You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Schaue D and McBride WH: Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 12:527–540. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yerolatsite M, Torounidou N, Amylidi AL, Rapti IC, Zarkavelis G, Kampletsas E and Voulgari PV: A Systematic review of pneumonitis following treatment with immune checkpoint inhibitors and radiotherapy. Biomedicines. 13:9462025. View Article : Google Scholar : PubMed/NCBI | |
|
Tubiana M: Wilhelm conrad röntgen and the discovery of X-rays. Bull Acad Natl Med. 180:97–108. 1996.(In French). PubMed/NCBI | |
|
Babic RR, Stankovic Babic G, Babic SR and Babic NR: 120 years since the discovery of X-Rays. Med Pregl. 69:323–330. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Klucznik KA, Ravkilde T, Skouboe S, Møller DS, Hokland S, Keall P, Buus S, Bentzen L and Poulsen PR: Cone-beam CT-based estimations of prostate motion and dose distortion during radiotherapy. Phys Imaging Radiat Oncol. 35:1007982025. View Article : Google Scholar : PubMed/NCBI | |
|
Lam MB, Landrum MB, McWilliams JM, Buzzee B, Wright AA, Keating NL and Landon BE: Practice-level spending variation for radiation treatment episodes among older adults with cancer. JAMA Health Forum. 6:e2519522025. View Article : Google Scholar : PubMed/NCBI | |
|
Hill RM, Fok M, Grundy G, Parsons JL and Rocha S: The role of autophagy in hypoxia-induced radioresistance. Radiother Oncol. 189:1099512023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Song R, Yuan J, Hou G, Chu AL, Huang Y, Xiao C, Chai T, Sun C and Liu Z: Exosome-Shuttled METTL14 From AML-Derived mesenchymal stem cells promotes the proliferation and radioresistance in AML cells by stabilizing ROCK1 expression via an m6A-IGF2BP3-dependent mechanism. Drug Dev Res. 86:e700252025. View Article : Google Scholar : PubMed/NCBI | |
|
Luo H, Huang MF, Xu A, Wang D, Gingold JA, Tu J, Wang R, Huo Z, Chiang YT, Tsai KL, et al: Mutant p53 confers chemoresistance by activating KMT5B-mediated DNA repair pathway in nasopharyngeal carcinoma. Cancer Lett. 625:2177362025. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Y, Zhang L, Zhang Y, Xu Y, Zhou K, Yang Z, Zhu W, Zhang Q, Cao J, Wang L and Jiao Y: NEDD4-mediated endothelial-mesenchymal transition participates in radiation-induced lung injury through the ATM signaling pathway. Dose Response. 23:155932582513527262025. View Article : Google Scholar : PubMed/NCBI | |
|
Qu Z, Shi L, Wang P, Zhao A, Zheng X and Yin Q: Dual targeting of inflammatory and immune checkpoint pathways to overcome radiotherapy resistance in esophageal squamous cell carcinoma. J Inflamm Res. 18:9091–9106. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F and Cenci G: DNA repair in tumor radioresistance: Insights from fruit flies genetics. Cell Oncol. 47:717–732. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cursaro I, Rossi S, Butini S, Gemma S, Carullo G and Campiani G: A focus on natural autophagy modulators as potential host-directed weapons against emerging and re-emerging viruses. Med Res Rev. Jul 16–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Parzych KR and Klionsky DJ: An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Vafadar A, Tajbakhsh A, Hosseinpour-Soleimani F, Savardshtaki A and Hashempur MH: Phytochemical-mediated efferocytosis and autophagy in inflammation control. Cell Death Discov. 10:4932024. View Article : Google Scholar : PubMed/NCBI | |
|
Feng X, Zhang H, Meng L, Song H, Zhou Q, Qu C, Zhao P, Li Q, Zou C, Liu X and Zhang Z: Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5. Autophagy. 17:723–742. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI | |
|
Martini-Stoica H, Xu Y, Ballabio A and Zheng H: The autophagy-lysosomal pathway in neurodegeneration: A TFEB perspective. Trends Neurosci. 39:221–234. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang S, Wang X and Jin H: LncRNAs regulate metabolism in cancer. Int J Biol Sci. 16:1194–1206. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Y, Liu L, Wu H, Zheng Y, Zhan H and Li L: LncRNA GAS5 regulated by FTO-mediated m6A demethylation promotes autophagic cell death in NSCLC by targeting UPF1/BRD4 axis. Mol Cell Biochem. 479:553–566. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Tong Y, Yu C, Pu J, Zhu W, Zhou Y, Wang Y, Xiong Y and Sun X: FAP positive cancer-associated fibroblasts promote tumor progression and radioresistance in esophageal squamous cell carcinoma by transferring exosomal lncRNA AFAP1-AS1. Mol Carcinog. 63:1922–1937. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hjazi A, Jasim SA, Altalbawy FMA, Kaur H, Hamzah HF, Kaur I, Deorari M, Kumar A, Elawady A and Fenjan MN: Relationship between lncRNA MALAT1 and Chemo-radiotherapy resistance of cancer cells: Uncovered truths. Cell Biochem Biophys. 82:1613–1627. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Jin H, Lei R, He Z, He S, Chen J, Saw PE, Qiu Z, Ren G and Nie Y: lncRNA-WAL promotes triple-negative breast cancer aggression by inducing β-catenin nuclear translocation. Mol Cancer Res. 22:1036–1050. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Russell RC and Guan KL: The multifaceted role of autophagy in cancer. EMBO J. 41:e1100312022. View Article : Google Scholar : PubMed/NCBI | |
|
Bhol CS, Senapati PK, Kar RK, Chew G, Mahapatra KK, Lee EHC, Kumar AP, Bhutia SK and Sethi G: Autophagy paradox: Genetic and epigenetic control of autophagy in cancer progression. Cancer Lett. 630:2179092025. View Article : Google Scholar : PubMed/NCBI | |
|
Gao L, Loveless J, Shay C and Teng Y: Targeting ROS-Mediated crosstalk between autophagy and apoptosis in cancer. Adv Exp Med Biol. 1260:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Carretero-Fernández M, Cabrera-Serrano AJ, Sánchez-Maldonado JM, Ruiz-Durán L, Jiménez-Romera F, García-Verdejo FJ, González-Olmedo C, Cardús A, Díaz-Beltrán L, Gutiérrez-Bautista JF, et al: Autophagy and oxidative stress in solid tumors: Mechanisms and therapeutic opportunities. Crit Rev Oncol Hematol. 212:1048202025. View Article : Google Scholar : PubMed/NCBI | |
|
Hama Y, Ogasawara Y and Noda NN: Autophagy and cancer: Basic mechanisms and inhibitor development. Cancer Sci. 114:2699–2708. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Liu F, Li F, Zeng G, Wen X, Ding J and Zhou J: DHX9-mediated epigenetic silencing of BECN1 contributes to impaired autophagy and tumor progression in breast cancer via recruitment of HDAC5. Cell Death Dis. 16:5242025. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y and Tang X: Beclin-1: A therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol. 15:15064262024. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Yang KB, Chen W, Mai J, Wu XQ, Sun T, Wu RY, Jiao L, Li DD, Ji J, et al: CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy. 17:4323–4340. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Sun Y, Wang B and Wang H: Prognostic significance of autophagy-related genes BECN1 and LC3 in ovarian cancer: A meta-analysis. J Int Med Res. 48:3000605209682992020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Xu P, Chen D, Fan X, Xu Y, Li M, Yang X and Wang C: Roles of autophagy-related genes Beclin-1 and LC3 in the development and progression of prostate cancer and benign prostatic hyperplasia. Biomed Rep. 1:855–860. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yao Q, Chen J, Lv Y, Wang T, Zhang J, Fan J and Wang L: The significance of expression of autophagy-related gene Beclin, Bcl-2, and Bax in breast cancer tissues. Tumour Biol. 32:1163–1171. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wu CL, Liu JF, Liu Y, Wang YX, Fu KF, Yu XJ, Pu Q, Chen XX and Zhou LJ: BECN1 inhibition enhances paclitaxel-mediated cytotoxicity in breast cancer in vitro and in vivo. Int J Mol Med. 43:1866–1878. 2019.PubMed/NCBI | |
|
Tran S, Juliani J, Harris TJ, Evangelista M, Ratcliffe J, Ellis SL, Baloyan D, Reehorst CM, Nightingale R, Luk IY, et al: BECN1 is essential for intestinal homeostasis involving autophagy-independent mechanisms through its function in endocytic trafficking. Commun Biol. 7:2092024. View Article : Google Scholar : PubMed/NCBI | |
|
Ishaq M, Ojha R, Sharma AP and Singh SK: Autophagy in cancer: Recent advances and future directions. Semin Cancer Biol Semin Cancer Biol. 66:171–181. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Senapati PK, Mahapatra KK, Singh A and Bhutia SK: mTOR inhibitors in targeting autophagy and autophagy-associated signaling for cancer cell death and therapy. Biochim Biophys Acta Rev Cancer. 1880:1893422025. View Article : Google Scholar : PubMed/NCBI | |
|
Ferro F, Servais S, Besson P, Roger S, Dumas JF and Brisson L: Autophagy and mitophagy in cancer metabolic remodelling. Semin Cell Dev Biol. 98:129–138. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Liu S, Chua MS, Li H, Luo D, Wang S, Zhang S, Han B and Sun C: SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway. Cell Death Dis. 10:6122019. View Article : Google Scholar : PubMed/NCBI | |
|
Maycotte P, Jones KL, Goodall ML, Thorburn J and Thorburn A: Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion. Mol Cancer Res. 13:651–658. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Song J, Yang P, Chen C, Ding W, Tillement O, Bai H and Zhang S: Targeting epigenetic regulators as a promising avenue to overcome cancer therapy resistance. Signal Transduct Target Ther. 10:2192025. View Article : Google Scholar : PubMed/NCBI | |
|
ALKhemeiri N, Eljack S and Saber-Ayad MM: Perspectives of targeting autophagy as an adjuvant to anti-PD-1/PD-L1 therapy for colorectal cancer treatment. Cells. 14:7452025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Cheng B, Chen P, Sun X, Wen Z and Cheng Y: BTN3A1 promotes tumor progression and radiation resistance in esophageal squamous cell carcinoma by regulating ULK1-mediated autophagy. Cell Death Dis. 13:9842022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Q, Zhang H, Liu H, Han Y, Qiu W and Li Z: Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials. 280:1212872022. View Article : Google Scholar : PubMed/NCBI | |
|
Chaurasia M, Bhatt AN, Das A, Dwarakanath BS and Sharma K: Radiation-induced autophagy: Mechanisms and consequences. Free Radic Res. 50:273–290. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yue T, Zheng D, Yang J, He J and Hou J: Potential value and cardiovascular risks of programmed cell death in cancer treatment. Front Pharmacol. 16:16159742025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Wang L, Zhu L, Zhao T, Han P, Yan F, Wang X, Li C, Wang Z and Yang BF: Mechanism and regulation of mitophagy in liver diseases: A review. Front Cell Dev Biol. 13:16149402025. View Article : Google Scholar : PubMed/NCBI | |
|
Yun CW and Lee SH: The roles of autophagy in cancer. Int J Mol Sci. 19:34662018. View Article : Google Scholar : PubMed/NCBI | |
|
Singh SS, Vats S, Chia AY, Tan TZ, Deng S, Ong MS, Arfuso F, Yap CT, Goh BC, Sethi G, et al: Dual role of autophagy in hallmarks of cancer. Oncogene. 37:1142–1158. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Clark A, Villarreal MR, Huang SB, Jayamohan S, Rivas P, Hussain SS, Ybarra M, Osmulski P, Gaczynska ME, Shim EY, et al: Targeting S6K/NFκB/SQSTM1/Polθ signaling to suppress radiation resistance in prostate cancer. Cancer Lett. 597:2170632024. View Article : Google Scholar : PubMed/NCBI | |
|
Sezen Us A, Dagsuyu E, Us H, Cöremen M, Karabulut Bulan O and Yanardag R: Apocynin may alleviate side effects of autophagy-blocked radiotherapy through antioxidant effects. Biotech Histochem. Jun 30–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, Fu X, Liu L, Liu Y, Feng H, Jiang H, Liu X, Liu R, Liang Z, Li M, et al: Iron-dependent autophagic cell death induced by radiation in MDA-MB-231 breast cancer cells. Front Cell Dev Biol. 9:7238012021. View Article : Google Scholar : PubMed/NCBI | |
|
Mukha A, Kahya U, Linge A, Chen O, Löck S, Lukiyanchuk V, Richter S, Alves TC, Peitzsch M, Telychko V, et al: GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics. 11:7844–7868. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen N, Zhang R, Konishi T and Wang J: Upregulation of NRF2 through autophagy/ERK 1/2 ameliorates ionizing radiation induced cell death of human osteosarcoma U-2 OS. Mutat Res Genet Toxicol Environ Mutagen. 813:10–17. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu C, Yang L, Qi X, Wang T, Li M and Xu K: Inhibition of long non-coding RNA HOTAIR enhances radiosensitivity via regulating autophagy in pancreatic cancer. Cancer Manag Res. 10:5261–5271. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui L, Song Z, Liang B, Jia L, Ma S and Liu X: Radiation induces autophagic cell death via the p53/DRAM signaling pathway in breast cancer cells. Oncol Rep. 35:3639–3647. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu F, Fang C, Xu L, Chen L, Xu Z, Chen J, Peng W, Fu B and Li Y: Combination of rapamycin and SAHA enhanced radiosensitization by inducing autophagy and acetylation in NSCLC. Aging (Albany NY). 13:18223–18237. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Luo H, Wu X, Dong M, Wang D, Ou Y, Wang Y, Sun S, Liu Z, Yang Z, et al: Inhibition of Phosphoglycerate Kinase 1 Enhances Radiosensitivity of Esophageal Squamous Cell Carcinoma to X-rays and Carbon Ion Irradiation. Front Biosci (Landmark Ed). 30:364302025. View Article : Google Scholar : PubMed/NCBI | |
|
Mukha A, Kahya U and Dubrovska A: Targeting glutamine metabolism and autophagy: The combination for prostate cancer radiosensitization. Autophagy. 17:3879–3881. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Mao G, Chang R, Wang F, Zhang X and Kong Z: Down-regulation of autophagy-associated protein increased acquired radio-resistance bladder cancer cells sensitivity to taxol. Int J Radiat Biol. 97:507–516. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang HX, Nong L, Jia YX, Tan AH, Chen Y, et al: Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep. 32:1905–1912. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Prise KM and O'Sullivan JM: Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 9:351–360. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Jia H, Wei J, Zheng W and Li Z: The dual role of autophagy in cancer stem cells: Implications for tumor progression and therapy resistance. J Transl Med. 23:5832025. View Article : Google Scholar : PubMed/NCBI | |
|
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Wang X, Ding J, Yang H and Xie Y: Increased ATG5 expression predicts poor prognosis and promotes EMT in cervical carcinoma. Front Cell Dev Biol. 9:7571842021. View Article : Google Scholar : PubMed/NCBI | |
|
Pustovalova M, Alhaddad L, Blokhina T, Smetanina N, Chigasova A, Chuprov-Netochin R, Eremin P, Gilmutdinova I, Osipov AN and Leonov S: The CD44high subpopulation of multifraction irradiation-surviving NSCLC cells exhibits partial EMT-program activation and DNA damage response depending on their p53 Status. Int J Mol Sci. 22:23692021. View Article : Google Scholar : PubMed/NCBI | |
|
Yazal T, Bailleul J, Ruan Y, Sung D, Chu FI, Palomera D, Dao A, Sehgal A, Gurunathan V, Aryan L, et al: Radiosensitizing pancreatic cancer via effective autophagy inhibition. Mol Cancer Ther. 21:79–88. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gajate C, Gayet O, Fraunhoffer NA, Iovanna J, Dusetti N and Mollinedo F: Induction of apoptosis in human pancreatic cancer stem cells by the endoplasmic reticulum-targeted alkylphospholipid analog edelfosine and potentiation by autophagy inhibition. Cancers (Basel). 13:61242021. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer P, Schmid M, Ohradanova-Repic A, Schneeweiss R, Hadatsch J, Grünert O, Benedum J, Röhrer A, Staudinger F, Schatzlmaier P, et al: Molecular features of TNBC govern heterogeneity in the response to radiation and autophagy inhibition. Cell Death Dis. 16:5402025. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao S, Wang Y, Pan S, Mu M, Chen B, Li H, Feng C, Fan R, Yu W, Han B, et al: Bismuth-functionalized probiotics for enhanced antitumor radiotherapy and immune activation. J Mater Chem B. Jul 14–2025.(Epub ahead of print). View Article : Google Scholar | |
|
Yang P, Li J, Zhang T, Ren Y, Zhang Q, Liu R, Li H, Hua J, Wang WA, Wang J and Zhou H: Ionizing radiation-induced mitophagy promotes ferroptosis by increasing intracellular free fatty acids. Cell Death Differ. 30:2432–2445. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Liu X, Li Z, Wei Y, Liu B, Zhu P, Liu Y and Zhao R: VPS37A activates the autophagy-lysosomal pathway for TNFR1 degradation and induces NF-κB-Regulated cell death under metabolic stress in colorectal cancer. Oncol Res. 33:2085–2105. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Azmat MA, Zaheer M, Shaban M, Arshad S, Hasan M, Ashraf A, Naeem M, Ahmad A and Munawar N: Autophagy: A new avenue and biochemical mechanisms to mitigate the climate change. Scientifica (Cairo). 2024:99083232024. View Article : Google Scholar : PubMed/NCBI | |
|
Choi Y, Bowman JW and Jung JU: Autophagy during viral infection-a double-edged sword. Nat Rev Microbiol. 16:341–354. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Daniel P, Sabri S, Chaddad A, Meehan B, Jean-Claude B, Rak J and Abdulkarim BS: Temozolomide induced hypermutation in glioma: Evolutionary mechanisms and therapeutic opportunities. Front Oncol. 9:412019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu EK, Sulman EP, Wen PY and Kurz SC: Novel therapies for glioblastoma. Curr Neurol Neurosci Rep. 20:192020. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai CY, Ko HJ, Huang CF, Lin CY, Chiou SJ, Su YF, Lieu AS, Loh JK, Kwan AL, Chuang TH and Hong YR: Ionizing radiation induces resistant glioblastoma stem-like cells by promoting autophagy via the Wnt/β-catenin pathway. Life (Basel). 11:4512021.PubMed/NCBI | |
|
Wang Y, Fu Y, Lu Y, Chen S, Zhang J, Liu B and Yuan Y: Unravelling the complexity of lncRNAs in autophagy to improve potential cancer therapy. Biochim Biophys Acta Rev Cancer. 1878:1889322023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng J, Mat Ludin AF, Rajab NF, Shaolong L and Jufri NF: The roles of lncMALAT1 in coronary artery disease regulation and therapeutic perspective: A systematic review. iScience. 28:1129452025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Shi Y, Wang C and Zhang K: LncRNA MALAT1 knockdown inhibits apoptosis of mouse hippocampus neuron cells with high glucose by Silencing autophagy. BMC Endocr Disord. 25:1732025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Wang H, Shen Q, Feng L and Jin H: Long non-coding RNAs involved in autophagy regulation. Cell Death Dis. 8:e30732017. View Article : Google Scholar : PubMed/NCBI | |
|
Xia N, Zhang P, Yang L, Yin X, Wu SQ, Yao Y, Shang MY and Weng L: The lncRNA MIR503HG/miR-16-5p/FOSL1 pathway mediates autophagy to promote esophageal epithelial cells proliferation and EMT in esophageal restenosis. Arch Biochem Biophys. 772:1105362025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Sun Y, Yu Q, Wang X, Wang Y and Zhao Y: Exosomal lncRNA GAS5 promotes M1 macrophage polarization in allergic rhinitis via restraining mTORC1/ULK1/ATG13-mediated autophagy and subsequently activating NF-кB signaling. Int Immunopharmacol. 121:1104502023. View Article : Google Scholar : PubMed/NCBI | |
|
DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Song Y, Wang Z, Fu L, Xu L, Feng X, Zhang Z and Yuan K: Dietary sugar intervention: A promising approach for cancer therapy. Biochim Biophys Acta Rev Cancer. 1880:1894022025. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Wang K, Zhao L, Liu J, Jin Y, Zhang C, Xu M, Wang M, Kuang Y, Liu J, et al: LINC00622 transcriptionally promotes RRAGD to repress mTORC1-modulated autophagic cell death by associating with BTF3 in cutaneous melanoma. Cell Death Dis. 16:5152025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, Ma J, Wei J, Meng W, Wang Y and Shi M: lncRNA SNHG11 promotes gastric cancer progression by activating the Wnt/β-Catenin pathway and oncogenic autophagy. Mol Ther. 29:1258–1278. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen F, Zhong Z, Tan HY, Guo W, Zhang C, Cheng CS, Wang N, Ren J and Feng Y: Suppression of lncRNA MALAT1 by betulinic acid inhibits hepatocellular carcinoma progression by targeting IAPs via miR-22-3p. Clin Transl Med. 10:e1902020. View Article : Google Scholar : PubMed/NCBI | |
|
Sheng JQ, Wang MR, Fang D, Liu L, Huang WJ, Tian DA, He XX and Li PY: LncRNA NBR2 inhibits tumorigenesis by regulating autophagy in hepatocellular carcinoma. Biomed Pharmacother. 133:1110232021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z and Jin J: LncRNA SLCO4A1-AS1 promotes colorectal cancer cell proliferation by enhancing autophagy via miR-508-3p/PARD3 axis. Aging (Albany NY). 11:4876–4889. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Li Z, Xu S, Li W, Chen M, Jiang M and Fan X: LncRNA FIRRE functions as a tumor promoter by interaction with PTBP1 to stabilize BECN1 mRNA and facilitate autophagy. Cell Death Dis. 13:982022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu X, Chen L, Li Y, Huang R, Meng X and Sun F: Long non-coding RNA LINC01207 promotes cell proliferation and migration but suppresses apoptosis and autophagy in oral squamous cell carcinoma by the microRNA-1301-3p/lactate dehydrogenase isoform A axis. Bioengineered. 12:7780–7793. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang N, Zhang X, Gu X, Li X and Shang L: Progress in understanding the role of lncRNA in programmed cell death. Cell Death Discov. 7:302021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu M, Qin X, Zhou Y, Li G, Liu Z, Yue H and Geng X: LncRNA HOTAIR suppresses cell apoptosis, autophagy and induces cell proliferation in cholangiocarcinoma by modulating the miR-204-5p/HMGB1 axis. Biomed Pharmacother. 130:1105662020. View Article : Google Scholar : PubMed/NCBI | |
|
Murakami K, Yokoi Y, Hirane N, Otaki M and Nishimura SI: Nanosomal irinotecan targeting pancreatic cancer cell surface neuraminidase-1 sialidase. Adv Healthc Mater. Jul 22–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Li A, Zheng Q, Gu J and Zhou W: LncRNA LZTS1-AS1 induces proliferation, metastasis and inhibits autophagy of pancreatic cancer cells through the miR-532/TWIST1 signaling pathway. Cancer Cell Int. 23:1302023. View Article : Google Scholar : PubMed/NCBI | |
|
Lv D, Xiang Y, Yang Q, Yao J and Dong Q: Long Non-Coding RNA TUG1 promotes cell proliferation and inhibits cell apoptosis, autophagy in clear cell renal cell carcinoma via MiR-31-5p/FLOT1 axis. Onco Targets Ther. 13:5857–5868. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shao Q, Wang Q and Wang J: LncRNA SCAMP1 regulates ZEB1/JUN and autophagy to promote pediatric renal cell carcinoma under oxidative stress via miR-429. Biomed Pharmacother. 120:1094602019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Jia JP, Zhang YJ, Liu G, Zhou F and Zhang BC: Long Noncoding RNA ADAMTS9-AS2 inhibits the proliferation, migration, and invasion in bladder tumor cells. Onco Targets Ther. 13:7089–7100. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Chen K, Dong R and Lu H: LncRNA CASC2 inhibits autophagy and promotes apoptosis in non-small cell lung cancer cells via regulating the miR-214/TRIM16 axis. RSC Adv. 8:40846–40855. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Peng D, Li W, Zhang B and Liu X: Overexpression of lncRNA SLC26A4-AS1 inhibits papillary thyroid carcinoma progression through recruiting ETS1 to promote ITPR1-mediated autophagy. J Cell Mol Med. 25:8148–8158. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang T, Lv C and Zhang H: RBM47/SNHG5/FOXO3 axis activates autophagy and inhibits cell proliferation in papillary thyroid carcinoma. Cell Death Dis. 13:2702022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu Z, Xu Z, Shao W, Hu D, Zhong H and Zhang J: Introduction of long non-coding RNAs to regulate autophagy-associated therapy resistance in cancer. Mol Biol Rep. 49:10761–10773. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shaw A and Gullerova M: Home and away: The role of non-coding RNA in intracellular and intercellular DNA damage response. Genes (Basel). 12:14752021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Qiao C, Fang R, Yang S, Zhao G, Liu S and Li P: LncRNA CASC19: A novel oncogene involved in human cancer. Clin Transl Oncol. 25:2841–2851. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Mou J, Zhou G and Yuan C: CASC19: An oncogenic long non-coding RNA in different cancers. Curr Pharm Des. 30:1157–1166. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Zheng W, Chen Q, Zhou Y, Pan Y, Zhang J, Bai Y and Shao C: lncRNA CASC19 contributes to radioresistance of nasopharyngeal carcinoma by promoting autophagy via AMPK-mTOR pathway. Int J Mol Sci. 22:14072021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Chen Q, Zheng W, Zhou Y, Bai Y, Pan Y, Zhang J and Shao C: LncRNA CASC19 enhances the radioresistance of nasopharyngeal carcinoma by regulating the miR-340-3p/FKBP5 axis. Int J Mol Sci. 24:30472023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang WJ, Guo CA, Li R, Xu ZP, Yu JP, Ye Y, Zhao J, Wang J, Wang WA, Zhang A, et al: Long non-coding RNA CASC19 is associated with the progression and prognosis of advanced gastric cancer. Aging (Albany NY). 11:5829–5847. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hou Y, Tang Y, Ma C, Yu J and Jia Y: Overexpression of CASC19 contributes to tumor progression and predicts poor prognosis after radical resection in hepatocellular carcinoma. Dig Liver Dis. 55:799–806. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Teng S, Ge J, Yang Y, Cui Z, Min L, Li W, Yang G, Liu K and Wu J: M1 macrophages deliver CASC19 via exosomes to inhibit the proliferation and migration of colon cancer cells. Med Oncol. 41:2862024. View Article : Google Scholar : PubMed/NCBI | |
|
Chiu HS, Somvanshi S, Patel E, Chen TW, Singh VP, Zorman B, Patil SL, Pan Y, Chatterjee SS; Cancer Genome Atlas Research Network;, ; et al: Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep. 23:297–312.e12. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Z, Li X, Wang X, Wu J, Gong Z, Kõks S and Wang M: Nuclear paraspeckle assembly transcript 1 promotes photophobia behavior in mice via miR-196a-5p/Trpm3 coupling. J Headache Pain. 26:1182025. View Article : Google Scholar : PubMed/NCBI | |
|
Sakaguchi H, Tsuchiya H, Kitagawa Y, Tanino T, Yoshida K, Uchida N and Shiota G: NEAT1 Confers radioresistance to hepatocellular carcinoma cells by inducing autophagy through GABARAP. Int J Mol Sci. 23:7112022. View Article : Google Scholar : PubMed/NCBI | |
|
Mahmoud HS, Eldesoky NA, Shaker OG and El-Husseiny AA: The diagnostic value of LncRNA NEAT1 targeting miR-129-5p in pancreatic cancer patients. Sci Rep. 15:276382025. View Article : Google Scholar : PubMed/NCBI | |
|
Dong P, Xiong Y, Yue J, Xu D, Ihira K, Konno Y, Kobayashi N, Todo Y and Watari H: Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J Exp Clin Cancer Res. 38:2952019. View Article : Google Scholar : PubMed/NCBI | |
|
Almujri SS and Almalki WH: The paradox of autophagy in cancer: NEAT1′s role in tumorigenesis and therapeutic resistance. Pathol Res Pract. 262:1555232024. View Article : Google Scholar : PubMed/NCBI | |
|
Wen J, Zheng W, Zeng L, Wang B, Chen D, Chen Y, Lu X, Shao C, Chen J and Fan M: LTF Induces Radioresistance by Promoting Autophagy and Forms an AMPK/SP2/NEAT1/miR-214-5p feedback loop in lung squamous cell carcinoma. Int J Biol Sci. 19:1509–1527. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
He H: Targeting TP53TG1: A promising prognostic biomarker and therapeutic target for personalized cancer therapy. Discov Oncol. 16:12712025. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Liu R, Hu H, Huang Y, Shi Y, Li H, Chen H, Cai M, Wang N, Yan T, et al: Methionine deprivation inhibits glioma proliferation and EMT via the TP53TG1/miR-96-5p/STK17B ceRNA pathway. NPJ Precis Oncol. 8:2702024. View Article : Google Scholar : PubMed/NCBI | |
|
Liao D, Liu X, Yuan X, Feng P, Ouyang Z, Liu Y and Li C: Long non-coding RNA tumor protein 53 target gene 1 promotes cervical cancer development via regulating microRNA-33a-5p to target forkhead box K2. Cell Cycle. 21:572–584. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ji W, Wang W and Wei Y: TP53TG1/STAT axis is involved in the development of colon cancer through affecting PD-L1 expression and immune escape mechanism of tumor cells. Am J Cancer Res. 13:5218–5235. 2023.PubMed/NCBI | |
|
Cheng Y, Huang N, Yin Q, Cheng C, Chen D, Gong C, Xiong H, Zhao J, Wang J, Li X, et al: LncRNA TP53TG1 plays an anti-oncogenic role in cervical cancer by synthetically regulating transcriptome profile in HeLa cells. Front Genet. 13:9810302022. View Article : Google Scholar : PubMed/NCBI | |
|
Luan F, Chen W, Chen M, Yan J, Chen H, Yu H, Liu T and Mo L: An autophagy-related long non-coding RNA signature for glioma. FEBS Open Bio. 9:653–667. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gao W, Qiao M and Luo K: Long noncoding RNA TP53TG1 contributes to radioresistance of glioma cells Via miR-524-5p/RAB5A Axis. Cancer Biother Radiopharm. 36:600–612. 2021.PubMed/NCBI | |
|
Wang C, Li Y, Yan S, Wang H, Shao X, Xiao M, Yang B, Qin G, Kong R, Chen R and Zhang N: Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun. 11:31622020. View Article : Google Scholar : PubMed/NCBI | |
|
Gandhy SU, Imanirad P, Jin UH, Nair V, Hedrick E, Cheng Y, Corton JC, Kim K and Safe S: Specificity protein (Sp) transcription factors and metformin regulate expression of the long non-coding RNA HULC. Oncotarget. 6:26359–26372. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Lin J, Liu Y, Peng J, Cao Y, Su Z, Wang T, Cheng J and Hu D: AlncRNA HULC as an effective biomarker for surveillance of the outcome of cancer: A meta-analysis. PLoS One. 12:e01712102017. View Article : Google Scholar : PubMed/NCBI | |
|
Li YP, Liu Y, Xiao LM, Chen LK, Tao EX, Zeng EM and Xu CH: Induction of cancer cell stemness in glioma through glycolysis and the long noncoding RNA HULC-activated FOXM1/AGR2/HIF-1α axis. Lab Invest. 102:691–701. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Chang M, Tong L, Wang Y, Wang M and Wang F: Screening potential lncRNA biomarkers for breast cancer and colorectal cancer combining random walk and logistic matrix factorization. Front Genet. 13:10236152023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Wang K, Wang Q and Wang X: LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells. Braz J Med Biol Res. 51:e70802018. View Article : Google Scholar : PubMed/NCBI | |
|
Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, et al: Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol. 21:198–206. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Meng X, Fang E, Zhao X and Feng J: Identification of prognostic long noncoding RNAs associated with spontaneous regression of neuroblastoma. Cancer Med. 9:3800–3815. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi X, Cui Z, Liu X, Wu S, Wu Y, Fang F and Zhao H: LncRNA FIRRE is activated by MYC and promotes the development of diffuse large B-cell lymphoma via Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 510:594–600. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Zhang J, Liu Y, Zhao R, Zhou X and Wang H: An integrated autophagy-related long noncoding RNA signature as a prognostic biomarker for human endometrial cancer: A bioinformatics-based approach. Biomed Res Int. 2020:57174982020. View Article : Google Scholar : PubMed/NCBI | |
|
Cai J, Wang R, Chen Y, Zhang C, Fu L and Fan C: LncRNA FIRRE regulated endometrial cancer radiotherapy sensitivity via the miR-199b-5p/SIRT1/BECN1 axis-mediated autophagy. Genomics. 116:1107502024. View Article : Google Scholar : PubMed/NCBI | |
|
Cory S, Graham M, Webb E, Corcoran L and Adams JM: Variant (6;15) translocations in murine plasmacytomas involve a chromosome 15 locus at least 72 kb from the c-myc oncogene. EMBO J. 4:675–681. 1985. View Article : Google Scholar : PubMed/NCBI | |
|
Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, Ronning P, Reuland B, Guenther K, Beadnell TC, et al: PVT1 dependence in cancer with MYC copy-number increase. Nature. 512:82–86. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Boloix A, Masanas M, Jiménez C, Antonelli R, Soriano A, Roma J, Sánchez de Toledo J, Gallego S and Segura MF: Long Non-coding RNA PVT1 as a prognostic and therapeutic target in pediatric cancer. Front Oncol. 9:11732019. View Article : Google Scholar : PubMed/NCBI | |
|
Ogunwobi OO and Segura MF: Editorial: PVT1 in cancer. Front Oncol. 10:5887862020. View Article : Google Scholar : PubMed/NCBI | |
|
Lai SW, Chen MY, Bamodu OA, Hsieh MS, Huang TY, Yeh CT, Lee WH and Cherng YG: Exosomal lncRNA PVT1/VEGFA axis promotes colon cancer metastasis and stemness by downregulation of tumor suppressor miR-152-3p. Oxid Med Cell Longev. 2021:99598072021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Wu F, Gui W, Zhang N, Matro E, Zhu L, Eserberg DT and Lin X: A positive feedback regulatory loop involving the lncRNA PVT1 and HIF-1α in pancreatic cancer. J Mol Cell Biol. 13:676–689. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yao W, Li S, Liu R, Jiang M, Gao L, Lu Y, Liang X and Zhang H: Long non-coding RNA PVT1: A promising chemotherapy and radiotherapy sensitizer. Front Oncol. 12:9592082022. View Article : Google Scholar : PubMed/NCBI | |
|
Tan YT, Lin JF, Li T, Li JJ, Xu RH and Ju HQ: LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun (Lond). 41:109–120. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Shao Y, Hu W, Zhang J, Shi Y, Kong X and Jiang J: A novel long noncoding RNA SP100-AS1 induces radioresistance of colorectal cancer via sponging miR-622 and stabilizing ATG3. Cell Death Differ. 30:111–124. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Z, Zhang X, Zhu H, Zhong N, Luo X, Zhang Y, Tu F, Zhong J, Wang X, He J and Huang L: TELO2 induced progression of colorectal cancer by binding with RICTOR through mTORC2. Oncol Rep. 45:523–534. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chang S, Zhang M, Liu C, Li M, Lou Y and Tan H: Redox mechanism of glycerophospholipids and relevant targeted therapy in ferroptosis. Cell Death Discov. 11:3582025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Yu S, Wang C, Jia C, Lu Z and Chen J: Establishment of a non-coding RNAomics screening platform for the regulation of KRAS in pancreatic cancer by RNA sequencing. Int J Oncol. 53:2659–2670. 2018.PubMed/NCBI | |
|
Muthoni A, Anyango A and V Wanjala H: Mucilage-based nanocarriers for targeted cancer therapy-design, functionalization, and therapeutic potential. Drug Dev Ind Pharm. Aug 4–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Wu T and Du Y: LncRNAs: From basic research to medical application. Int J Biol Sci. 13:295–307. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Chen H, Yang Y, Zhao L, Xie H, Li P, Lv X, He L, Liu N and Liu B: Targeting LINC02320 prevents colorectal cancer growth via GRB7-dependent inhibition of MAPK signaling pathway. Cell Mol Biol Lett. 30:862025. View Article : Google Scholar : PubMed/NCBI | |
|
Taylor MA, Das BC and Ray SK: Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma. Apoptosis. 23:563–575. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Han F, Chen S, Zhang K, Zhang K, Wang M and Wang P: Targeting the HNRNPA2B1/HDGF/PTN axis to overcome radioresistance in non-small cell lung cancer. Antioxid Redox Signal. 43:189–214. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Chen X, Chen X, Liu J, Gu H, Fan R and Ge H: Long non-coding RNA HOTAIR knockdown enhances radiosensitivity through regulating microRNA-93/ATG12 axis in colorectal cancer. Cell Death Dis. 11:1752020. View Article : Google Scholar : PubMed/NCBI | |
|
Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S, et al: The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res. 38:1712019. View Article : Google Scholar : PubMed/NCBI |