SIRT1: A novel regulator in colorectal cancer. Biomed Pharmacother. 178:1171762024. View Article : Google Scholar : PubMed/NCBI

62 

Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J and Hu D: Regulation of SIRT1 and its roles in inflammation. Front Immunol. 13:8311682022. View Article : Google Scholar : PubMed/NCBI

63 

Fang Y, Yang C, Yu Z, Li X, Mu Q, Liao G and Yu B: Natural products as LSD1 inhibitors for cancer therapy. Acta Pharm Sin B. 11:621–631. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Marsolier J, Prompsy P, Durand A, Lyne AM, Landragin C, Trouchet A, Bento ST, Eisele A, Foulon S, Baudre L, et al: H3K27me3 conditions chemotolerance in triple-negative breast cancer. Nat Genet. 54:459–468. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Wang K, Jiang X, Jiang Y, Liu J, Du Y, Zhang Z, Li Y, Zhao X, Li J and Zhang R: EZH2-H3K27me3-mediated silencing of mir-139-5p inhibits cellular senescence in hepatocellular carcinoma by activating TOP2A. J Exp Clin Cancer Res. 42:3202023. View Article : Google Scholar : PubMed/NCBI

66 

Benard A, van de Velde CJ, Lessard L, Putter H, Takeshima L, Kuppen PJ and Hoon DS: Epigenetic status of LINE-1 predicts clinical outcome in early-stage rectal cancer. Br J Cancer. 109:3073–3083. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Gerić M, Gajski G and Garaj-Vrhovac V: γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. Ecotoxicol Environ Saf. 105:13–21. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Hinohara K, Wu HJ, Vigneau S, McDonald TO, Igarashi KJ, Yamamoto KN, Madsen T, Fassl A, Egri SB, Papanastasiou M, et al: KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell. 34:939–953.e9. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Liu H, Ma H, Li Y and Zhao H: Advances in epigenetic modifications and cervical cancer research. Biochim Biophys Acta Rev Cancer. 1878:1888942023. View Article : Google Scholar : PubMed/NCBI

70 

Yang X, Sun F, Gao Y, Li M, Liu M, Wei Y, Jie Q, Wang Y, Mei J, Mei J, et al: Histone acetyltransferase CSRP2BP promotes the epithelial-mesenchymal transition and metastasis of cervical cancer cells by activating N-cadherin. J Exp Clin Cancer Res. 42:2682023. View Article : Google Scholar : PubMed/NCBI

71 

Xiang H, Tang H, He Q, Sun J, Yang Y, Kong L and Wang Y: NDUFA8 is transcriptionally regulated by P300/H3K27ac and promotes mitochondrial respiration to support proliferation and inhibit apoptosis in cervical cancer. Biochem Biophys Res Commun. 693:1493742024. View Article : Google Scholar : PubMed/NCBI

72 

Pan B, Liu C, Su J and Xia C: Activation of AMPK inhibits cervical cancer growth by hyperacetylation of H3K9 through PCAF. Cell Commun Signal. 22:3062024. View Article : Google Scholar : PubMed/NCBI

73 

Qiao L, Zhang Q, Zhang W and Chen JJ: The lysine acetyltransferase GCN5 contributes to human papillomavirus oncoprotein E7-induced cell proliferation via up-regulating E2F1. J Cell Mol Med. 22:5333–5345. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Avvakumov N, Torchia J and Mymryk JS: Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene. 22:3833–3841. 2003. View Article : Google Scholar : PubMed/NCBI

75 

Bernat A, Avvakumov N, Mymryk JS and Banks L: Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene. 22:7871–7881. 2003. View Article : Google Scholar : PubMed/NCBI

76 

Groves IJ, Knight EL, Ang QY, Scarpini CG and Coleman N: HPV16 oncogene expression levels during early cervical carcinogenesis are determined by the balance of epigenetic chromatin modifications at the integrated virus genome. Oncogene. 35:4773–4786. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Zimmermann H, Degenkolbe R, Bernard HU and O'Connor MJ: The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol. 73:6209–6219. 1999. View Article : Google Scholar : PubMed/NCBI

78 

Zhu J and Han S: Histone deacetylase 10 exerts anti-tumor effects on cervical cancer via a novel microRNA-223/TXNIP/Wnt/β-catenin pathway. IUBMB Life. Jan 22–2021.(Epub ahead of print). View Article : Google Scholar

79 

Lu X, Jin P, Tang Q, Zhou M, Xu H, Su C, Wang L, Xu F, Zhao M, Yin Y, et al: NAD(+) metabolism reprogramming drives SIRT1-dependent deacetylation inducing PD-L1 nuclear localization in cervical cancer. Adv Sci (Weinh). 12:e24121092025. View Article : Google Scholar : PubMed/NCBI

80 

Sun X, Shu Y, Ye G, Wu C, Xu M, Gao R, Huang D and Zhang J: Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy. Acta Pharm Sin B. 12:838–852. 2022. View Article : Google Scholar : PubMed/NCBI

81 

He H, Lai Y, Hao Y, Liu Y, Zhang Z, Liu X, Guo C, Zhang M, Zhou H, Wang N, et al: Selective p300 inhibitor C646 inhibited HPV E6-E7 genes, altered glucose metabolism and induced apoptosis in cervical cancer cells. Eur J Pharmacol. 812:206–215. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Lourenço de Freitas N, Deberaldini MG, Gomes D, Pavan AR, Sousa Â, Dos Santos JL and Soares CP: Histone deacetylase inhibitors as therapeutic interventions on cervical cancer induced by human papillomavirus. Front Cell Dev Biol. 8:5928682021. View Article : Google Scholar : PubMed/NCBI

83 

Zhang T, Zhou C, Lv M, Yu J, Cheng S, Cui X, Wan X, Ahmad M, X B, Qin J, et al: Trifluoromethyl quinoline derivative targets inhibiting HDAC1 for promoting the acetylation of histone in cervical cancer cells. Eur J Pharm Sci. 194:1067062024. View Article : Google Scholar : PubMed/NCBI

84 

Liu N, Zhao LJ, Li XP, Wang JL, Chai GL and Wei LH: Histone deacetylase inhibitors inducing human cervical cancer cell apoptosis by decreasing DNA-methyltransferase 3B. Chin Med J (Engl). 125:3273–3278. 2012.PubMed/NCBI

85 

Li H and Wu X: Histone deacetylase inhibitor, Trichostatin A, activates p21WAF1/CIP1 expression through downregulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun. 324:860–867. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Wagner W, Ciszewski WM and Kania KD: L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal. 13:362015. View Article : Google Scholar : PubMed/NCBI

87 

Wasim L and Chopra M: Panobinostat induces apoptosis via production of reactive oxygen species and synergizes with topoisomerase inhibitors in cervical cancer cells. Biomed Pharmacother. 84:1393–1405. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Khanduja JS, Joh RI, Perez MM, Paulo JA, Palmieri CM, Zhang J, Gulka AOD, Haas W, Gygi SP and Motamedi M: RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly. Cell. 187:3262–3283.e23. 2024. View Article : Google Scholar : PubMed/NCBI

89 

Marmorstein R: Structure of SET domain proteins: A new twist on histone methylation. Trends Biochem Sci. 28:59–62. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Yi Y and Ge S: Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias. J Hematol Oncol. 15:352022. View Article : Google Scholar : PubMed/NCBI

91 

Zhang L, Tian S, Pei M, Zhao M, Wang L, Jiang Y, Yang T, Zhao J, Song L and Yang X: Crosstalk between histone modification and DNA methylation orchestrates the epigenetic regulation of the costimulatory factors, Tim-3 and galectin-9, in cervical cancer. Oncol Rep. 42:2655–2669. 2019.PubMed/NCBI

92 

Beyer S, Zhu J, Mayr D, Kuhn C, Schulze S, Hofmann S, Dannecker C, Jeschke U and Kost BP: Histone H3 acetyl K9 and histone H3 tri methyl K4 as prognostic markers for patients with cervical cancer. Int J Mol Sci. 18:4772017. View Article : Google Scholar : PubMed/NCBI

93 

Chen R, Chen Y, Zhao W, Fang C, Zhou W, Yang X and Ji M: The role of methyltransferase NSD2 as a potential oncogene in human solid tumors. Onco Targets Ther. 13:6837–6846. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Ansari KI, Kasiri S and Mandal SS: Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo. Oncogene. 32:3359–3370. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Zhang L, Tian S, Zhao M, Yang T, Quan S, Yang Q, Song L and Yang X: SUV39H1-DNMT3A-mediated epigenetic regulation of Tim-3 and galectin-9 in the cervical cancer. Cancer Cell Int. 20:3252020. View Article : Google Scholar : PubMed/NCBI

96 

Osawa T, Muramatsu M, Wang F, Tsuchida R, Kodama T, Minami T and Shibuya M: Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis. Proc Natl Acad Sci USA. 108:20725–20729. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Gascoigne KE and Cheeseman IM: CDK-dependent phosphorylation and nuclear exclusion coordinately control kinetochore assembly state. J Cell Biol. 201:23–32. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Yang D, He Y, Li R, Huang Z, Zhou Y, Shi Y, Deng Z, Wu J and Gao Y: Histone H3K79 methylation by DOT1L promotes Aurora B localization at centromeres in mitosis. Cell Rep. 42:1128852023. View Article : Google Scholar : PubMed/NCBI

99 

Banáth JP, Macphail SH and Olive PL: Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res. 64:7144–7149. 2004. View Article : Google Scholar : PubMed/NCBI

100 

Zhao J, Wang Q, Li J, Si TB, Pei SY, Guo Z and Jiang C: Comparative study of phosphorylated histone H2AX expressions in the cervical cancer patients of pre- and post-neoadjuvant chemotherapy. Eur J Gynaecol Oncol. 36:318–322. 2015.PubMed/NCBI

101 

Bañuelos CA, Banáth JP, Kim JY, Aquino-Parsons C and Olive PL: GammaH2AX expression in tumors exposed to cisplatin and fractionated irradiation. Clin Cancer Res. 15:3344–3353. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Brustmann H, Hinterholzer S and Brunner A: Expression of phosphorylated histone H2AX (γ-H2AX) in normal and neoplastic squamous epithelia of the uterine cervix: An immunohistochemical study with epidermal growth factor receptor. Int J Gynecol Pathol. 30:76–83. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Fuhrman CB, Kilgore J, LaCoursiere YD, Lee CM, Milash BA, Soisson AP and Zempolich KA: Radiosensitization of cervical cancer cells via double-strand DNA break repair inhibition. Gynecol Oncol. 110:93–98. 2008. View Article : Google Scholar : PubMed/NCBI

104 

Zhang L and Zhang S: ZM447439, the Aurora kinase B inhibitor, suppresses the growth of cervical cancer SiHa cells and enhances the chemosensitivity to cisplatin. J Obstet Gynaecol Res. 37:591–600. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Cheung CH, Lin WH, Hsu JT, Hour TC, Yeh TK, Ko S, Lien TW, Coumar MS, Liu JF, Lai WY, et al: BPR1K653, a novel Aurora kinase inhibitor, exhibits potent anti-proliferative activity in MDR1 (P-gp170)-mediated multidrug-resistant cancer cells. PLoS One. 6:e234852011. View Article : Google Scholar : PubMed/NCBI

106 

Zhai G, Niu Z, Jiang Z, Zhao F, Wang S, Chen C, Zheng W, Wang A, Zang Y, Han Y and Zhang K: DPF2 reads histone lactylation to drive transcription and tumorigenesis. Proc Natl Acad Sci USA. 121:e24214961212024. View Article : Google Scholar : PubMed/NCBI

107 

Huang C, Xue L, Lin X, Shen Y and Wang X: Histone lactylation-driven GPD2 mediates M2 macrophage polarization to promote malignant transformation of cervical cancer progression. DNA Cell Biol. 43:605–618. 2024. View Article : Google Scholar : PubMed/NCBI

108 

Han X, Xiang X, Yang H, Zhang H, Liang S, Wei J and Yu J: p300-catalyzed lysine crotonylation promotes the proliferation, invasion, and migration of HeLa cells via heterogeneous nuclear ribonucleoprotein A1. Anal Cell Pathol (Amst). 2020:56323422020.PubMed/NCBI

109 

Chen D, Cai B, Zhu Y, Ma Y, Yu X, Xiong J, Shen J, Tie W, Zhang Y and Guo F: Targeting histone demethylases JMJD3 and UTX: Selenium as a potential therapeutic agent for cervical cancer. Clin Epigenetics. 16:512024. View Article : Google Scholar : PubMed/NCBI

110 

Kedhari Sundaram M, Hussain A, Haque S, Raina R and Afroze N: Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem. 120:18357–18369. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Mani E, Medina LA, Isaac-Olivé K and Dueñas-González A: Radiosensitization of cervical cancer cells with epigenetic drugs hydralazine and valproate. Eur J Gynaecol Oncol. 35:140–142. 2014.PubMed/NCBI

112 

Saenglee S, Jogloy S, Patanothai A, Leid M and Senawong T: Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines. Pharmacol Rep. 68:1102–1110. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Bishop TR, Subramanian C, Bilotta EM, Garnar-Wortzel L, Ramos AR, Zhang Y, Asiaban JN, Ott CJ, Rock CO and Erb MA: Acetyl-CoA biosynthesis drives resistance to histone acetyltransferase inhibition. Nat Chem Biol. 19:1215–1222. 2023. View Article : Google Scholar : PubMed/NCBI

114 

Chan HM and La Thangue NB: p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci. 114:2363–2373. 2001. View Article : Google Scholar : PubMed/NCBI

115 

Lasko LM, Jakob CG, Edalji RP, Qiu W, Montgomery D, Digiammarino EL, Hansen TM, Risi RM, Frey R, Manaves V, et al: Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature. 550:128–132. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Zhou Y and Shao C: Histone methylation can either promote or reduce cellular radiosensitivity by regulating DNA repair pathways. Mutat Res Rev Mutat Res. 787:1083622021. View Article : Google Scholar : PubMed/NCBI

117 

Mentch SJ and Locasale JW: One-carbon metabolism and epigenetics: Understanding the specificity. Ann N Y Acad Sci. 1363:91–98. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Zhao Y, Jiang B, Gu Z, Chen T, Yu W, Liu S, Liu X, Chen D, Li F and Chen W: Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem. 246:1150282023. View Article : Google Scholar : PubMed/NCBI

119 

Lim Y, De Bellis D, Sandow JJ, Capalbo L, D'Avino PP, Murphy JM, Webb AI, Dorstyn L and Kumar S: Phosphorylation by Aurora B kinase regulates caspase-2 activity and function. Cell Death Differ. 28:349–366. 2021. View Article : Google Scholar : PubMed/NCBI

120 

Zhang W, Zhang Z, Xiang Y, Gu DD, Chen J, Chen Y, Zhai S, Liu Y, Jiang T, Liu C, et al: Aurora kinase A-mediated phosphorylation triggers structural alteration of Rab1A to enhance ER complexity during mitosis. Nat Struct Mol Biol. 31:219–231. 2024. View Article : Google Scholar : PubMed/NCBI

121 

Mattiroli F and Penengo L: Histone ubiquitination: An integrative signaling platform in genome stability. Trends Genet. 37:566–581. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Oss-Ronen L, Sarusi T and Cohen I: Histone mono-ubiquitination in transcriptional regulation and its mark on life: Emerging roles in tissue development and disease. Cells. 11:24042022. View Article : Google Scholar : PubMed/NCBI

123 

Yadav P, Subbarayalu P, Medina D, Nirzhor S, Timilsina S, Rajamanickam S, Eedunuri VK, Gupta Y, Zheng S, Abdelfattah N, et al: M6A RNA methylation regulates histone ubiquitination to support cancer growth and progression. Cancer Res. 82:1872–1889. 2022. View Article : Google Scholar : PubMed/NCBI

124 

Bonfiglio JJ, Leidecker O, Dauben H, Longarini EJ, Colby T, San Segundo-Acosta P, Perez KA and Matic I: An HPF1/PARP1-Based chemical biology strategy for exploring ADP-Ribosylation. Cell. 183:1086–1102.e23. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Messner S and Hottiger MO: Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol. 21:534–542. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Lv X, Lv Y and Dai X: Lactate, histone lactylation and cancer hallmarks. Expert Rev Mol Med. 25:e72023. View Article : Google Scholar : PubMed/NCBI

127 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI

128 

Wu X, Li X, Wang L, Bi X, Zhong W, Yue J and Chin YE: Lysine deacetylation is a key function of the lysyl oxidase family of proteins in cancer. Cancer Res. 84:652–658. 2024. View Article : Google Scholar : PubMed/NCBI

129 

Jambhekar A, Dhall A and Shi Y: Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 20:625–641. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Perillo B, Tramontano A, Pezone A and Migliaccio A: LSD1: More than demethylation of histone lysine residues. Exp Mol Med. 52:1936–1947. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J and Zhang H: Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (2020). 4:e2922023. View Article : Google Scholar : PubMed/NCBI

132 

Roth SY and Allis CD: Chromatin condensation: Does histone H1 dephosphorylation play a role? Trends Biochem Sci. 17:93–98. 1992. View Article : Google Scholar : PubMed/NCBI

133 

Clague MJ, Coulson JM and Urbé S: Deciphering histone 2A deubiquitination. Genome Biol. 9:2022008. View Article : Google Scholar : PubMed/NCBI

134 

He X, Li Y, Li J, Li Y, Chen S, Yan X, Xie Z, Du J, Chen G, Song J and Mei Q: HDAC2-Mediated METTL3 delactylation promotes DNA damage repair and chemotherapy resistance in triple-negative breast cancer. Adv Sci (Weinh). 12:e24131212025. View Article : Google Scholar : PubMed/NCBI

135 

Wu N, Sun Q, Yang L, Sun H, Zhou Z, Hu Q, Li C, Wang D, Zhang L, Hu Y and Cong X: HDAC3 and Snail2 complex promotes melanoma metastasis by epigenetic repression of IGFBP3. Int J Biol Macromol. 300:1403102025. View Article : Google Scholar : PubMed/NCBI

136 

Zhu Y, Chen JC, Zhang JL, Wang FF and Liu RP: A new mechanism of arterial calcification in diabetes: interaction between H3K18 lactylation and CHI3L1. Clin Sci (Lond). 139:115–130. 2025. View Article : Google Scholar : PubMed/NCBI

137 

Morschhauser F, Tilly H, Chaidos A, McKay P, Phillips T, Assouline S, Batlevi CL, Campbell P, Ribrag V, Damaj GL, et al: Tazemetostat for patients with relapsed or refractory follicular lymphoma: An open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 21:1433–1442. 2020. View Article : Google Scholar : PubMed/NCBI

138 

Zauderer MG, Szlosarek PW, Le Moulec S, Popat S, Taylor P, Planchard D, Scherpereel A, Koczywas M, Forster M, Cameron RB, et al: EZH2 inhibitor tazemetostat in patients with relapsed or refractory, BAP1-inactivated malignant pleural mesothelioma: a multicentre, open-label, phase 2 study. Lancet Oncol. 23:758–767. 2022. View Article : Google Scholar : PubMed/NCBI

139 

Zinzani PL, Izutsu K, Mehta-Shah N, Barta SK, Ishitsuka K, Córdoba R, Kusumoto S, Bachy E, Cwynarski K, Gritti G, et al: Valemetostat for patients with relapsed or refractory peripheral T-cell lymphoma (VALENTINE-PTCL01): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 25:1602–1613. 2024. View Article : Google Scholar : PubMed/NCBI

140 

Maruyama D, Jacobsen E, Porcu P, Allen P, Ishitsuka K, Kusumoto S, Narita T, Tobinai K, Foss F, Tsukasaki K, et al: Valemetostat monotherapy in patients with relapsed or refractory non-Hodgkin lymphoma: A first-in-human, multicentre, open-label, single-arm, phase 1 study. Lancet Oncol. 25:1589–1601. 2024. View Article : Google Scholar : PubMed/NCBI

141 

Yap TA, Winter JN, Giulino-Roth L, Longley J, Lopez J, Michot JM, Leonard JP, Ribrag V, McCabe MT, Creasy CL, et al: Phase I study of the novel enhancer of zeste homolog 2 (EZH2) inhibitor GSK2816126 in patients with advanced hematologic and solid tumors. Clin Cancer Res. 25:7331–7339. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Ribrag V, Iglesias L, De Braud F, Ma B, Yokota T, Zander T, Spreafico A, Subbiah V, Illert AL, Tan D, et al: A first-in-human phase 1/2 dose-escalation study of MAK683 (EED inhibitor) in patients with advanced malignancies. Eur J Cancer. 216:1151222025. View Article : Google Scholar : PubMed/NCBI

143 

Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR, Jongen-Lavrenic M, Altman JK, Thomson B, Blakemore SJ, et al: The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood. 131:2661–2669. 2018. View Article : Google Scholar : PubMed/NCBI

144 

Issa GC, Aldoss I, DiPersio J, Cuglievan B, Stone R, Arellano M, Thirman MJ, Patel MR, Dickens DS, Shenoy S, et al: The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature. 615:920–924. 2023. View Article : Google Scholar : PubMed/NCBI

145 

Issa GC, Aldoss I, Thirman MJ, DiPersio J, Arellano M, Blachly JS, Mannis GN, Perl A, Dickens DS, McMahon CM, et al: Menin inhibition with revumenib for KMT2A-Rearranged relapsed or refractory acute leukemia (AUGMENT-101). J Clin Oncol. 43:75–84. 2025. View Article : Google Scholar : PubMed/NCBI

146 

Wang ES, Issa GC, Erba HP, Altman JK, Montesinos P, DeBotton S, Walter RB, Pettit K, Savona MR, Shah MV, et al: Ziftomenib in relapsed or refractory acute myeloid leukaemia (KOMET-001): A multicentre, open-label, multi-cohort, phase 1 trial. Lancet Oncol. 25:1310–1324. 2024. View Article : Google Scholar : PubMed/NCBI

147 

Gold S and Shilatifard A: Epigenetic therapies targeting histone lysine methylation: Complex mechanisms and clinical challenges. J Clin Invest. 134:e1833912024. View Article : Google Scholar : PubMed/NCBI

148 

Hollebecque A, Salvagni S, Plummer R, Isambert N, Niccoli P, Capdevila J, Curigliano G, Moreno V, Martin-Romano P, Baudin E, et al: Phase I study of lysine-specific demethylase 1 inhibitor, CC-90011, in patients with advanced solid tumors and relapsed/refractory non-hodgkin lymphoma. Clin Cancer Res. 27:438–446. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Wass M, Göllner S, Besenbeck B, Schlenk RF, Mundmann P, Göthert JR, Noppeney R, Schliemann C, Mikesch JH, Lenz G, et al: A proof of concept phase I/II pilot trial of LSD1 inhibition by tranylcypromine combined with ATRA in refractory/relapsed AML patients not eligible for intensive therapy. Leukemia. 35:701–711. 2021. View Article : Google Scholar : PubMed/NCBI

150 

Tayari MM, Santos HGD, Kwon D, Bradley TJ, Thomassen A, Chen C, Dinh Y, Perez A, Zelent A, Morey L, et al: Clinical responsiveness to all-trans retinoic acid is potentiated by LSD1 inhibition and associated with a quiescent transcriptome in myeloid malignancies. Clin Cancer Res. 27:1893–1903. 2021. View Article : Google Scholar : PubMed/NCBI

151 

Wang F, Jin Y, Wang M, Luo HY, Fang WJ, Wang YN, Chen YX, Huang RJ, Guan WL, Li JB, et al: Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: A randomized phase 2 trial. Nat Med. 30:1035–1043. 2024. View Article : Google Scholar : PubMed/NCBI

152 

Younes A, Oki Y, Bociek RG, Kuruvilla J, Fanale M, Neelapu S, Copeland A, Buglio D, Galal A, Besterman J, et al: Mocetinostat for relapsed classical Hodgkin's lymphoma: An open-label, single-arm, phase 2 trial. Lancet Oncol. 12:1222–1228. 2011. View Article : Google Scholar : PubMed/NCBI

153 

Johnson ML, Strauss J, Patel MR, Garon EB, Eaton KD, Neskorik T, Morin J, Chao R and Halmos B: Mocetinostat in combination with durvalumab for patients with advanced NSCLC: Results from a phase I/II study. Clin Lung Cancer. 24:218–227. 2023. View Article : Google Scholar : PubMed/NCBI

154 

Awad MM, Le Bruchec Y, Lu B, Ye J, Miller J, Lizotte PH, Cavanaugh ME, Rode AJ, Dumitru CD and Spira A: Selective histone deacetylase inhibitor ACY-241 (Citarinostat) plus nivolumab in advanced non-small cell lung cancer: Results from a phase Ib study. Front Oncol. 11:6965122021. View Article : Google Scholar : PubMed/NCBI

155 

Jiang Z, Li W, Hu X, Zhang Q, Sun T, Cui S, Wang S, Ouyang Q, Yin Y, Geng C, et al: Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20:806–815. 2019. View Article : Google Scholar : PubMed/NCBI

156 

Kim YH, Bagot M, Pinter-Brown L, Rook AH, Porcu P, Horwitz SM, Whittaker S, Tokura Y, Vermeer M, Zinzani PL, et al: Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): An international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 19:1192–1204. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Garcia-Manero G, Podoltsev NA, Othus M, Pagel JM, Radich JP, Fang M, Rizzieri DA, Marcucci G, Strickland SA, Litzow MR, et al: A randomized phase III study of standard versus high-dose cytarabine with or without vorinostat for AML. Leukemia. 38:58–66. 2024. View Article : Google Scholar : PubMed/NCBI

158 

Monje M, Cooney T, Glod J, Huang J, Peer CJ, Faury D, Baxter P, Kramer K, Lenzen A, Robison NJ, et al: Phase I trial of panobinostat in children with diffuse intrinsic pontine glioma: A report from the Pediatric Brain Tumor Consortium (PBTC-047). Neuro Oncol. 25:2262–2272. 2023. View Article : Google Scholar : PubMed/NCBI

159 

Horwitz SM, Nirmal AJ, Rahman J, Xu R, Drill E, Galasso N, Ganesan N, Davey T, Hancock H, Perez L, et al: Duvelisib plus romidepsin in relapsed/refractory T cell lymphomas: A phase 1b/2a trial. Nat Med. 30:2517–2527. 2024. View Article : Google Scholar : PubMed/NCBI

160 

Maher KR, Shafer D, Schaar D, Bandyopadhyay D, Deng X, Wright J, Piekarz R, Rudek MA, Harvey RD and Grant S: A phase I study of MLN4924 and belinostat in relapsed/refractory acute myeloid leukemia or myelodysplastic syndrome. Cancer Chemother Pharmacol. 95:242025. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Zhou M, Yu J, Yu S and Ruan Z: Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review). Oncol Rep 54: 131, 2025.
APA
Li, X., Zhou, M., Yu, J., Yu, S., & Ruan, Z. (2025). Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review). Oncology Reports, 54, 131. https://doi.org/10.3892/or.2025.8964
MLA
Li, X., Zhou, M., Yu, J., Yu, S., Ruan, Z."Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review)". Oncology Reports 54.4 (2025): 131.
Chicago
Li, X., Zhou, M., Yu, J., Yu, S., Ruan, Z."Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review)". Oncology Reports 54, no. 4 (2025): 131. https://doi.org/10.3892/or.2025.8964
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Zhou M, Yu J, Yu S and Ruan Z: Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review). Oncol Rep 54: 131, 2025.
APA
Li, X., Zhou, M., Yu, J., Yu, S., & Ruan, Z. (2025). Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review). Oncology Reports, 54, 131. https://doi.org/10.3892/or.2025.8964
MLA
Li, X., Zhou, M., Yu, J., Yu, S., Ruan, Z."Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review)". Oncology Reports 54.4 (2025): 131.
Chicago
Li, X., Zhou, M., Yu, J., Yu, S., Ruan, Z."Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review)". Oncology Reports 54, no. 4 (2025): 131. https://doi.org/10.3892/or.2025.8964
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team