Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November-2025 Volume 54 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2025 Volume 54 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of autophagy‑modulating long non‑coding RNAs in tumor radioresistance (Review)

  • Authors:
    • Hailong Li
    • Zhengxi He
  • View Affiliations / Copyright

    Affiliations: Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415000, P.R. China, Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 142
    |
    Published online on: August 21, 2025
       https://doi.org/10.3892/or.2025.8975
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Radiotherapy improves survival rates in patients with cancer; however, the development of radioresistance hinders its effectiveness, resulting in unfavorable outcomes. A key factor in cancer progression is the dysregulation of autophagy, a lysosomal degradation process governed by various evolutionarily conserved autophagy‑related genes (ATGs). Long non‑coding RNAs (lncRNAs) serve a crucial role in the regulation of autophagy. lncRNAs modulate ATGs and their signaling pathways, contributing to the emergence of radioresistance. The present review offers a comprehensive examination of the critical roles of autophagy and lncRNAs in mediating radioresistance. By enhancing the understanding of these mechanisms, novel therapeutic strategies aimed at increasing tumor radiosensitivity through the modulation of autophagy may be revealed.
View Figures

Figure 1

Diagram of the autophagy process.
There are four main stages: Initiation, formation and maturation of
the autophagosome, precise fusion of the autophagosome with the
lysosome, and finally content degradation. This figure was created
using Figdraw (version 2.0) (https://www.figdraw.com/).

Figure 2

Influence of autophagy on the
radiation response of tumors. Autophagy influences the radiation
response by modulating DNA damage and repair mechanisms. ULK1,
Unc-51 like autophagy activating kinase 1.

Figure 3

Autophagy-modulating lncRNAs and
tumor radioresistance. A number of autophagy-modulating lncRNAs
influence tumor resistance to radiotherapy by promoting cell
proliferation, apoptosis, metastasis and other related factors.
EMT, epithelial-mesenchymal transition; lncRNA, long non-coding
RNA.
View References

1 

Schaue D and McBride WH: Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 12:527–540. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Yerolatsite M, Torounidou N, Amylidi AL, Rapti IC, Zarkavelis G, Kampletsas E and Voulgari PV: A Systematic review of pneumonitis following treatment with immune checkpoint inhibitors and radiotherapy. Biomedicines. 13:9462025. View Article : Google Scholar : PubMed/NCBI

3 

Tubiana M: Wilhelm conrad röntgen and the discovery of X-rays. Bull Acad Natl Med. 180:97–108. 1996.(In French). PubMed/NCBI

4 

Babic RR, Stankovic Babic G, Babic SR and Babic NR: 120 years since the discovery of X-Rays. Med Pregl. 69:323–330. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Klucznik KA, Ravkilde T, Skouboe S, Møller DS, Hokland S, Keall P, Buus S, Bentzen L and Poulsen PR: Cone-beam CT-based estimations of prostate motion and dose distortion during radiotherapy. Phys Imaging Radiat Oncol. 35:1007982025. View Article : Google Scholar : PubMed/NCBI

6 

Lam MB, Landrum MB, McWilliams JM, Buzzee B, Wright AA, Keating NL and Landon BE: Practice-level spending variation for radiation treatment episodes among older adults with cancer. JAMA Health Forum. 6:e2519522025. View Article : Google Scholar : PubMed/NCBI

7 

Hill RM, Fok M, Grundy G, Parsons JL and Rocha S: The role of autophagy in hypoxia-induced radioresistance. Radiother Oncol. 189:1099512023. View Article : Google Scholar : PubMed/NCBI

8 

Wang C, Song R, Yuan J, Hou G, Chu AL, Huang Y, Xiao C, Chai T, Sun C and Liu Z: Exosome-Shuttled METTL14 From AML-Derived mesenchymal stem cells promotes the proliferation and radioresistance in AML cells by stabilizing ROCK1 expression via an m6A-IGF2BP3-dependent mechanism. Drug Dev Res. 86:e700252025. View Article : Google Scholar : PubMed/NCBI

9 

Luo H, Huang MF, Xu A, Wang D, Gingold JA, Tu J, Wang R, Huo Z, Chiang YT, Tsai KL, et al: Mutant p53 confers chemoresistance by activating KMT5B-mediated DNA repair pathway in nasopharyngeal carcinoma. Cancer Lett. 625:2177362025. View Article : Google Scholar : PubMed/NCBI

10 

Feng Y, Zhang L, Zhang Y, Xu Y, Zhou K, Yang Z, Zhu W, Zhang Q, Cao J, Wang L and Jiao Y: NEDD4-mediated endothelial-mesenchymal transition participates in radiation-induced lung injury through the ATM signaling pathway. Dose Response. 23:155932582513527262025. View Article : Google Scholar : PubMed/NCBI

11 

Qu Z, Shi L, Wang P, Zhao A, Zheng X and Yin Q: Dual targeting of inflammatory and immune checkpoint pathways to overcome radiotherapy resistance in esophageal squamous cell carcinoma. J Inflamm Res. 18:9091–9106. 2025. View Article : Google Scholar : PubMed/NCBI

12 

Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F and Cenci G: DNA repair in tumor radioresistance: Insights from fruit flies genetics. Cell Oncol. 47:717–732. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Cursaro I, Rossi S, Butini S, Gemma S, Carullo G and Campiani G: A focus on natural autophagy modulators as potential host-directed weapons against emerging and re-emerging viruses. Med Res Rev. Jul 16–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

15 

Parzych KR and Klionsky DJ: An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI

17 

Vafadar A, Tajbakhsh A, Hosseinpour-Soleimani F, Savardshtaki A and Hashempur MH: Phytochemical-mediated efferocytosis and autophagy in inflammation control. Cell Death Discov. 10:4932024. View Article : Google Scholar : PubMed/NCBI

18 

Feng X, Zhang H, Meng L, Song H, Zhou Q, Qu C, Zhao P, Li Q, Zou C, Liu X and Zhang Z: Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5. Autophagy. 17:723–742. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI

20 

Martini-Stoica H, Xu Y, Ballabio A and Zheng H: The autophagy-lysosomal pathway in neurodegeneration: A TFEB perspective. Trends Neurosci. 39:221–234. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang S, Wang X and Jin H: LncRNAs regulate metabolism in cancer. Int J Biol Sci. 16:1194–1206. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Fu Y, Liu L, Wu H, Zheng Y, Zhan H and Li L: LncRNA GAS5 regulated by FTO-mediated m6A demethylation promotes autophagic cell death in NSCLC by targeting UPF1/BRD4 axis. Mol Cell Biochem. 479:553–566. 2024. View Article : Google Scholar : PubMed/NCBI

23 

Zhou X, Tong Y, Yu C, Pu J, Zhu W, Zhou Y, Wang Y, Xiong Y and Sun X: FAP positive cancer-associated fibroblasts promote tumor progression and radioresistance in esophageal squamous cell carcinoma by transferring exosomal lncRNA AFAP1-AS1. Mol Carcinog. 63:1922–1937. 2024. View Article : Google Scholar : PubMed/NCBI

24 

Hjazi A, Jasim SA, Altalbawy FMA, Kaur H, Hamzah HF, Kaur I, Deorari M, Kumar A, Elawady A and Fenjan MN: Relationship between lncRNA MALAT1 and Chemo-radiotherapy resistance of cancer cells: Uncovered truths. Cell Biochem Biophys. 82:1613–1627. 2024. View Article : Google Scholar : PubMed/NCBI

25 

Huang H, Jin H, Lei R, He Z, He S, Chen J, Saw PE, Qiu Z, Ren G and Nie Y: lncRNA-WAL promotes triple-negative breast cancer aggression by inducing β-catenin nuclear translocation. Mol Cancer Res. 22:1036–1050. 2024. View Article : Google Scholar : PubMed/NCBI

26 

Russell RC and Guan KL: The multifaceted role of autophagy in cancer. EMBO J. 41:e1100312022. View Article : Google Scholar : PubMed/NCBI

27 

Bhol CS, Senapati PK, Kar RK, Chew G, Mahapatra KK, Lee EHC, Kumar AP, Bhutia SK and Sethi G: Autophagy paradox: Genetic and epigenetic control of autophagy in cancer progression. Cancer Lett. 630:2179092025. View Article : Google Scholar : PubMed/NCBI

28 

Gao L, Loveless J, Shay C and Teng Y: Targeting ROS-Mediated crosstalk between autophagy and apoptosis in cancer. Adv Exp Med Biol. 1260:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Carretero-Fernández M, Cabrera-Serrano AJ, Sánchez-Maldonado JM, Ruiz-Durán L, Jiménez-Romera F, García-Verdejo FJ, González-Olmedo C, Cardús A, Díaz-Beltrán L, Gutiérrez-Bautista JF, et al: Autophagy and oxidative stress in solid tumors: Mechanisms and therapeutic opportunities. Crit Rev Oncol Hematol. 212:1048202025. View Article : Google Scholar : PubMed/NCBI

30 

Hama Y, Ogasawara Y and Noda NN: Autophagy and cancer: Basic mechanisms and inhibitor development. Cancer Sci. 114:2699–2708. 2023. View Article : Google Scholar : PubMed/NCBI

31 

Li Z, Liu F, Li F, Zeng G, Wen X, Ding J and Zhou J: DHX9-mediated epigenetic silencing of BECN1 contributes to impaired autophagy and tumor progression in breast cancer via recruitment of HDAC5. Cell Death Dis. 16:5242025. View Article : Google Scholar : PubMed/NCBI

32 

Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y and Tang X: Beclin-1: A therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol. 15:15064262024. View Article : Google Scholar : PubMed/NCBI

33 

Li X, Yang KB, Chen W, Mai J, Wu XQ, Sun T, Wu RY, Jiao L, Li DD, Ji J, et al: CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy. 17:4323–4340. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Chen X, Sun Y, Wang B and Wang H: Prognostic significance of autophagy-related genes BECN1 and LC3 in ovarian cancer: A meta-analysis. J Int Med Res. 48:3000605209682992020. View Article : Google Scholar : PubMed/NCBI

35 

Liu C, Xu P, Chen D, Fan X, Xu Y, Li M, Yang X and Wang C: Roles of autophagy-related genes Beclin-1 and LC3 in the development and progression of prostate cancer and benign prostatic hyperplasia. Biomed Rep. 1:855–860. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Yao Q, Chen J, Lv Y, Wang T, Zhang J, Fan J and Wang L: The significance of expression of autophagy-related gene Beclin, Bcl-2, and Bax in breast cancer tissues. Tumour Biol. 32:1163–1171. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Wu CL, Liu JF, Liu Y, Wang YX, Fu KF, Yu XJ, Pu Q, Chen XX and Zhou LJ: BECN1 inhibition enhances paclitaxel-mediated cytotoxicity in breast cancer in vitro and in vivo. Int J Mol Med. 43:1866–1878. 2019.PubMed/NCBI

38 

Tran S, Juliani J, Harris TJ, Evangelista M, Ratcliffe J, Ellis SL, Baloyan D, Reehorst CM, Nightingale R, Luk IY, et al: BECN1 is essential for intestinal homeostasis involving autophagy-independent mechanisms through its function in endocytic trafficking. Commun Biol. 7:2092024. View Article : Google Scholar : PubMed/NCBI

39 

Ishaq M, Ojha R, Sharma AP and Singh SK: Autophagy in cancer: Recent advances and future directions. Semin Cancer Biol Semin Cancer Biol. 66:171–181. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Senapati PK, Mahapatra KK, Singh A and Bhutia SK: mTOR inhibitors in targeting autophagy and autophagy-associated signaling for cancer cell death and therapy. Biochim Biophys Acta Rev Cancer. 1880:1893422025. View Article : Google Scholar : PubMed/NCBI

41 

Ferro F, Servais S, Besson P, Roger S, Dumas JF and Brisson L: Autophagy and mitophagy in cancer metabolic remodelling. Semin Cell Dev Biol. 98:129–138. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Zhang M, Liu S, Chua MS, Li H, Luo D, Wang S, Zhang S, Han B and Sun C: SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway. Cell Death Dis. 10:6122019. View Article : Google Scholar : PubMed/NCBI

43 

Maycotte P, Jones KL, Goodall ML, Thorburn J and Thorburn A: Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion. Mol Cancer Res. 13:651–658. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Song J, Yang P, Chen C, Ding W, Tillement O, Bai H and Zhang S: Targeting epigenetic regulators as a promising avenue to overcome cancer therapy resistance. Signal Transduct Target Ther. 10:2192025. View Article : Google Scholar : PubMed/NCBI

45 

ALKhemeiri N, Eljack S and Saber-Ayad MM: Perspectives of targeting autophagy as an adjuvant to anti-PD-1/PD-L1 therapy for colorectal cancer treatment. Cells. 14:7452025. View Article : Google Scholar : PubMed/NCBI

46 

Yang W, Cheng B, Chen P, Sun X, Wen Z and Cheng Y: BTN3A1 promotes tumor progression and radiation resistance in esophageal squamous cell carcinoma by regulating ULK1-mediated autophagy. Cell Death Dis. 13:9842022. View Article : Google Scholar : PubMed/NCBI

47 

Xu Q, Zhang H, Liu H, Han Y, Qiu W and Li Z: Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials. 280:1212872022. View Article : Google Scholar : PubMed/NCBI

48 

Chaurasia M, Bhatt AN, Das A, Dwarakanath BS and Sharma K: Radiation-induced autophagy: Mechanisms and consequences. Free Radic Res. 50:273–290. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Yue T, Zheng D, Yang J, He J and Hou J: Potential value and cardiovascular risks of programmed cell death in cancer treatment. Front Pharmacol. 16:16159742025. View Article : Google Scholar : PubMed/NCBI

50 

Liu S, Wang L, Zhu L, Zhao T, Han P, Yan F, Wang X, Li C, Wang Z and Yang BF: Mechanism and regulation of mitophagy in liver diseases: A review. Front Cell Dev Biol. 13:16149402025. View Article : Google Scholar : PubMed/NCBI

51 

Yun CW and Lee SH: The roles of autophagy in cancer. Int J Mol Sci. 19:34662018. View Article : Google Scholar : PubMed/NCBI

52 

Singh SS, Vats S, Chia AY, Tan TZ, Deng S, Ong MS, Arfuso F, Yap CT, Goh BC, Sethi G, et al: Dual role of autophagy in hallmarks of cancer. Oncogene. 37:1142–1158. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Clark A, Villarreal MR, Huang SB, Jayamohan S, Rivas P, Hussain SS, Ybarra M, Osmulski P, Gaczynska ME, Shim EY, et al: Targeting S6K/NFκB/SQSTM1/Polθ signaling to suppress radiation resistance in prostate cancer. Cancer Lett. 597:2170632024. View Article : Google Scholar : PubMed/NCBI

54 

Sezen Us A, Dagsuyu E, Us H, Cöremen M, Karabulut Bulan O and Yanardag R: Apocynin may alleviate side effects of autophagy-blocked radiotherapy through antioxidant effects. Biotech Histochem. Jun 30–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

55 

Ma S, Fu X, Liu L, Liu Y, Feng H, Jiang H, Liu X, Liu R, Liang Z, Li M, et al: Iron-dependent autophagic cell death induced by radiation in MDA-MB-231 breast cancer cells. Front Cell Dev Biol. 9:7238012021. View Article : Google Scholar : PubMed/NCBI

56 

Mukha A, Kahya U, Linge A, Chen O, Löck S, Lukiyanchuk V, Richter S, Alves TC, Peitzsch M, Telychko V, et al: GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics. 11:7844–7868. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Chen N, Zhang R, Konishi T and Wang J: Upregulation of NRF2 through autophagy/ERK 1/2 ameliorates ionizing radiation induced cell death of human osteosarcoma U-2 OS. Mutat Res Genet Toxicol Environ Mutagen. 813:10–17. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Wu C, Yang L, Qi X, Wang T, Li M and Xu K: Inhibition of long non-coding RNA HOTAIR enhances radiosensitivity via regulating autophagy in pancreatic cancer. Cancer Manag Res. 10:5261–5271. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Cui L, Song Z, Liang B, Jia L, Ma S and Liu X: Radiation induces autophagic cell death via the p53/DRAM signaling pathway in breast cancer cells. Oncol Rep. 35:3639–3647. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Wang Y, Liu F, Fang C, Xu L, Chen L, Xu Z, Chen J, Peng W, Fu B and Li Y: Combination of rapamycin and SAHA enhanced radiosensitization by inducing autophagy and acetylation in NSCLC. Aging (Albany NY). 13:18223–18237. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Chen J, Luo H, Wu X, Dong M, Wang D, Ou Y, Wang Y, Sun S, Liu Z, Yang Z, et al: Inhibition of Phosphoglycerate Kinase 1 Enhances Radiosensitivity of Esophageal Squamous Cell Carcinoma to X-rays and Carbon Ion Irradiation. Front Biosci (Landmark Ed). 30:364302025. View Article : Google Scholar : PubMed/NCBI

64 

Mukha A, Kahya U and Dubrovska A: Targeting glutamine metabolism and autophagy: The combination for prostate cancer radiosensitization. Autophagy. 17:3879–3881. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Ma X, Mao G, Chang R, Wang F, Zhang X and Kong Z: Down-regulation of autophagy-associated protein increased acquired radio-resistance bladder cancer cells sensitivity to taxol. Int J Radiat Biol. 97:507–516. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang HX, Nong L, Jia YX, Tan AH, Chen Y, et al: Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep. 32:1905–1912. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Prise KM and O'Sullivan JM: Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 9:351–360. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Jia H, Wei J, Zheng W and Li Z: The dual role of autophagy in cancer stem cells: Implications for tumor progression and therapy resistance. J Transl Med. 23:5832025. View Article : Google Scholar : PubMed/NCBI

69 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Zhou S, Wang X, Ding J, Yang H and Xie Y: Increased ATG5 expression predicts poor prognosis and promotes EMT in cervical carcinoma. Front Cell Dev Biol. 9:7571842021. View Article : Google Scholar : PubMed/NCBI

71 

Pustovalova M, Alhaddad L, Blokhina T, Smetanina N, Chigasova A, Chuprov-Netochin R, Eremin P, Gilmutdinova I, Osipov AN and Leonov S: The CD44high subpopulation of multifraction irradiation-surviving NSCLC cells exhibits partial EMT-program activation and DNA damage response depending on their p53 Status. Int J Mol Sci. 22:23692021. View Article : Google Scholar : PubMed/NCBI

72 

Yazal T, Bailleul J, Ruan Y, Sung D, Chu FI, Palomera D, Dao A, Sehgal A, Gurunathan V, Aryan L, et al: Radiosensitizing pancreatic cancer via effective autophagy inhibition. Mol Cancer Ther. 21:79–88. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Gajate C, Gayet O, Fraunhoffer NA, Iovanna J, Dusetti N and Mollinedo F: Induction of apoptosis in human pancreatic cancer stem cells by the endoplasmic reticulum-targeted alkylphospholipid analog edelfosine and potentiation by autophagy inhibition. Cancers (Basel). 13:61242021. View Article : Google Scholar : PubMed/NCBI

74 

Fischer P, Schmid M, Ohradanova-Repic A, Schneeweiss R, Hadatsch J, Grünert O, Benedum J, Röhrer A, Staudinger F, Schatzlmaier P, et al: Molecular features of TNBC govern heterogeneity in the response to radiation and autophagy inhibition. Cell Death Dis. 16:5402025. View Article : Google Scholar : PubMed/NCBI

75 

Xiao S, Wang Y, Pan S, Mu M, Chen B, Li H, Feng C, Fan R, Yu W, Han B, et al: Bismuth-functionalized probiotics for enhanced antitumor radiotherapy and immune activation. J Mater Chem B. Jul 14–2025.(Epub ahead of print). View Article : Google Scholar

76 

Yang P, Li J, Zhang T, Ren Y, Zhang Q, Liu R, Li H, Hua J, Wang WA, Wang J and Zhou H: Ionizing radiation-induced mitophagy promotes ferroptosis by increasing intracellular free fatty acids. Cell Death Differ. 30:2432–2445. 2023. View Article : Google Scholar : PubMed/NCBI

77 

Liu C, Liu X, Li Z, Wei Y, Liu B, Zhu P, Liu Y and Zhao R: VPS37A activates the autophagy-lysosomal pathway for TNFR1 degradation and induces NF-κB-Regulated cell death under metabolic stress in colorectal cancer. Oncol Res. 33:2085–2105. 2025. View Article : Google Scholar : PubMed/NCBI

78 

Azmat MA, Zaheer M, Shaban M, Arshad S, Hasan M, Ashraf A, Naeem M, Ahmad A and Munawar N: Autophagy: A new avenue and biochemical mechanisms to mitigate the climate change. Scientifica (Cairo). 2024:99083232024. View Article : Google Scholar : PubMed/NCBI

79 

Choi Y, Bowman JW and Jung JU: Autophagy during viral infection-a double-edged sword. Nat Rev Microbiol. 16:341–354. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Daniel P, Sabri S, Chaddad A, Meehan B, Jean-Claude B, Rak J and Abdulkarim BS: Temozolomide induced hypermutation in glioma: Evolutionary mechanisms and therapeutic opportunities. Front Oncol. 9:412019. View Article : Google Scholar : PubMed/NCBI

81 

Liu EK, Sulman EP, Wen PY and Kurz SC: Novel therapies for glioblastoma. Curr Neurol Neurosci Rep. 20:192020. View Article : Google Scholar : PubMed/NCBI

82 

Tsai CY, Ko HJ, Huang CF, Lin CY, Chiou SJ, Su YF, Lieu AS, Loh JK, Kwan AL, Chuang TH and Hong YR: Ionizing radiation induces resistant glioblastoma stem-like cells by promoting autophagy via the Wnt/β-catenin pathway. Life (Basel). 11:4512021.PubMed/NCBI

83 

Wang Y, Fu Y, Lu Y, Chen S, Zhang J, Liu B and Yuan Y: Unravelling the complexity of lncRNAs in autophagy to improve potential cancer therapy. Biochim Biophys Acta Rev Cancer. 1878:1889322023. View Article : Google Scholar : PubMed/NCBI

84 

Zheng J, Mat Ludin AF, Rajab NF, Shaolong L and Jufri NF: The roles of lncMALAT1 in coronary artery disease regulation and therapeutic perspective: A systematic review. iScience. 28:1129452025. View Article : Google Scholar : PubMed/NCBI

85 

Zhang X, Shi Y, Wang C and Zhang K: LncRNA MALAT1 knockdown inhibits apoptosis of mouse hippocampus neuron cells with high glucose by Silencing autophagy. BMC Endocr Disord. 25:1732025. View Article : Google Scholar : PubMed/NCBI

86 

Yang L, Wang H, Shen Q, Feng L and Jin H: Long non-coding RNAs involved in autophagy regulation. Cell Death Dis. 8:e30732017. View Article : Google Scholar : PubMed/NCBI

87 

Xia N, Zhang P, Yang L, Yin X, Wu SQ, Yao Y, Shang MY and Weng L: The lncRNA MIR503HG/miR-16-5p/FOSL1 pathway mediates autophagy to promote esophageal epithelial cells proliferation and EMT in esophageal restenosis. Arch Biochem Biophys. 772:1105362025. View Article : Google Scholar : PubMed/NCBI

88 

Zhu X, Sun Y, Yu Q, Wang X, Wang Y and Zhao Y: Exosomal lncRNA GAS5 promotes M1 macrophage polarization in allergic rhinitis via restraining mTORC1/ULK1/ATG13-mediated autophagy and subsequently activating NF-кB signaling. Int Immunopharmacol. 121:1104502023. View Article : Google Scholar : PubMed/NCBI

89 

DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Zhou X, Song Y, Wang Z, Fu L, Xu L, Feng X, Zhang Z and Yuan K: Dietary sugar intervention: A promising approach for cancer therapy. Biochim Biophys Acta Rev Cancer. 1880:1894022025. View Article : Google Scholar : PubMed/NCBI

91 

Li C, Wang K, Zhao L, Liu J, Jin Y, Zhang C, Xu M, Wang M, Kuang Y, Liu J, et al: LINC00622 transcriptionally promotes RRAGD to repress mTORC1-modulated autophagic cell death by associating with BTF3 in cutaneous melanoma. Cell Death Dis. 16:5152025. View Article : Google Scholar : PubMed/NCBI

92 

Wu Q, Ma J, Wei J, Meng W, Wang Y and Shi M: lncRNA SNHG11 promotes gastric cancer progression by activating the Wnt/β-Catenin pathway and oncogenic autophagy. Mol Ther. 29:1258–1278. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Chen F, Zhong Z, Tan HY, Guo W, Zhang C, Cheng CS, Wang N, Ren J and Feng Y: Suppression of lncRNA MALAT1 by betulinic acid inhibits hepatocellular carcinoma progression by targeting IAPs via miR-22-3p. Clin Transl Med. 10:e1902020. View Article : Google Scholar : PubMed/NCBI

94 

Sheng JQ, Wang MR, Fang D, Liu L, Huang WJ, Tian DA, He XX and Li PY: LncRNA NBR2 inhibits tumorigenesis by regulating autophagy in hepatocellular carcinoma. Biomed Pharmacother. 133:1110232021. View Article : Google Scholar : PubMed/NCBI

95 

Wang Z and Jin J: LncRNA SLCO4A1-AS1 promotes colorectal cancer cell proliferation by enhancing autophagy via miR-508-3p/PARD3 axis. Aging (Albany NY). 11:4876–4889. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Wang Y, Li Z, Xu S, Li W, Chen M, Jiang M and Fan X: LncRNA FIRRE functions as a tumor promoter by interaction with PTBP1 to stabilize BECN1 mRNA and facilitate autophagy. Cell Death Dis. 13:982022. View Article : Google Scholar : PubMed/NCBI

97 

Lu X, Chen L, Li Y, Huang R, Meng X and Sun F: Long non-coding RNA LINC01207 promotes cell proliferation and migration but suppresses apoptosis and autophagy in oral squamous cell carcinoma by the microRNA-1301-3p/lactate dehydrogenase isoform A axis. Bioengineered. 12:7780–7793. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Jiang N, Zhang X, Gu X, Li X and Shang L: Progress in understanding the role of lncRNA in programmed cell death. Cell Death Discov. 7:302021. View Article : Google Scholar : PubMed/NCBI

99 

Lu M, Qin X, Zhou Y, Li G, Liu Z, Yue H and Geng X: LncRNA HOTAIR suppresses cell apoptosis, autophagy and induces cell proliferation in cholangiocarcinoma by modulating the miR-204-5p/HMGB1 axis. Biomed Pharmacother. 130:1105662020. View Article : Google Scholar : PubMed/NCBI

100 

Murakami K, Yokoi Y, Hirane N, Otaki M and Nishimura SI: Nanosomal irinotecan targeting pancreatic cancer cell surface neuraminidase-1 sialidase. Adv Healthc Mater. Jul 22–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

101 

Wu H, Li A, Zheng Q, Gu J and Zhou W: LncRNA LZTS1-AS1 induces proliferation, metastasis and inhibits autophagy of pancreatic cancer cells through the miR-532/TWIST1 signaling pathway. Cancer Cell Int. 23:1302023. View Article : Google Scholar : PubMed/NCBI

102 

Lv D, Xiang Y, Yang Q, Yao J and Dong Q: Long Non-Coding RNA TUG1 promotes cell proliferation and inhibits cell apoptosis, autophagy in clear cell renal cell carcinoma via MiR-31-5p/FLOT1 axis. Onco Targets Ther. 13:5857–5868. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Shao Q, Wang Q and Wang J: LncRNA SCAMP1 regulates ZEB1/JUN and autophagy to promote pediatric renal cell carcinoma under oxidative stress via miR-429. Biomed Pharmacother. 120:1094602019. View Article : Google Scholar : PubMed/NCBI

104 

Zhang Z, Jia JP, Zhang YJ, Liu G, Zhou F and Zhang BC: Long Noncoding RNA ADAMTS9-AS2 inhibits the proliferation, migration, and invasion in bladder tumor cells. Onco Targets Ther. 13:7089–7100. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Li Q, Chen K, Dong R and Lu H: LncRNA CASC2 inhibits autophagy and promotes apoptosis in non-small cell lung cancer cells via regulating the miR-214/TRIM16 axis. RSC Adv. 8:40846–40855. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Peng D, Li W, Zhang B and Liu X: Overexpression of lncRNA SLC26A4-AS1 inhibits papillary thyroid carcinoma progression through recruiting ETS1 to promote ITPR1-mediated autophagy. J Cell Mol Med. 25:8148–8158. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Qin Y, Sun W, Wang Z, Dong W, He L, Zhang T, Lv C and Zhang H: RBM47/SNHG5/FOXO3 axis activates autophagy and inhibits cell proliferation in papillary thyroid carcinoma. Cell Death Dis. 13:2702022. View Article : Google Scholar : PubMed/NCBI

108 

Wang Y, Liu Z, Xu Z, Shao W, Hu D, Zhong H and Zhang J: Introduction of long non-coding RNAs to regulate autophagy-associated therapy resistance in cancer. Mol Biol Rep. 49:10761–10773. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Shaw A and Gullerova M: Home and away: The role of non-coding RNA in intracellular and intercellular DNA damage response. Genes (Basel). 12:14752021. View Article : Google Scholar : PubMed/NCBI

110 

Wang S, Qiao C, Fang R, Yang S, Zhao G, Liu S and Li P: LncRNA CASC19: A novel oncogene involved in human cancer. Clin Transl Oncol. 25:2841–2851. 2023. View Article : Google Scholar : PubMed/NCBI

111 

Wu Y, Mou J, Zhou G and Yuan C: CASC19: An oncogenic long non-coding RNA in different cancers. Curr Pharm Des. 30:1157–1166. 2024. View Article : Google Scholar : PubMed/NCBI

112 

Liu H, Zheng W, Chen Q, Zhou Y, Pan Y, Zhang J, Bai Y and Shao C: lncRNA CASC19 contributes to radioresistance of nasopharyngeal carcinoma by promoting autophagy via AMPK-mTOR pathway. Int J Mol Sci. 22:14072021. View Article : Google Scholar : PubMed/NCBI

113 

Liu H, Chen Q, Zheng W, Zhou Y, Bai Y, Pan Y, Zhang J and Shao C: LncRNA CASC19 enhances the radioresistance of nasopharyngeal carcinoma by regulating the miR-340-3p/FKBP5 axis. Int J Mol Sci. 24:30472023. View Article : Google Scholar : PubMed/NCBI

114 

Wang WJ, Guo CA, Li R, Xu ZP, Yu JP, Ye Y, Zhao J, Wang J, Wang WA, Zhang A, et al: Long non-coding RNA CASC19 is associated with the progression and prognosis of advanced gastric cancer. Aging (Albany NY). 11:5829–5847. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Hou Y, Tang Y, Ma C, Yu J and Jia Y: Overexpression of CASC19 contributes to tumor progression and predicts poor prognosis after radical resection in hepatocellular carcinoma. Dig Liver Dis. 55:799–806. 2023. View Article : Google Scholar : PubMed/NCBI

116 

Teng S, Ge J, Yang Y, Cui Z, Min L, Li W, Yang G, Liu K and Wu J: M1 macrophages deliver CASC19 via exosomes to inhibit the proliferation and migration of colon cancer cells. Med Oncol. 41:2862024. View Article : Google Scholar : PubMed/NCBI

117 

Chiu HS, Somvanshi S, Patel E, Chen TW, Singh VP, Zorman B, Patil SL, Pan Y, Chatterjee SS; Cancer Genome Atlas Research Network;, ; et al: Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep. 23:297–312.e12. 2018. View Article : Google Scholar : PubMed/NCBI

118 

Huang Z, Li X, Wang X, Wu J, Gong Z, Kõks S and Wang M: Nuclear paraspeckle assembly transcript 1 promotes photophobia behavior in mice via miR-196a-5p/Trpm3 coupling. J Headache Pain. 26:1182025. View Article : Google Scholar : PubMed/NCBI

119 

Sakaguchi H, Tsuchiya H, Kitagawa Y, Tanino T, Yoshida K, Uchida N and Shiota G: NEAT1 Confers radioresistance to hepatocellular carcinoma cells by inducing autophagy through GABARAP. Int J Mol Sci. 23:7112022. View Article : Google Scholar : PubMed/NCBI

120 

Mahmoud HS, Eldesoky NA, Shaker OG and El-Husseiny AA: The diagnostic value of LncRNA NEAT1 targeting miR-129-5p in pancreatic cancer patients. Sci Rep. 15:276382025. View Article : Google Scholar : PubMed/NCBI

121 

Dong P, Xiong Y, Yue J, Xu D, Ihira K, Konno Y, Kobayashi N, Todo Y and Watari H: Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J Exp Clin Cancer Res. 38:2952019. View Article : Google Scholar : PubMed/NCBI

122 

Almujri SS and Almalki WH: The paradox of autophagy in cancer: NEAT1′s role in tumorigenesis and therapeutic resistance. Pathol Res Pract. 262:1555232024. View Article : Google Scholar : PubMed/NCBI

123 

Wen J, Zheng W, Zeng L, Wang B, Chen D, Chen Y, Lu X, Shao C, Chen J and Fan M: LTF Induces Radioresistance by Promoting Autophagy and Forms an AMPK/SP2/NEAT1/miR-214-5p feedback loop in lung squamous cell carcinoma. Int J Biol Sci. 19:1509–1527. 2023. View Article : Google Scholar : PubMed/NCBI

124 

He H: Targeting TP53TG1: A promising prognostic biomarker and therapeutic target for personalized cancer therapy. Discov Oncol. 16:12712025. View Article : Google Scholar : PubMed/NCBI

125 

Li J, Liu R, Hu H, Huang Y, Shi Y, Li H, Chen H, Cai M, Wang N, Yan T, et al: Methionine deprivation inhibits glioma proliferation and EMT via the TP53TG1/miR-96-5p/STK17B ceRNA pathway. NPJ Precis Oncol. 8:2702024. View Article : Google Scholar : PubMed/NCBI

126 

Liao D, Liu X, Yuan X, Feng P, Ouyang Z, Liu Y and Li C: Long non-coding RNA tumor protein 53 target gene 1 promotes cervical cancer development via regulating microRNA-33a-5p to target forkhead box K2. Cell Cycle. 21:572–584. 2022. View Article : Google Scholar : PubMed/NCBI

127 

Ji W, Wang W and Wei Y: TP53TG1/STAT axis is involved in the development of colon cancer through affecting PD-L1 expression and immune escape mechanism of tumor cells. Am J Cancer Res. 13:5218–5235. 2023.PubMed/NCBI

128 

Cheng Y, Huang N, Yin Q, Cheng C, Chen D, Gong C, Xiong H, Zhao J, Wang J, Li X, et al: LncRNA TP53TG1 plays an anti-oncogenic role in cervical cancer by synthetically regulating transcriptome profile in HeLa cells. Front Genet. 13:9810302022. View Article : Google Scholar : PubMed/NCBI

129 

Luan F, Chen W, Chen M, Yan J, Chen H, Yu H, Liu T and Mo L: An autophagy-related long non-coding RNA signature for glioma. FEBS Open Bio. 9:653–667. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Gao W, Qiao M and Luo K: Long noncoding RNA TP53TG1 contributes to radioresistance of glioma cells Via miR-524-5p/RAB5A Axis. Cancer Biother Radiopharm. 36:600–612. 2021.PubMed/NCBI

131 

Wang C, Li Y, Yan S, Wang H, Shao X, Xiao M, Yang B, Qin G, Kong R, Chen R and Zhang N: Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun. 11:31622020. View Article : Google Scholar : PubMed/NCBI

132 

Gandhy SU, Imanirad P, Jin UH, Nair V, Hedrick E, Cheng Y, Corton JC, Kim K and Safe S: Specificity protein (Sp) transcription factors and metformin regulate expression of the long non-coding RNA HULC. Oncotarget. 6:26359–26372. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Chen X, Lin J, Liu Y, Peng J, Cao Y, Su Z, Wang T, Cheng J and Hu D: AlncRNA HULC as an effective biomarker for surveillance of the outcome of cancer: A meta-analysis. PLoS One. 12:e01712102017. View Article : Google Scholar : PubMed/NCBI

134 

Li YP, Liu Y, Xiao LM, Chen LK, Tao EX, Zeng EM and Xu CH: Induction of cancer cell stemness in glioma through glycolysis and the long noncoding RNA HULC-activated FOXM1/AGR2/HIF-1α axis. Lab Invest. 102:691–701. 2022. View Article : Google Scholar : PubMed/NCBI

135 

Li S, Chang M, Tong L, Wang Y, Wang M and Wang F: Screening potential lncRNA biomarkers for breast cancer and colorectal cancer combining random walk and logistic matrix factorization. Front Genet. 13:10236152023. View Article : Google Scholar : PubMed/NCBI

136 

Chen C, Wang K, Wang Q and Wang X: LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells. Braz J Med Biol Res. 51:e70802018. View Article : Google Scholar : PubMed/NCBI

137 

Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, et al: Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol. 21:198–206. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Meng X, Fang E, Zhao X and Feng J: Identification of prognostic long noncoding RNAs associated with spontaneous regression of neuroblastoma. Cancer Med. 9:3800–3815. 2020. View Article : Google Scholar : PubMed/NCBI

139 

Shi X, Cui Z, Liu X, Wu S, Wu Y, Fang F and Zhao H: LncRNA FIRRE is activated by MYC and promotes the development of diffuse large B-cell lymphoma via Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 510:594–600. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Wang Z, Zhang J, Liu Y, Zhao R, Zhou X and Wang H: An integrated autophagy-related long noncoding RNA signature as a prognostic biomarker for human endometrial cancer: A bioinformatics-based approach. Biomed Res Int. 2020:57174982020. View Article : Google Scholar : PubMed/NCBI

141 

Cai J, Wang R, Chen Y, Zhang C, Fu L and Fan C: LncRNA FIRRE regulated endometrial cancer radiotherapy sensitivity via the miR-199b-5p/SIRT1/BECN1 axis-mediated autophagy. Genomics. 116:1107502024. View Article : Google Scholar : PubMed/NCBI

142 

Cory S, Graham M, Webb E, Corcoran L and Adams JM: Variant (6;15) translocations in murine plasmacytomas involve a chromosome 15 locus at least 72 kb from the c-myc oncogene. EMBO J. 4:675–681. 1985. View Article : Google Scholar : PubMed/NCBI

143 

Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, Ronning P, Reuland B, Guenther K, Beadnell TC, et al: PVT1 dependence in cancer with MYC copy-number increase. Nature. 512:82–86. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Boloix A, Masanas M, Jiménez C, Antonelli R, Soriano A, Roma J, Sánchez de Toledo J, Gallego S and Segura MF: Long Non-coding RNA PVT1 as a prognostic and therapeutic target in pediatric cancer. Front Oncol. 9:11732019. View Article : Google Scholar : PubMed/NCBI

145 

Ogunwobi OO and Segura MF: Editorial: PVT1 in cancer. Front Oncol. 10:5887862020. View Article : Google Scholar : PubMed/NCBI

146 

Lai SW, Chen MY, Bamodu OA, Hsieh MS, Huang TY, Yeh CT, Lee WH and Cherng YG: Exosomal lncRNA PVT1/VEGFA axis promotes colon cancer metastasis and stemness by downregulation of tumor suppressor miR-152-3p. Oxid Med Cell Longev. 2021:99598072021. View Article : Google Scholar : PubMed/NCBI

147 

Zhu Y, Wu F, Gui W, Zhang N, Matro E, Zhu L, Eserberg DT and Lin X: A positive feedback regulatory loop involving the lncRNA PVT1 and HIF-1α in pancreatic cancer. J Mol Cell Biol. 13:676–689. 2021. View Article : Google Scholar : PubMed/NCBI

148 

Yao W, Li S, Liu R, Jiang M, Gao L, Lu Y, Liang X and Zhang H: Long non-coding RNA PVT1: A promising chemotherapy and radiotherapy sensitizer. Front Oncol. 12:9592082022. View Article : Google Scholar : PubMed/NCBI

149 

Tan YT, Lin JF, Li T, Li JJ, Xu RH and Ju HQ: LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (Lond). 41:109–120. 2021. View Article : Google Scholar : PubMed/NCBI

150 

Zhou Y, Shao Y, Hu W, Zhang J, Shi Y, Kong X and Jiang J: A novel long noncoding RNA SP100-AS1 induces radioresistance of colorectal cancer via sponging miR-622 and stabilizing ATG3. Cell Death Differ. 30:111–124. 2023. View Article : Google Scholar : PubMed/NCBI

151 

Guo Z, Zhang X, Zhu H, Zhong N, Luo X, Zhang Y, Tu F, Zhong J, Wang X, He J and Huang L: TELO2 induced progression of colorectal cancer by binding with RICTOR through mTORC2. Oncol Rep. 45:523–534. 2021. View Article : Google Scholar : PubMed/NCBI

152 

Chang S, Zhang M, Liu C, Li M, Lou Y and Tan H: Redox mechanism of glycerophospholipids and relevant targeted therapy in ferroptosis. Cell Death Discov. 11:3582025. View Article : Google Scholar : PubMed/NCBI

153 

Zhang L, Yu S, Wang C, Jia C, Lu Z and Chen J: Establishment of a non-coding RNAomics screening platform for the regulation of KRAS in pancreatic cancer by RNA sequencing. Int J Oncol. 53:2659–2670. 2018.PubMed/NCBI

154 

Muthoni A, Anyango A and V Wanjala H: Mucilage-based nanocarriers for targeted cancer therapy-design, functionalization, and therapeutic potential. Drug Dev Ind Pharm. Aug 4–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

155 

Wu T and Du Y: LncRNAs: From basic research to medical application. Int J Biol Sci. 13:295–307. 2017. View Article : Google Scholar : PubMed/NCBI

156 

Zhang L, Chen H, Yang Y, Zhao L, Xie H, Li P, Lv X, He L, Liu N and Liu B: Targeting LINC02320 prevents colorectal cancer growth via GRB7-dependent inhibition of MAPK signaling pathway. Cell Mol Biol Lett. 30:862025. View Article : Google Scholar : PubMed/NCBI

157 

Taylor MA, Das BC and Ray SK: Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma. Apoptosis. 23:563–575. 2018. View Article : Google Scholar : PubMed/NCBI

158 

Han F, Chen S, Zhang K, Zhang K, Wang M and Wang P: Targeting the HNRNPA2B1/HDGF/PTN axis to overcome radioresistance in non-small cell lung cancer. Antioxid Redox Signal. 43:189–214. 2025. View Article : Google Scholar : PubMed/NCBI

159 

Liu Y, Chen X, Chen X, Liu J, Gu H, Fan R and Ge H: Long non-coding RNA HOTAIR knockdown enhances radiosensitivity through regulating microRNA-93/ATG12 axis in colorectal cancer. Cell Death Dis. 11:1752020. View Article : Google Scholar : PubMed/NCBI

160 

Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S, et al: The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res. 38:1712019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li H and He Z: Role of autophagy‑modulating long non‑coding RNAs in tumor radioresistance (Review). Oncol Rep 54: 142, 2025.
APA
Li, H., & He, Z. (2025). Role of autophagy‑modulating long non‑coding RNAs in tumor radioresistance (Review). Oncology Reports, 54, 142. https://doi.org/10.3892/or.2025.8975
MLA
Li, H., He, Z."Role of autophagy‑modulating long non‑coding RNAs in tumor radioresistance (Review)". Oncology Reports 54.5 (2025): 142.
Chicago
Li, H., He, Z."Role of autophagy‑modulating long non‑coding RNAs in tumor radioresistance (Review)". Oncology Reports 54, no. 5 (2025): 142. https://doi.org/10.3892/or.2025.8975
Copy and paste a formatted citation
x
Spandidos Publications style
Li H and He Z: Role of autophagy‑modulating long non‑coding RNAs in tumor radioresistance (Review). Oncol Rep 54: 142, 2025.
APA
Li, H., & He, Z. (2025). Role of autophagy‑modulating long non‑coding RNAs in tumor radioresistance (Review). Oncology Reports, 54, 142. https://doi.org/10.3892/or.2025.8975
MLA
Li, H., He, Z."Role of autophagy‑modulating long non‑coding RNAs in tumor radioresistance (Review)". Oncology Reports 54.5 (2025): 142.
Chicago
Li, H., He, Z."Role of autophagy‑modulating long non‑coding RNAs in tumor radioresistance (Review)". Oncology Reports 54, no. 5 (2025): 142. https://doi.org/10.3892/or.2025.8975
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team